Галактики расположены в определенном порядке. Происхождение и развитие галактики. Виды галактик во Вселенной

Галактикой называют крупные формирования звезд, газа, пыли, которые удерживаются вместе силой гравитации. Эти крупнейшие соединения во Вселенной могут различаться формой и размерами. Большая часть космических объектов входит в состав определенной галактики. Это звезды, планеты, спутники, туманности, черные дыры и астероиды. Некоторые из галактик обладают большим количеством невидимой темной энергии. Из-за того, что галактики разделяет пустое космическое пространство, их образно называют оазисами в космической пустыне..

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются Нет
20% 55% 5%

Наша галактика

Ближайшая к нам звезда Солнце относится к миллиарду звезд в галактике Млечный путь. Посмотрев на ночное звездное небо, тяжело не заметить широкую полосу, усыпанную звездами. Скопление этих звезд древние греки назвали Галактикой.

Если бы у нас была возможность посмотреть на эту звездную систему со стороны, мы бы заметили сплюснутый шар, в котором насчитывается свыше 150 млрд. звезд. Наша галактика имеет такие размеры, которые тяжело представить в своем воображении. Луч света путешествует с одной ее стороны на другую сотню тысяч земных лет! Центр нашей Галактики занимает ядро, от которого отходят огромные спиральные ветви, заполненные звездами. Расстояние от Солнца до ядра Галактики составляет 30 тысяч световых лет. Солнечная система расположена на окраине Млечного пути.

Звезды в Галактике несмотря на огромное скопление космических тел встречаются редко. Например, расстояние между ближайшими звездами в десятки миллионов раз превышает их диаметры. Нельзя сказать, что звезды разбросаны во Вселенной хаотично. Их местоположение зависит от сил гравитации, которые удерживают небесное тело в определенной плоскости. Звездные системы со своими гравитационными полями и называют галактиками. Кроме звезд, в состав галактики входит газ и межзвездная пыль.

Состав галактик.

Вселенную составляет также множество других галактик. Наиболее приближенные к нам отдалены на расстояние 150 тыс. световых лет. Их можно увидеть на небе южного полушария в виде маленьких туманных пятнышек. Их впервые описал участник Магеллановой экспедиции вокруг мира Пигафетт. В науку они вошли под названием Большого и Малого Магеллановых Облаков.

Ближе всего к нам расположена галактика под названием Туманность Андромеды. Она имеет очень большие размеры, поэтому видна с Земли в обычный бинокль, а в ясную погоду – даже невооруженным глазом.

Само строение галактики напоминает гигантскую выпуклую в пространстве спираль. На одном из спиральных рукавов за ¾ расстояния от центра находится Солнечная система. Все в галактике кружится вокруг центрального ядра и подчиняется силе его гравитации. В 1962 году астрономом Эдвином Хабблом была проведена классификация галактик в зависимости от их формы. Все галактики ученый разделил на эллиптические, спиральные, неправильные и галактики с перемычкой.

В части Вселенной, доступной для астрономических исследований, расположены миллиарды галактик. В совокупности их астрономы называют Метагалактикой.

Галактики Вселенной

Галактики представлены крупными группировками звезд, газа, пыли, удерживаемых вместе гравитацией. Они могут существенно отличаться по форме и размерам. Большинство космических объектов относятся к какой-либо галактике. Это черные дыры, астероиды, звезды со спутниками и планетами, туманности, нейтронные спутники.

Большинство галактик Вселенной включают огромное количество невидимой темной энергии. Так как пространство между различными галактиками считается пустотным, то их нередко называют оазисами в пустоте космоса. Например, звезда по имени Солнце – одни из миллиардов звезд в галактике «Млечный Путь», находящейся в нашей Вселенной. В ¾ расстояния от центра данной спирали находится Солнечная система. В этой галактике все беспрерывно движется вокруг центрального ядра, которое подчиняется его гравитации. Однако и ядро тоже движется вместе с галактикой. При этом все галактики двигаются на сверхскоростях.
Астроном Эдвин Хаббл в 1962 году провел логическую классификацию галактик Вселенной с учетом их формы. Сейчас галактики разделяются на 4 основные группы: эллиптические, спиральные, галактики с баром (перемычкой) и неправильные.
Какая самая большая галактика в нашей Вселенной?
Наиболее крупной галактикой во Вселенной является линзовидная галактика сверхгиганских размеров, находящаяся в скоплении Abell 2029.

Спиральные галактики

Они представляют собой галактики, которые по своей форме напоминают плоский спиралевидный диск с ярким центром (ядром). Млечный Путь – типичная спиральная галактика. Спиральные галактики принято называть с буквы S, они разделяются на 4 подгруппы: Sa, Sо, Sc и Sb. Галактики, относящиеся к группе Sо, отличаются светлыми ядрами, которые не имеют спиральных рукавов. Что касается галактик Sа, то они отличаются плотными спиральными рукавами, плотно обмотанными вокруг центрального ядра. Рукава галактик Sc и Sb редко окружают ядро.

Спиральные галактики каталога Мессье

Галактики с перемычкой

Галактики с баром (перемычкой) похожи на спиральные галактики, но все же имеют одно отличие. В таких галактиках спирали начинаются не от ядра, а от перемычек. Около 1/3 всех галактик входят в эту категорию. Их принято обозначать буквами SB. В свою очередь, они разделяются на 3 подгруппы Sbc, SBb, SBa. Разница между этими тремя группами определяется формой и длиной перемычек, откуда, собственно, и начинаются рукава спиралей.

Спиральные галактики с перемычкой каталога Мессье

Эллиптические галактики

Форма галактик может варьироваться от идеально круглой до вытянутого овала. Их отличительной чертой является отсутствие центрального яркого ядра. Они обозначаются буквой Е и разделяются на 6 подгрупп (по форме). Такие формы обознаются от Е0 до Е7. Первые имеют почти круглую форму, тогда как Е7 характеризуются чрезвычайно вытянутой формой.

Эллиптические галактики каталога Мессье

Неправильные галактики

Они не имеют какой-либо выраженной структуры или формы. Неправильные галактики принято разделять на 2 класса: IO и Im. Наиболее распространенным является Im класс галактик (он имеет только незначительный намек на структуру). В некоторых случаях прослеживаются спиральные остатки. IO относится к классу галактик, хаотических по форме. Малые и Большие Магеллановы Облака – яркий пример Im класса.

