Ядерный синтез вместо расщепления (путь спасения для человечества?). Лазерный термоядерный синтез. Почему создание термоядерных установок столь затянулось

Термоядерный синтез (термояд, управляемый термоядерный синтез, УТС ) - старый, но всё ещё действующий метод распила бюджетного бабла в глобальных масштабах, способный дать в качестве побочного результата источник сотен энергии, звездолёты и прочие кошерные вещи.

Работающий прототип чудо-машины наглядно представлен в виде вращающегося над поверхностью земного диска Солнца. Правда запилить именно такую же мы не можем: чтобы водород смог в термоядерную реакцию сам, без обвеса, его нужно много. Нет, МНОГО. 80 масс Юпитера или больше. Но мы работаем над этим .

Термоядерная плазма.

Суть™

Коротко о главном. Давным-давно Эйнштейн распространил ныне известное даже детям E=mc² на все объекты (в том числе движущиеся с околосветовой скоростью, безо всяких эфиров и электродинамик). В то же время учёные поняли, что два ядра атома дейтерия ²H (это тяжелый изотоп водорода) неспроста весят чуть более, чем одно ядро гелия-4 4 He. Более того, при синтезе этого самого гелия из водорода энергия связи Δm×c², где Δm - дефект массы, с радостью улетает в виде кинетической энергии продуктов синтеза.

В принципе, вариантов синтеза на самом деле чуть более, чем дохрена. Можно использовать и дейтерий, и литий, и тритий - да хоть что! Вот только:

  1. для синтеза более тяжёлых элементов нужна бо льшая температура;
  2. при синтезе элементов тяжелее железа энергии выделяется меньше , чем при синтезе железа.

Термоядерные исследования - это в значительной степени экспериментальная наука. Тут вам не Перельман , с тремя копейками денег ничего толкового не сделаешь. Необходимо сложное дорогостоящее оборудование и куча негров нердов, которые будут это оборудование обслуживать. На всё это нужно выделять большие деньги. И, как ни странно, они таки выделяются. А когда любое правительство выделяет на что-то деньги, они неизбежно идут не только на те аспекты, которые реально важны, но и на те, что лучше прорекламированы . Даже те научные организации, которые действительно хотят сделать что-то полезное, нередко вынуждены заниматься чем-то скорее «модным», чем реально важным, так как иначе денег не получат.

Справедливости ради стоит отметить, что расходы на термояд выглядят огромными только до тех пор, пока не сравнишь их со всякими нанотехнологиями и другими радостями распильщиков .

Зачем это вообще нужно?

Как известно, нефти, угля и газа хватит не так уж и надолго. Да ещё и экологи недовольны. Урана и тория вроде хватает, но народ чего-то боится. Да и неясно, куда столько радиоактивных отходов девать .

Термояд же позволяет в перспективе получать энергию буквально из воды, причём отходами его работы будут являться только обычные безвредные водород и гелий. Внутри реактора будет радиоактивный тритий, но его будет сотни грамм, в противовес сотне тонн полуотработанного топлива в обычных ядерных реакторах, так что ничего подобного Чернобылю не может произойти даже если термоядерный реактор взорвётся. Но его взрыв возможен разве что в случае теракта , так как реакция там в принципе самопроизвольно развиваться не умеет.

Алсо, в теории, ракетные двигатели, основанные на сабже, способны выдавать импульс больший нежели плазменные, электрические и всякие там ядерные. Что позволяет получить трактор пригодный для использования в планетарных и даже в межзвёздных масштабах со скоростью в 10% от световой. Во втором случае, правда, полёты будут беспилотными . Но лет эдак за 50 до ближайшей звезды дошкандыбать можно.

Почему не получается?

Чтобы произошла реакция синтеза, два ядра должны сблизиться на очень близкое расстояние. Но ядра имеют положительный заряд, а потому отталкиваются друг от друга. Чтобы их сблизить друг с другом, их нужно разогнать до огромных скоростей. Одним из основных вариантов такого разгона является нагрев до высокой температуры. Расчет показывает, что нужна температура порядка 10^9 Кельвин. Но за счет так называемого «максвелловского хвоста» синтез зажигается уже при 10^7. Популярно это можно объяснить следующим образом, при заданной температуре частицы газа движутся с различными скоростями, определяемыми (в дорелятивистской области) распределением Максвелла. Поэтому уже при температуре 10^7К найдутся такие частицы, скоростей которых достаточно для преодоления кулоновского отталкивания и слияния двух ядер в одно. Но при таких температурах вещество становится плазмой и очень интенсивно излучает энергию, то есть быстро остывает.

Фузор Фарнсворта

Если тебе, анон, так уж приспичило осуществить термоядерный синтез и при этом не нужна энергия, то строить мега-реактор совсем не обязательно. Достаточно сабжа - небольшого устройства, позволяющего невозбранно запилить термоядерную реакцию у себя на столе. Единственный минус - энергию фузор Фарнсворта не вырабатывает а, напротив, жрет и нехило. В 2000-х в США пытались запилить улучшенную версию фузора, под названием «Поливелл», в надежде, что он хоть что-нибудь, да выработает. Не получилось, не фартануло - он всего лишь стал чуть меньше потреблять.