Неправильные галактики каталога Мессье

Таблица характеристик основных видов галактик

Эллиптическая галактика Спиральная галактика Неправильная галактика
Сфероидальный компонент Галактика целиком Есть Очень слаб
Звёздный диск Нет или слабо выражен Основной компонент Основной компонент
Газопылевой диск Нет Есть Есть
Спиральные ветви Нет или только вблизи ядра Есть Нет
Активные ядра Встречаются Встречаются нет
Процент от общего числа галактик 20% 55% 5%

Большой портрет галактик

Не так давно астрономы начали работать над совместным проектом для выявления расположения галактик во всей Вселенной. Их задача – получить более детальную картину общей структуры и формы Вселенной в больших масштабах. К сожалению, масштабы Вселенной сложно оценить для понимания многими людьми. Взять хотя бы нашу галактику, состоящую более чем из ста миллиардов звезд. Во Вселенной существуют еще миллиарды галактик. Обнаружены дальние галактики, но мы видим их свет таким, который был практически 9 млрд лет назад (нас разделяет такое большое расстояние).

Астрономам стало известно, что большинство галактик относятся к определенной группе (ее стали называть «кластер»). Млечный путь – часть кластера, который, в свою очередь, состоит из сорока известных галактик. Как правило, большинство таких кластеров представлены частью еще большей группировки, которую называют сверхскоплениями.

Наш кластер – часть сверхскопления, которое принято называть скоплением Девы. Такой массивный кластер состоит больше чем из 2 тыс. галактик. В то время, когда астрономы создали карту расположения данных галактик, сверхскопления начали принимать конкретную форму. Большие сверхскопления собрались вокруг того, что представляется как бы гигантскими пузырями или пустотами. Что это за структура, никто еще не знает. Мы не понимаем, что может находиться внутри этих пустот. По предположению, они могут быть заполнены определенным типом неизвестной ученым темной материи или же иметь внутри пустое пространство. Перед тем как мы узнаем природу таких пустот, пройдет много времени.

Галактические вычисления

Эдвин Хаббл является основоположником галактических исследований. Он первый, кому удалось определить, как можно вычислить точное расстояние до галактики. В своих исследованиях он опирался на метод пульсирующих звезд, которые более известны как цефеиды. Ученый смог заметить связь между периодом, который нужен для завершения одной пульсации яркости, и той энергией, которую выделяет звезда. Результаты его исследований стали серьезным прорывом в области галактических исследований. Помимо этого, он обнаружил, что есть корреляция между красным спектром, излучаемым галактикой, и расстоянием до нее (постоянная Хаббла).

В наше время астрономы могут измерять расстояние и скорости галактики посредством измерения количества красного смещения в спектре. Известно, что все галактики Вселенной движутся друг от друга. Чем дальше галактика находится от Земли, тем больше ее скорость движения.

Чтобы визуализировать данную теорию, достаточно представить себя за рулем авто, который двигается на скорости 50 км в час. Перед Вами едет авто быстрее на 50 км в час, что говорит о том, что скорость его передвижения составляет 100 км в час. Перед ним есть еще одно авто, которое движется быстрее еще на 50 км в час. Несмотря на то что скорость всех 3 машин будет разной на 50 км в час, первый автомобиль на самом деле движется от Вас на 100 км в час быстрее. Поскольку красный спектр говорит о скорости движения галактики от нас, получается следующее: чем больше красное смещение, тем, соответственно, галактика быстрее движется и тем большее ее расстояние от нас.

Сейчас мы располагаем новыми инструментами, помогающими ученым в поисках новых галактик. Благодаря космическому телескопу Хаббла ученым удалось увидеть то, о чем раньше оставалось только мечтать. Высокая мощность этого телескопа обеспечивает хорошую видимость даже мелких деталей в ближних галактиках и позволяет изучать более дальние, которые никому еще не были известны. В настоящее время новые инструменты наблюдения космоса находятся в стадии разработки, а в скором будущем они помогут получить более глубокое понимание структуры Вселенной.

Типы галактик

  • Спиральные галактики. По форме напоминают плоский спиралевидный диск с ярко выраженным центром, так называемым ядром. Наша галактика Млечный путь относится к этой категории. В данном разделе портала сайт Вы встретите много различных статей с описанием космических объектов нашей Галактики.
  • Галактики с перемычкой. Напоминают спиральные, только от них они отличаются одним существенным отличием. Спирали отходят не от ядра, а от так называемых перемычек. К этой категории можно отнести треть всех галактик Вселенной.
  • Эллиптические галактики обладают различными формами: от досконально круглой до овально вытянутой. Сравнительно со спиральными, у них отсутствует центральное ярко выраженное ядро.
  • Неправильные галактики не обладают характерной формой или структурой. Их нельзя отнести к какому-либо из перечисленных выше типов. Неправильных галактик насчитывается куда меньшее количество на просторах Вселенной.

Астрономы в последнее время запустили совместный проект по выявлению расположения всех галактик во Вселенной. Ученые надеются получить более наглядную картину ее структуры в большом масштабе. Размер Вселенной тяжело оценить человеческому мышлению и пониманию. Одна только наша галактика – это соединение сотней миллиардов звезд. А таких галактик насчитываются миллиарды. Мы можем видеть свет от обнаруженных дальних галактик, но не подразумевать даже того, что смотрим в прошлое, ведь световой луч доходит до нас за десятки миллиардов лет, настолько великое расстояние нас разделяет.

Астрономы также привязывают большинство галактик к определенным группам, которые называют кластерами. Наш Млечный путь относится к кластеру, который состоит из 40 разведанных галактик. Такие кластеры объединяют в большие группировки, называющиеся сверхскоплениями. Кластер с нашей галактикой входит в сверхскопление Девы. В составе этого гигантского кластера находится более 2 тысяч галактик. После того как ученые начали рисовать карту размещения данных галактик, сверхскопления получили определенные формы. Большинство галактических сверхскоплений окружали гигантские пустоты. Никто не знает, что может быть внутри этих пустот: космическое пространство наподобие межпланетного или же новая форма материи. Понадобится много времени, чтобы раскрыть эту загадку.

Взаимодействие галактик

Не менее интересным для взора ученых представляется вопрос о взаимодействии галактик как компонентов космических систем. Не секрет, что космические объекты находятся в постоянном движении. Галактики не исключение из этого правила. Некоторые из видов галактик могли бы стать причиной столкновения или слияния двух космических систем. Если вникнуть, какими представляются данные космические объекты, более понятными становятся масштабные изменения как результат их взаимодействия. Во время столкновения двух космических систем выплескивается гигантское количество энергии. Встреча двух галактик на просторах Вселенной – даже более вероятное событие, чем столкновение двух звезд. Не всегда столкновение галактик заканчивается взрывом. Небольшая космическая система может свободно пройти мимо своего более крупного аналога, изменив только незначительно его структуру.

Таким образом, происходит образование формирований, схожих внешним видом на вытянутые коридоры. В их составе выделяются звезды и газовые зоны, часто формируются новые светила. Бывают случаи, что галактики не ударяются, а только слегка соприкасаются друг с другом. Однако даже такое взаимодействие запускает цепочку необратимых процессов, которые приводят к огромным изменениям в структуре обеих галактик.

Какое будущее ожидает нашу галактику?

Как предполагают ученые, не исключено, что в далеком будущем Млечный путь сумеет поглотить крохотную по космическим размерам систему-спутник, которая расположена от нас на расстоянии 50 световых лет. Исследования показывают, что этот спутник имеет продолжительный жизненный потенциал, но при столкновении с гигантским соседом, вероятнее всего, закончит отдельное существование. Также астрономы предрекают столкновение Млечного пути и Туманности Андромеды. Галактики движутся друг другу навстречу со скоростью света. До вероятного столкновения ждать примерно три миллиарда земных лет. Однако будет ли оно на самом деле сейчас – тяжело рассуждать из-за нехватки данных о движении обеих космических систем.

Описание галактик на Kvant . Space

Портал сайт перенесет Вас в мир интересного и увлекательного космоса. Вы узнаете природу построения Вселенной, ознакомитесь со структурой известных больших галактик, их составляющими. Читая статьи о нашей галактике, нам становятся более понятными некоторые из явлений, которые можно наблюдать в ночном небе.

Все галактики от Земли находятся на огромном расстоянии. Невооруженным глазом можно увидеть только три галактики: Большое и малое Магеллановы облака и Туманность Андромеды. Все галактики сосчитать нереально. Ученые предполагают, что их количество составляет около 100 миллиардов. Пространственное расположение галактик неравномерно – одна область может содержать огромное их количество, во второй вовсе не будет ни одной даже маленькой галактики. Отделить изображение галактик от отдельных звезд астрономам не удавалось до начала 90-х годов. В это время насчитывалось около 30 галактик с отдельными звездами. Всех их причисляли к Местной группе. В 1990 году состоялось величественное событие в развитии астрономии как науки – на орбиту Земли был запущен телескоп Хаббла. Именно эта техника, а также новые наземные 10-метровые телескопы дали возможность увидеть значительно большее число разрешенных галактик.

На сегодняшний день «астрономические умы» мира ломают голову о роли темной материи в построении галактик, которая проявляет себя лишь в гравитационном взаимодействии. Например, в некоторых больших галактиках она составляет около 90% общей массы, в то время как карликовые галактики могут вовсе ее не содержать.

Эволюция галактик

Ученые считают, что возникновение галактик – это естественный этап эволюции Вселенной, который проходил под воздействием сил гравитации. Приблизительно 14 млрд. лет тому назад началось формирование протоскоплений в первичном веществе. Далее, под воздействием различных динамических процессов состоялось выделение галактических групп. Изобилие форм галактик объясняется разнообразием начальных условий в их формировании.

На сжатие галактики уходит около 3 млрд. лет. За данный период времени газовое облако превращается в звездную систему. Образование звезд происходит под воздействием гравитационного сжатия газовых облаков. После достижения в центре облака определенной температуры и плотности, достаточной для начала термоядерных реакций, образуется новая звезда. Массивные звезды образованы из термоядерных химических элементов, по массе превосходящих гелий. Данные элементы создают первичную гелиево-водородную среду. Во время грандиозных взрывов сверхновых звезд образуются элементы, тяжелее железа. Из этого следует, что галактика состоит из двух поколений звезд. Первое поколение – это наиболее старые звезды, состоящие из гелия, водорода и очень небольшого количества тяжелых элементов. Звезды второго поколения обладают более заметной примесью тяжелых элементов, поскольку они формируются из первичного газа, обогащенного тяжелыми элементами.

В современной астрономии галактикам как космическим структурам отводится отдельное место. В деталях изучаются виды галактик, особенности их взаимодействия, сходства и отличия, делается прогноз их будущего. Эта область содержит еще много непонятного, того, что требует дополнительного изучения. Современная наука решила много вопросов относительно видов построения галактик, но осталось также много белых пятен, связанных с образованием этих космических систем. Современные темпы модернизации исследовательской техники, разработка новых методологий исследования космических тел дают надежды на значительный прорыв в будущем. Так или иначе, галактики всегда будут в центре научных исследований. И основано это не только на человеческом любопытстве. Получив данные о закономерностях развития космических систем, мы сможем спрогнозировать будущее нашей галактики под названием Млечный путь.

Самые интересные новости, научные, авторские статьи об изучении галактик Вам предоставит портал сайт. Здесь Вы сможете найти захватывающие видео, качественные снимки со спутников и телескопов, которые не оставляют равнодушными. Погружайтесь в мир неизведанного космоса вместе с нами!

Согласно современным представлениям, Галактика образовалась около 14 млрд. лет назад из первичного медленно вращавшегося газового облака, по своим размерам превосходившего ее в десятки раз. Первоначально это облако (протогалактика) на 75% состояло из водорода и на 25% - из гелия. В течение примерно 3 миллиардов лет протооблако свободно сжималось под действием сил гравитации.

Этот коллапс неизбежно привел к распаданию облака на части (фрагментации) и началу процесса звездообразования. Сначала газа было много, и он находился на больших расстояниях от плоскости вращения. Возникли звезды первого поколения, а также шаровые скопления.

Звезда рождается, когда в центре сжатого облака достигаются плотности и температуры, достаточные для эффективного протекания термоядерных реакций. В недрах массивных звезд происходил термоядерный синтез химических элементов тяжелее гелия. Эти элементы попали в первичную водородно-гелиевую среду при взрывах звезд или при спокойном истечении вещества со звездами. Элементы тяжелее железа образовались при грандиозных взрывах сверхновых звезд. Таким образом, звезды первого поколения обогатили первичный газ химическими элементами, тяжелее гелия. Эти звезды наиболее старые, они состоят из водорода, гелия и очень малой примеси тяжелых элементов.

Та часть газа, которая не превратилась в звезды, продолжала свой процесс сжатия к центру Галактики. Из-за сохранения момента количества движения, ее вращение становилось быстрее, образовался диск, и, в нем снова начался процесс звездообразования. Звезды второго поколения оказались богатыми тяжелыми элементами, так как они образовались из уже обогащенного тяжелыми элементами первичного газа.

Оставшийся газ сжался в еще более тонкий слой. Так возникла плоская составляющая – звездный диск, который является основной ареной современного звездообразования.

Когда прекратилось сжатие протогалактики, кинетическая энергия образовавшихся звезд диска уравнялась с энергией коллективного гравитационного взаимодействия. В это время создались условия для образования спиральной структуры, а рождение звезд происходит уже в спиральных ветвях, в которых газ достаточно плотный. Это звезды третьего поколения . К ним относится наше Солнце.


Столкновение протогалактик в молодой Вселенной через миллиард лет после Большого взрыва.
Иллюстрация НАСА

Дальнейшую эволюцию Галактики ученые представляют так.