Холодный синтез и прочее

Эпическое сборище шарлатанов. Причём если одни из них только предлагают свои перспективные «пути решения», то другие и вовсе предлагают готовые решения , реализованные «в железе».

Среди всего этого многочисленного бреда изредка, но таки встречаются нормальные разработки. В частности мюонный катализ , использование встречных пучков быстрых ионов дейтерия и трития и т. д. Но все они пока крайне далеки от получения полезной энергии и на практике могут использоваться (и используются) только в качестве источников быстрых нейтронов.

Гибридный термоядерный реактор

Известно, что в термоядерных бомбах часто используют оболочку из обеднённого урана для существенного повышения мощности взрыва: нейтроны D-T реакции обладают столь высокой энергией, что вызывают деление даже «неделящихся» тяжёлых изотопов. Разумеется, быстро возникла идея применить этот же принцип и в мирных реакторах.

Чем это хорошо

  • К созданию гибридной электростанции можно приступать хоть завтра, так как применение обеднённого урана в 5-10 раз повысит энерговыделение;
  • Тысячи тонн обеднённого урана наконец-то найдут себе полезное применение (пока что их тупо пуляют из танковых пушек в виде обычных болванок, в танковую же броню);
  • В интенсивных потоках быстрых нейтронов многие долгоживущие изотопы превращаются в короткоживущие, что позволяет перерабатывать отходы обычных атомных реакторов;
  • В таких реакторах можно производить много чистого и дешёвого урана-238 и плутония-239 для атомных бомб (стоит отметить, что то же самое происходит и в ядерных реакторах на быстрых нейтронах. А ещё тот самый 239 Pu скорей всего будут использовать как топливо в реакторах, поскольку реакторы БН умеют делать его из бесполезного урана-238 в огромных количествах (а точнее, с коэффициентом выхода 1,4-1,5)).
Чем это плохо
  • В таком реакторе сотни тонн радиоактивных веществ, а значит можно ожидать море лулзов . Хотя здесь, в отличие от реакторов деления, их можно получить только при мощном внешнем воздействии, неконтролируемое развитие реакции тут невозможно;
  • В таком реакторе не только перерабатываются, но и производятся радиоактивные отходы, которые куда-то нужно девать (впрочем, в основном короткоживущие, в отличие от реакторов деления).

ИТЭР

Заря над великой стройкой термоядеризма.

Самый крупный на данный момент агрегат. Тип - токамак. Строится на юге Франции. Название первоначально значило «International Thermonuclear Experimental Reactor» («Международный Термоядерный Экспериментальный Реактор»), но сейчас предпочитают не расшифровывать вообще - дескать, на слово «термояд» у некоторых ассоциации плохие. Справку о безопасности, правда, уже получили, даже вроде не одну. В начале 2014-го один фонат начал собирать голоса на производство LEGO модели . На относительно небольшой кусок требуется под пятьсот кирпичиков.

Плюсы

  • Должен ненадолго выдавать десятикратную прибыль в энергии. Примерно столько и нужно реальной электростанции - только, конечно, постоянно.
  • Имеет свой сайт . Обновляется регулярно, так что каждый может так же регулярно порадоваться успехам человечества.
  • На сайте имеется ссылка на стоящую рядом со стройкой вебкамеру , так что каждый может убедится (за исключением тех случаев когда ее переносят на взгляд с другой стороны) что там именно работают, а не распиливают. А может и начали пилить - уже довольно долго почему-то ограничиваются относительно регулярными фотками.
Минусы

Лулз

Физики-теоретики до сих пор срут кирпичами , а Мёрфи собирает шаблон от H -моды установок с магнитным удержанием. Так, при достижении определённой мощности дополнительного нагрева плазмы в токамаках (а впоследствии этого добились и в стеллараторах) резко замедляется перенос, а значит и потери энергии в плазме. Сами представьте: вы долго всё разрабатывали, рассчитывали, построили токамак, а он внезапно работает вдвое лучше, чем предполагалось!

Теоретики напридумывали кучу гипотез, как объяснить появление H-моды и полное несоответствие экспериментальных формул классическим теоретическим даже по знаку производной, но единой чёткой модели так и нету. Экспериментаторы же просто разобрались как оно работает и стали напоминать шаманов не меньше, чем админы: точно так же не могут объяснить, как оно работает, но оно таки работает.

Любители поискать глубинный смысл и религиозные люди могут считать, что это знак от Б-га , что мы двигаемся в нужном направлении или современная манна небесная от него же.

Также это позволяет оптимистам рассчитывать на открытие в будущем какой-нибудь UH-моды и появление термоядерных электростанций куда быстрее современных прогнозов. Ну или пессимистам - ожидать появления какой-нибудь обратной моды, которая сделает ситуацию ещё хуже, чем было до открытия H-моды. И теоретикам корм, конечно же - релятивистский случай тесно схлестнулся с квантовым, а что ещё для теории струн нужно? Чёрные дыры у них есть, бозон Хиггса теперь тоже есть, а тут ещё и H-mode.