Запасы межзвездного газа постепенно истощатся, рождение звезд станет менее интенсивным. Через несколько миллиардов лет, когда будут исчерпаны все запасы газа, спиральная галактика превратится в линзообразную, состоящую из слабых красных звезд и белых карликов - это сверхплотные звёзды малых размеров, представляющие собой одну из последних стадий эволюции звёзд.

История изучения планет и звезд измеряется тысячелетиями, Солнца, комет, астероидов и метеоритов — столетиями. А вот галактики, разбросанные по Вселенной скопления звезд, космического газа и пылевых частиц, стали объектом научного исследования лишь в 1920-е годы.

Галактики наблюдали с незапамятных времен. Человек с острым зрением может различить на ночном небосводе светлые пятна, похожие на капли молока. В Х веке персидский астроном Абд-аль-Раман аль-Суфи упомянул в своей «Книге о неподвижных звездах» два подобных пятна, известных теперь как Большое Магелланово облако и галактика М31, она же Андромеда. С появлением телескопов астрономы наблюдали все больше таких объектов, получивших название туманностей. Если английский астроном Эдмунд Галлей в 1716 году перечислил всего шесть туманностей, то каталог, опубликованный в 1784 году астрономом французского военно-морского флота Шарлем Мессье, содержал уже 110 — и среди них четыре десятка настоящих галактик (в том числе и М31). В 1802 году Уильям Гершель опубликовал перечень из 2500 туманностей, а его сын Джон в 1864 году издал каталог, где было более 5000 туманностей.


Наша ближайшая соседка, галактика Андромеда (M31) — один из излюбленных небесных объектов для любительских астрономических наблюдений и фотосъемки.

Природа этих объектов долгое время ускользала от понимания. В середине XVIII века некоторые проницательные умы увидели в них звездные системы, подобные Млечному Пути, однако телескопы в то время не предоставляли возможности проверить эту гипотезу. Столетием позже восторжествовало мнение, что каждая туманность — это газовое облако, подсвеченное изнутри молодой звездой. Позже астрономы убедились, что некоторые туманности, в том числе и Андромеда, содержат множество звезд, однако еще долго не было ясно, расположены они в нашей Галактике или за ее пределами. И лишь в 1923—1924 годах Эдвин Хаббл определил, что расстояние от Земли до Андромеды как минимум троекратно превосходит диаметр Млечного Пути (на самом деле примерно в 20 раз) и что М33, другая туманность из каталога Мессье, удалена от нас на никак не меньшую дистанцию. Эти результаты положили начало новой научной дисциплине — галактической астрономии.


В 1926 году знаменитый американский астроном Эдвин Пауэлл Хаббл предложил (а в 1936 году модернизировал) свою классификацию галактик по их морфологии. Из-за характерной формы эту классификацию называют еще «Камертоном Хаббла». На «ножке» камертона находятся эллиптические галактики, на зубцах вилки — линзовидные галактики без рукавов и спиральные галактики без бара-перемычки и с баром. Галактики, которые не могут быть классифицированы как один из перечисленных классов, называются неправильными, или иррегулярными.

Карлики и гиганты

Вселенная заполнена галактиками разного размера и разных масс. Их количество известно весьма приблизительно. Семь лет назад орбитальный телескоп «Хаббл» за три с половиной месяца обнаружил около 10 000 галактик, сканируя в южном созвездии Печи участок небосвода, в сто раз меньший, нежели площадь лунного диска. Если предположить, что галактики распределяются по небесной сфере с такой же плотностью, получится, что в наблюдаемом космосе их 200 млрд. Однако эта оценка сильно занижена, поскольку телескоп не смог заметить великое множество очень тусклых галактик.


Среди галактик есть и карлики, и гиганты. В авторитетном оксфордском справочнике Companion to Cosmology 2008 года издания написано, что самые мелкие галактики содержат миллионы звезд, а самые крупные — триллионы. Эта информация уже успела устареть. Как рассказал «ПМ» профессор Техасского университета в Остине Джон Корменди, в последние годы было открыто семейство мини-галактик всего лишь с сотнями звезд: «Это так называемые ультракомпактные карлики, линейные размеры которых лежат в пределах 20 парсек. Несмотря на малое количество звезд, масса таких галактик составляет миллионы и десятки миллионов солнечных масс. Скорее всего, в этом в основном повинна темная материя, хотя некоторые ученые полагают, что немалый вклад принадлежит черным дырам и нейтронным звездам. Как бы то ни было, старое определение галактики как крупного автономного звездного скопления больше не работает». На верхней границе галактического спектра находятся сверхгиганты диаметром порядка мегапарсека, у которых численность звездного населения достигает сотни триллионов.

Галактики различаются и морфологией (то есть формой). В целом их подразделяют на три основных класса — дисковидные, эллиптические и неправильные (иррегулярные). Это общая классификация, есть гораздо более детальные.


Галактики распределены в космическом пространстве вовсе не хаотично. Массивные галактики нередко окружены небольшими галактиками-спутниками. И наш Млечный Путь, и соседняя Андромеда имеют не менее 14 сателлитов, и, скорее всего, их гораздо больше. Галактики любят объединяться в пары, тройки и более крупные группы из десятков гравитационно связанных партнеров. Ассоциации побольше, галактические кластеры, содержат сотни и тысячи галактик (первый из таких кластеров открыл еще Мессье). Порой в центре кластера наблюдается особо яркая гигантская галактика, возникшая, как считают, в процессе слияния галактик меньшего калибра. И наконец, есть еще и суперкластеры, в которые входят как галактические кластеры и группы, так и отдельные галактики. Обычно это вытянутые структуры протяженностью до сотни мегапарсек. Их разделяют почти полностью свободные от галактик космические пустоты такого же размера. Суперкластеры уже не организованы в какие-либо структуры более высокого порядка и разбросаны по Космосу случайным образом. По этой причине в масштабах нескольких сотен мегапарсек наша Вселенная однородна и изотропна.

Дисковидная галактика — это звездный блин, вращающийся вокруг оси, проходящей через его геометрический центр. Обычно по обе стороны центральной зоны блина имеется овальное вздутие — балдж (от англ. bulge). Балдж тоже вращается, однако с меньшей угловой скоростью, нежели диск. В плоскости диска нередко наблюдаются спиральные ветви, изобилующие сравнительно молодыми яркими светилами. Однако есть галактические диски и без спиральной структуры, где таких звезд много меньше.

Центральную зону дисковидной галактики может рассекать звездная перемычка — бар. Пространство внутри диска заполнено газопылевой средой — исходным материалом для новых звезд и планетных систем. Галактика имеет два диска: звездный и газовый. Они окружены галактическим гало — сферическим облаком разреженного горячего газа и темной материи, которая и вносит основной вклад в полную массу галактики. Гало вмещает также отдельные старые звезды и шаровые звездные скопления (глобулярные кластеры) возрастом до 13 млрд лет. В центре едва ли не любой дисковидной галактики, как с балджем, так и без балджа, расположена сверхмассивная черная дыра. Самые крупные галактики этого типа содержат по 500 млрд звезд.

Млечный путь

Солнце обращается вокруг центра вполне рядовой спиральной галактики, в состав которой входят 200−400 миллиардов звезд. Ее диаметр приблизительно равен 28 килопарсекам (чуть больше 90 световых лет). Радиус солнечной внутригалактической орбиты — 8,5 килопарсек (так что наше светило смещено к внешнему краю галактического диска), время полного оборота вокруг центра Галактики - примерно 250 миллионов лет.
Балдж Млечного Пути имеет эллипсовидную форму и наделен баром, который обнаружили совсем недавно. В центре балджа находится компактное ядро, заполненное звездами различного возраста — от нескольких миллионов лет до миллиарда и старше. Внутри ядра за плотными пылевыми облаками скрывается достаточно скромная по галактическим стандартам черная дыра — всего лишь 3,7 миллиона солнечных масс.
Наша Галактика может похвастаться двойным звездным диском. На долю внутреннего диска, который имеет по вертикали не более 500 парсек, приходится 95% звезд дисковой зоны, в том числе все молодые яркие звезды. Его охватывает внешний диск толщиной в полторы тысячи парсек, где обитают звезды постарше. Газовый (точнее, газо-пылевой) диск Млечного Пути имеет в толщину не менее 3,5 килопарсек. Четыре спиральных рукава диска представляют собой области повышенной плотности газо-пылевой среды и содержат большинство самых массивных звезд.
Диаметр гало Млечного Пути не менее, чем вдвое больше диаметра диска. Там обнаружено порядка 150 глобулярных кластеров, причем, скорее всего, еще с полсотни пока не открыты. Возраст старейших кластеров превышает 13 миллиардов лет. Гало заполнено темной материей, имеющей комковатую структуру. До недавнего времени полагали, что гало почти шарообразно, однако, по последним данным, оно может быть значительно приплюснуто. Общая масса Галактики может составлять до 3 триллионов солнечных масс, причем на долю темной материи приходится 90−95%. Масса звезд Млечного Пути оценивается в 90−100 миллиардов масс Солнца.

Эллиптическая галактика, как и следует из ее названия, имеет форму эллипсоида. Она не вращается как целое и потому не обладает осевой симметрией. Ее звезды, которые в основном имеют сравнительно небольшую массу и солидный возраст, обращаются вокруг галактического центра в разных плоскостях и иногда не по отдельности, а сильно вытянутыми цепочками. Новые светила в эллиптических галактиках загораются редко в связи с дефицитом исходного сырья — молекулярного водорода.


Подобно людям, галактики объединяются в группы. Наша Местная группа включает две самые крупные галактики в окрестностях размером порядка 3 мегапарсек — Млечный путь и Андромеду (M31), галактику Треугольника, а также их спутники — Большое и Малое Магеллановы облака, карликовые галактики в Большом Псе, Пегасе, Киле, Секстанте, Фениксе, и еще множество других — всего числом около полусотни. Местная группа в свою очередь является членом местного сверхскопления Девы.

Как самые крупные, так и самые мелкие галактики относятся к эллиптическому типу. Общая доля его представителей в галактическом населении Вселенной всего около 20%. Эти галактики (возможно, за исключением самых мелких и тусклых) также скрывают в своих центральных зонах сверхмассивные черные дыры. Эллиптические галактики имеют и гало, но не столь четкие, как у дисковидных.

Все прочие галактики считаются иррегулярными. Они содержат много пыли и газа и активно порождают молодые звезды. На умеренных расстояниях от Млечного Пути таких галактик немного, всего-то 3%. Однако среди объектов с большим красным смещением, чей свет был испущен не позже, чем через 3 млрд лет после Большого взрыва, их доля резко возрастает. Судя по всему, все звездные системы первого поколения были невелики и обладали неправильными очертаниями, а крупные дисковидные и эллиптические галактики возникли гораздо позже.


Рождение галактик

Галактики появились на свет вскоре после звезд. Считается, что первые светила вспыхнули никак не позднее, чем спустя 150 млн лет после Большого взрыва. В январе 2011 года команда астрономов, обрабатывавших информацию с космического телескопа «Хаббл», сообщила о вероятном наблюдении галактики, чей свет ушел в космос через 480 млн лет после Большого взрыва. В апреле еще одна исследовательская группа обнаружила галактику, которая, по всей вероятности, уже вполне сформировалась, когда юной Вселенной было около 200 млн лет.

Условия для рождения звезд и галактик возникли задолго до его начала. Когда Вселенная прошла возрастную отметку в 400 000 лет, плазма в космическом пространстве заменилась смесью из нейтрального гелия и водорода. Этот газ был еще чересчур горяч, чтобы стянуться в молекулярные облака, дающие начало звездам. Однако он соседствовал с частицами темной материи, изначально распределенными в пространстве не вполне равномерно — где чуть плотнее, где разреженнее. Они не взаимодействовали с барионным газом и потому под действием взаимного притяжения свободно стягивались в зоны повышенной плотности. Согласно модельным вычислениям, уже через сотню миллионов лет после Большого взрыва в космосе образовались облака темной материи величиной с нынешнюю Солнечную систему. Они объединялись в более крупные структуры, невзирая на расширение пространства. Так возникли скопления облаков темной материи, а потом и скопления этих скоплений. Они втягивали в себя космический газ, предоставляя ему возможность сгущаться и коллапсировать. Таким путем появились первые сверхмассивные звезды, которые быстро взрывались сверхновыми и оставляли после себя черные дыры. Эти взрывы обогащали космическое пространство элементами тяжелее гелия, которые способствовали охлаждению коллапсирующих газовых облаков и потому делали возможным появление менее массивных звезд второго поколения. Такие звезды уже могли существовать миллиарды лет и потому были в состоянии формировать (опять-таки с помощью темной материи) гравитационно связанные системы. Так возникли долгоживущие галактики, в том числе и наша.


«Многие детали галактогенеза еще скрыты в тумане, — говорит Джон Корменди. — В частности, это относится к роли черных дыр. Их массы варьируют от десятков тысяч масс Солнца до абсолютного на сегодняшний день рекорда в 6,6 млрд солнечных масс, принадлежащего черной дыре из ядра эллиптической галактики М87, расположенной в 53,5 млн световых лет от Солнца. Дыры в центрах эллиптических галактик, как правило, окружены балджами, составленными из старых звезд. Спиральные галактики могут вовсе не иметь балджей или же обладать их плоскими подобиями, псевдобалджами. Масса черной дыры обычно на три порядка меньше массы балджа — естественно, если оный наличествует. Эта закономерность подтверждается наблюдениями, охватывающими дыры массой от миллиона до миллиарда солнечных масс».

Как полагает профессор Корменди, галактические черные дыры набирают массу двумя путями. Дыра, окруженная полноценным балджем, растет за счет поглощения газа, который приходит к балджу из внешней зоны галактики. Во время слияния галактик интенсивность поступления этого газа резко возрастает, что инициирует вспышки квазаров. В результате балджи и дыры эволюционируют параллельно, что и объясняет корреляцию между их массами (правда, могут работать и другие, еще неизвестные механизмы).


Исследователи из Питтсбургского университета, Калифорнийского университета в Ирвине и Атлантического университета Флориды смоделировали ситуацию столкновения Млечного пути и предшественницы карликовой эллиптической галактики в Стрельце (Sagittarius Dwarf Elliptical Galaxy, SagDEG). Они проанализировали два варианта столкновений — с легкой (3х10 10 масс Солнца) и тяжелой (10 11 масс Солнца) SagDEG. На рисунке показаны результаты 2,7 млрд лет эволюции Млечного пути без взаимодействия с карликовой галактикой и с взаимодействием с легким и тяжелым вариантом SagDEG.

Иное дело безбалджевые галактики и галактики с псевдобалджами. Массы их дыр обычно не превышают 104−106 солнечных масс. По мнению профессора Корменди, они подкармливаются газом за счет случайных процессов, которые происходят недалеко от дыры, а не простираются на целую галактику. Такая дыра растет вне зависимости от эволюции галактики или ее псевдобалджа, чем и обусловлено отсутствие корреляции между их массами.

Растущие галактики

Галактики могут увеличивать и размер, и массу. «В далеком прошлом галактики делали это гораздо эффективней, нежели в недавние космологические эпохи, — объясняет профессор астрономии и астрофизики Калифорнийского университета в Санта-Круз Гарт Иллингворт. — Темпы рождения новых звезд оценивают в терминах годового производства единицы массы звездного вещества (в этом качестве выступает масса Солнца) на единицу объема космического пространства (обычно это кубический мегапарсек). Во времена формирования первых галактик этот показатель был весьма невелик, а затем пошел в быстрый рост, продолжавшийся до тех пор, пока Вселенной не исполнилось 2 млрд лет. Еще 3 млрд лет он был относительно постоянным, потом начал снижаться почти пропорционально времени, и снижение это продолжается по сей день. Так что 7−8 млрд лет назад средний темп звездообразования в 10−20 раз превышал современный. Большинство доступных наблюдению галактик уже полностью сформировались в ту далекую эпоху».


На рисунке — результаты эволюции в различные моменты времени — начальная конфигурация (a), через 0,9 (b), 1,8 и 2,65 млрд лет (d). Согласно модельным расчетам, бар и спиральные рукава Млечного Пути могли сформироваться в результате столкновений с SagDEG, которая изначально тянула на 50−100 миллиардов солнечных масс. Дважды она проходила сквозь диск нашей Галактики и теряла часть своей материи (и обычной, и темной), вызывая пертурбации его структуры. Нынешняя масса SagDEG не превышает десятков миллионов солнечных масс, и очередное столкновение, которое ожидают не позже, чем через 100 миллионов лет, скорее всего, станет для нее последним.

В общих чертах эта тенденция понятна. Галактики увеличиваются двумя основными способами. Во‑первых, они получают свежий материал для звездообразования, втягивая из окружающего пространства газ и частицы пыли. В течение нескольких миллиардов лет после Большого взрыва этот механизм исправно работал просто потому, что звездного сырья в космосе хватало всем. Потом, когда запасы истощились, темп звездного рождения упал. Однако галактики нашли возможность увеличивать его за счет столкновения и слияния. Правда, для реализации этого варианта необходимо, чтобы сталкивающиеся галактики располагали приличным запасом межзвездного водорода. Крупным эллиптическим галактикам, где его практически не осталось, слияние не помогает, зато в дисковидных и неправильных оно работает.

Курс на столкновение

Посмотрим, что происходит при слиянии двух примерно одинаковых галактик дискового типа. Их звезды практически никогда не сталкиваются — слишком велики расстояния между ними. Однако газовый диск каждой галактики ощущает приливные силы, обусловленные притяжением соседки. Барионное вещество диска теряет часть углового момента и смещается к центру галактики, где возникают условия для взрывного роста скорости звездообразования. Часть этого вещества поглощается черными дырами, которые тоже набирают массу. В заключительной фазе объединения галактик черные дыры сливаются, а звездные диски обеих галактик теряют былую структуру и рассредоточиваются в пространстве. В итоге из пары спиральных галактик образуется одна эллиптическая. Но это отнюдь не полная картина. Излучение молодых ярких звезд способно выдуть часть водорода за пределы новорожденной галактики. В то же время активная аккреция газа на черную дыру вынуждает последнюю время от времени выстреливать в пространство струи частиц огромной энергии, подогревающие газ по всей галактике и тем препятствующие формированию новых звезд. Галактика постепенно затихает — скорее всего, навсегда.


Галактики неодинакового калибра сталкиваются по‑иному. Крупная галактика способна поглотить карликовую (сразу или в несколько приемов) и при этом сохранить собственную структуру. Этот галактический каннибализм тоже может стимулировать процессы звездообразования. Карликовая галактика полностью разрушается, оставляя после себя цепочки звезд и струи космического газа, которые наблюдаются как в нашей Галактике, так и в соседней Андромеде. Если же одна из сталкивающихся галактик не слишком превосходит другую, возможны даже более интересные эффекты.

В ожидании супертелескопа

Галактическая астрономия дожила почти до девяностолетия. Она начала практически с нуля и достигла очень многого. Однако количество нерешенных проблем очень велико. Так, никто не знает, когда и как сформировались первые галактики и какими путями образуются галактики с дисковой структурой. «Ученые ожидают очень много от инфракрасного орбитального телескопа «Джеймс Уэбб», запуск которого намечен на 2018 год, — говорит Гарт Иллингворт. — К сожалению, пока не ясно, будет ли этот проект завершен — по причине финансовых трудностей. Хочется надеяться, что он состоится».

Если рассматривать замкнутую систему, то общая масса системы и, следовательно, ее общее гравитирующее действие будут зависеть от всей энергии системы, то есть от совокупности энергии вещества и энергии поля тяготения.

А. Эйнштейн

Всякий взрыв непременно сопряжен с той или иной долей хаотичности, и чем мощней взрыв, тем больший хаос он производит. Наиболее мощным взрывом во Вселенной, в котором одновременно участвовало все вселенское вещество, несомненно являлся Большой взрыв. Конечно, с учетом детерминизма теоретически возможно предопределение всех последствий даже такого взрыва. Для этого достаточно знать предшествовавшие ему физические условия как-то вращательный момент Протовселенной, общую массу и распределение плотности входившего в нее эфира. В этом случае имеется формальная возможность просчитать дальнейшее поведение каждого из 10 80 образующихся при рождении вещества протонов. Однако очевидно, что практически решение такой задачи неосуществимо, тем более что заниматься ее решением вообще было некому. А потому приходится с возникшим после Большого взрыва хаосом считаться как с непреложным и не поддающимся точному описанию фактом. С позиций интересующих нас процессов первичный хаос во Вселенной означал всенаправленный выброс вещества из области сингулярности разнокалиберными по своей массе, скорости разлета, кинетической и вращательной энергии сгустками, плотность распределения вещества в которых по мере расширения объема Вселенной последовательно уменьшалась. Параллельно этому происходило и уменьшение скорости их разлета. С “возвращением (гравитационной) сущности на свое место” динамика разлета стала для вещества вообще физически невозможной. Наиболее энергетически выгодным для него оказалось движение по так называемым “геодезическим линиям”, то есть по тем направлениям, где потенциалы гравитационного поля сохраняются практически неизменным, - своеобразным гравитационным монорельсам. Двигаясь по таким траекториям, вещество становится гравитационно-невесомым, а значит, перестает расходовать свою кинетическую энергию. С прекращением разлета вещества Вселенная стабилизирует свои размеры и переходит из стадии расширяющейся в стадию стационарной Вселенной.

В результате такой динамической перестройки характер энергетических процессов во Вселенной претерпел существенные изменения. Если на этапе существования последовательно убывавшая кинетическая энергия вещества преобразовывалась в кинетическую энергию эфира, то с наступлением действительности этот процесс прекратился. Значение каждой из этих составляющих кинетической энергии Вселенной становится практически неизменным. При этом важно иметь в виду, что веществу как первоисточнику кинетической энергии, в значительной мере принадлежала определяющая роль в распределении количеств кинетической энергии по различным областям единого эфирного тела Вселенной, которое (распределение) в силу уже отмеченной нами хаотичности разлета вещества характеризовалось весьма значительными отклонениями от равномерности.

Соответственно этому к моменту наступления действительности в пространстве Вселенной сложилась чрезвычайно сложная динамическая картина. Миллиарды беспорядочно разбросанных по сему занимаемому эфиром объемом облаков разреженной водородно-гелиевой смеси в зависимости от принадлежности к тому или иному скоплению близлежащих облаков участвовали сразу в нескольких вращательных и поступательных движениях. Прежде всего, с той или иной собственной скоростью вращения, обусловленной начальными условиями Большого взрыва, вращалось каждое из облаков в отдельности. Далее, входившие в скопления облака участвовали в общем вращательном движении отдельных скоплений. В свою очередь те скопления, которые входили в состав сверхскоплений, участвовали во вращательном движении этих сверхскоплений. И наконец, все как один элементы единой механической системы Вселенной, будь то отдельные частицы, группы частиц, водородно-гелиевые облака, скопления и сверхскопления облаков, участвовали в общем вращательном движении Вселенной. Таким образом, траектории поступательного движения вещества в объеме единого эфирного тела Вселенной представляли собой весьма замысловатые фигуры. При этом каждая отдельная частица вещества сама по себе располагала собственной кинетической энергией.

Однако, как мы уже отмечали, кинетической энергией, а значит и поступательным движением, в реальной Вселенной располагает не только вещество, но т непрерывный эфир. И вот здесь самое время в систему физических понятий, имеющих важное значение для уяснения сути происходивших в то время событий, ввести понятие гравитационно-значащих объектов. Дело в том, что как показывает современная космическая обстановка, являющаяся непосредственным продолжением и отражением той далекой эпохи, непрерывный эфир Вселенной участвует в совместном, согласованном движении только с теми космическими объектами, масса которых превышает некоторую величину, очередную количественную меру, играющую определяющую роль в работе вселенского гравитационного механизма. Только с такими массивными объектами непрерывный эфир как бы срастается воедино, сопровождая их во всех космических странствиях. Являясь при этом единым телом, общим основанием нашего мира, находящийся в постоянном движении эфир Вселенной увязывает все эти объекты своеобразными гравитационными перемычками в мировую механическую систему, представляющую собой хотя и чрезвычайно сложный, но тем не менее достаточно высокоорганизованный ансамбль. Все остальные объекты, то есть те, которые не располагают достаточной массой, осуществляют свои перемещения в космическом пространстве не совместно с эфиром, а относительно него. К примеру, Солнце, Земля, Луна, другие планеты и массивные спутники планет движутся в пространстве Вселенной совместно с прилегающими к ним слоями эфира различной мощности, а кометы, астероиды, метеориты, легкие спутники планет, ракеты, самолеты и т. д. и т. п. перемещаются относительно эфира, входящего в состав того или иного гравитационно-значащих объектов. Не достигшие гравитационной значимости объекты не располагают собственным гравитационным полем; они лишь вносят то или иной вклад в гравитационное поле того массивного объекта, пространстве которого они в данный момент находится.

Но это все сейчас, а в ту далекую эпоху начала действительности плотных космических объектов еще не было, им еще только предстояло сформироваться из той чрезвычайно разреженной водородно-гелиевой смеси, которая была беспорядочно разбросана по всему пространству Вселенной в виде отдельных облаков, скоплений и сверхскоплений. Приостановив хаотический разлет вещества, принудив его к движению по геодезическим направлениям, возвратившаяся на свое место гравитационная сущность вновь приступила к своей характерной деятельности - самоуплотнению. Только теперь, когда в едином теле эфира оказался не один неподвижный, а великое множество подвижных локальных, региональных и зональных центров тяжести масс, строение гравитационного организма Вселенной приобрело сложную иерархическую структуру, характеризующуюся большой асимметрией и внутрисистемной изменчивостью. Перемещаясь совместно с гравитационно-значащими массами водородно-гелиевой смеси, совершающими свои замысловатые движения, непрерывный эфир превратился в своеобразный бурный космический океан с многочисленными интенсивными глубинными течениями.

Естественно, что в условиях практически полного отсутствия какого-либо порядка в распределении масс и энергии вещества и эфира в пространстве Вселенной никакой речи о едином механизме ее стягивания к общему центру тяжести, как это имело место на этапе Протовселенной, быть не могло. Общий гравитационный механизм некогда одноэлементного эфира был раздроблен на неподдающиеся непосредственному счету количество составных частей. Однако это отнюдь не мешало его врожденной способности к самоуплотнению, а всего лишь придало этой способности широко разветвленный характер. Теперь, когда материя стала двух субстанциальной, высоко динамичной, неоднородной и асимметричной, существо противоборства вещества и эфира стало состоять в следующем. Обладающие кинетической энергией гравитационно-значащие массы вещества оказались внутри сопровождающих их инерциальное движение оболочек эфира, общесистемное единство которых надежно обеспечивалось чрезвычайно разветвленной, простирающейся по всей Вселенной эфирной перемычкой. Каждая из взаимосвязанных таким образом локальных оболочек наряду с приобретенной ею кинетической энергией обладала самостоятельной энергией стягивания, которой противодействовали силы внутреннего давления, возникающие вследствие хаотического теплового движения частиц вещества. в силу того, что для этапа действительности характерен некоторый перевес общей гравитирующей потенциальной энергии эфира над общей антигравитирующей кинетической энергией вещества, локальные оболочки эфира тоже получили некоторый энергетический перевес над внутренним давлением водородно-гелиевых облаков. Так в пространстве Вселенной сформировались многочисленные протогалактические туманности, представлявшие собой гравитационно-значащие массы вещества, полностью погруженные в контролирующие их движение эфирные оболочки.

Под воздействием обладающей перевесом потенциальной энергии эфира входящие в каждую из туманностей вещество начало последовательно сгущаться, что равносильно повышению его плотности. В свою очередь, повышение плотности вещества оказывает на его энергетические способности двоякое действие. С одной стороны, за счет роста количества случайных столкновений частиц вещества его упругость, противодействующая силам внешнего давления со стороны эфира, тоже растет, что ограничивает возможности сжатия протогалактической туманности как единого целого определенным пределом. Однако, с другой стороны, увеличение количества столкновений сопровождается уменьшением общей энергии вещества за счет выхода ее за пределы туманности в виде возникающих в результате соударений частиц квантов излучения – фотонов. К тому же рост числа столкновений вызывает повышение хаотичности в движении вещества, что приводит к образованию новых неоднородностей в плотности его распределения. В силу всех этих причин в протогалактической туманности возникают области возмущения и в действие вступают выявленные английским астрофизиком Д. Джинсом законы кинетической теории газов, согласно которым единая туманность делится на обособленные фрагменты, размеры которых пропорциональны критической джинсовой длине. При этом самый маленький по размерам фрагмент образуется в центре протогалактики, где плотность вещества самая большая, а критическая джинсовая длина соответственно самая маленькая. Так образуется зародыш массивного ядра будущей галактики. Следующий за центром протогалактики слой делится на более крупные фрагменты, за ним идут еще более крупные, и еще. В результате в примерно шаровом объеме протогалактической туманности образуется множество шаровых фрагментов. Каждый из которых обладает собственной гравитационной массой.

В этих новых условиях контролирующий системное единство протогалактики эфир, сохраняя свою способность удерживать туманность от распада, наряду с общей оболочкой, охватывающей протогалактику целиком, создает частные оболочки вокруг каждого обособившегося фрагмента. Поэтому дальнейшее стягивание туманности приобретает комплексный характер: как целостное образование она продолжает сжиматься к центру масс протогалактик и, которым служит наиболее плотный центральный фрагмент Я (ядро); как фрагментарное образование она сжимается в каждом из своих фрагментов. Последние точно потому же принципу, как протогалактическая туманность раздробилась на шаровые фрагменты, делятся на еще более многочисленные и мелкие образования – протозвездные облака. И снова происходит перераспределение усилий эфира. Теперь они уже направлены на 1) удержание единой формы протогалактической туманности, которая за счет общего вращения туманности приобретает эллиптический вид; 2) удержание шаровых форм образовавшихся после дробления туманности фрагментов; 3) уплотнение вещества, оказавшегося в составе обособившихся протозвездных облаков.

Прошло еще какое-то время и гравитационным силам стягивания удалось настолько уплотнить вещество протозвезд, что в них в результате добровольного объединения атомов легчайших элементов в легкие сначала затеплились, а потом на полную мощь разгорелись термоядерные реакции. В космических небесах одна за другой во все нарастающем темпе стали появляться водородно-гелиевые звезды. Так протогалактики повсеместно превратились в эллиптические галактики.

Добровольное объединение атомов легчайших элементов в легкие (термоядерная реакция) сопровождается выделением некоторого количества энергии. Физически ее происхождение вызвано тем, что для удержания получающегося в ходе реакции легкого атома в устойчивом состоянии требуется меньшая энергия связи, чем сумма энергий связи вошедших в его состав легчайших атомов. Избыток энергии связи в виде фотонов и нейтрино испускается в окружающее пространство. С позиций последовательного эволюционного развития материального мира Вселенной данное явление означает рождение очередной (четвертой по счету) энергетической сущности – термоядерной. При этом часть входившего в эфирные оболочки легчайших атомов вещества перерабатывается в излучение, чем и обеспечивается высокая оптическая и прочая энергетическая активность водородно-гелиевых звезд первого поколения.

Результаты космологических исследований туманностей в 20 годах прошлого века перевернули представление астрономов о Вселенной и объектах ее населяющих.

Главным открытием стало подтверждение гипотезы о том, что казавшиеся тогда туманности не простое скопление газов или космической пыли, а представляет собой огромные скопления звезд – галактики.

Теория происхождения галактик

Теория происхождения галактик основывается на принципе гравитационной неустойчивости. Принцип гласит: частицы вещества не могут постоянно находиться в равномерно распределенном состоянии в пространстве. Элементы вещества будут стремиться друг к другу, создавая конгломераты.

В юной вследствие гравитационной неустойчивости образовались дискообразные скопления вещества. На границах этих дисков образовывались завихрения и отслаивание вещества. Формировались протогалактические структуры, внутри которых в свою очередь начинался процесс фрагментации – рождались первые звезды. С появлением звезд протогалактическое облако становилось звездной системой — галактикой. Галактики различны по объему и форме. Те, что на момент появления имели большую скорость вращения, приобрели форму шара или диска с отходящими от него рукавами-спиралями. Медленно вращавшиеся или неподвижные протогалактические облака превратились в галактики элипсоидной или неправильной формы.

Галактики могут быть единичными, располагаться попарно или множественными галактическими скоплениями. Галактические группы объединяют звездные системы различных форм и размеров. Самыми близкими нашими соседями являются галактическое скопление Большой Медведицы и небольшое плотное скопление галактик созвездия Волосы Вероники. Наша галактика Млечный Путь совместно со звездными системами Магеллановых облаков, галактикой Андромеда и множеством других, образуют , объединенную общим водородным облаком.

Состав галактики очень неоднороден. Достоверно известно, что элементами галактик являются: звезды, звездные скопления, пылевые облака, газовые туманности, частицы вещества рассеянные в пространстве, а также всякие экзотические объекты вроде черных дыр и нейтронных звезд. Все галактические элементы взаимосвязаны и подчинены вращению вокруг центра галактики содержащего