Галерея


Ссылки

Примечания

Управляемый термоядерный синтез - интереснейший физический процесс, который (пока в теории) может избавить мир от энергетической зависимости от ископаемых источников топлива. В основе процесса лежит синтез атомных ядер из более легких в более тяжелые с выделением энергии. В отличие от другого использования атома - выделение из него энергии в ядерных реакторах в процессе распада - термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов. Особые надежды возлагают на реактор ИТЭР, на создание которого затратили безумное количество средств. Скептики, однако, делают ставку на разработки частных корпораций.

В 2018 году ученые сообщили суровую новость: несмотря на беспокойство на тему глобального потепления, за счет угля было выработано 38% мировой электроэнергии в 2017 году - то есть, ровно столько же, сколько и при появлении первых тревожных предупреждений о климате 20 лет назад. Хуже того, выбросы парникового газа выросли на 2,7% в прошлом году - это крупнейшее увеличение за семь лет. Такой застой привел к тому, что даже политики и экологи начали задумываться о том, что нам нужно больше ядерной энергии.

В детстве я любил читать журнал «Наука и Жизнь», в деревне лежала подшивка начиная с 60-х годов. Там часто рассказывали про термоядерный синтез в радостном ключе - вот уже почти, и оно будет! Многие страны, чтобы успеть на раздачу бесплатной энергии строили у себя Токамаки (и настроили их суммарно 300 штук по всему миру).

Годы шли… Сейчас 2013-й год, а человечество до сих пор получает бОльшую часть энергии от сжигания угля, как в 19-м веке. Почему так получилось, что мешает создать термоядерный реактор, и чего нам ждать в будущем - под катом.

Теория

Ядро атома, как мы помним, состоит в первом приближении из протонов и нейтронов (=нуклонов). Для того, чтобы от атома оторвать все нейтроны и протоны - нужно затратить определенную энергию - энергию связи ядра. Эта энергия отличается у различных изотопов, и естественно, при ядерных реакциях баланс энергии должен сохраняться. Если построить график энергии связи для всех изотопов (из расчета на 1 нуклон), получим следующее:


Отсюда мы видим, что получать энергию мы можем или разделяя тяжелые атомы (вроде 235 U), или соединяя легкие.

Наиболее реалистичные и интересные в практическом отношении следующие реакции синтеза:

1) 2 D+ 3 T -> 4 He (3.5 MeV) + n (14.1 MeV)
2) 2 D+ 2 D -> 3 T (1.01 MeV) + p (3.02 MeV) 50%
2 D+ 2 D -> 3 He (0.82 MeV) + n (2.45 MeV) 50%
3) 2 D+ 3 He -> 4 He (3.6 MeV) + p (14.7 MeV)
4) p+ 11 B -> 3 4 He + 8.7 MeV

В этих реакциях используется Дейтерий (D) - его можно получать прямо из морской воды, Тритий (T) - радиоактивный изотоп водорода, сейчас его получают как отход на обычных ядерных реакторах, можно специально производить из лития. Гелий-3 - вроде-бы на Луне, как мы все уже знаем. Бор-11 - природный бор на 80% состоит из бора-11. p (Протий, атом водорода) - обычный водород.

Для сравнения, при делении 235 U выделяется ~202.5 MeV энергии, т.е. гораздо больше чем при реакции синтеза из расчета на 1 атом (но из расчета на килограмм топлива - конечно термоядерное топливо дает больше энергии).

По реакциям 1 и 2 - получается много очень высокоэнергетических нейтронов, которые всю конструкцию реактора делают радиоактивной. А вот реакции 3 и 4 - «без-нейтронные» (aneutronic) - не дают наведенной радиации. К сожалению, побочные реакции все равно остаются, например из реакции 3 - дейтерий будет и сам с собой реагировать, и небольшое нейтронное излучение все-же будет.

Реакция 4 интересна тем, что в результате получаем 3 альфа-частицы, с которых теоретически можно напрямую энергию снимать (т.к. они фактически представляют собой движущиеся заряды = ток).

В общем, интересных реакций достаточно. Вопрос лишь в том, насколько просто их осуществить в реальности?

О сложности проведения реакции Человечество относительно легко освоило деление 235 U: никакой сложности тут нет - поскольку нейтроны не обладают зарядом, они могут буквально «проползать» сквозь ядро даже с очень маленькой скоростью. В большинстве реакторов деления и используются как раз такие, тепловые нейтроны - у которых скорость движения сравнима со скоростью теплового движения атомов.

А вот при реакции синтеза - у нас есть 2 ядра имеющие заряд, и они отталкиваются друг от друга. Для того, чтобы сблизить их на нужное для реакции расстояние - нужно, чтобы они двигались с достаточной скоростью. Скорости такой можно либо достичь в ускорителе (когда все атомы в результате двигаются с одной оптимальной скоростью), или нагреванием (когда атомы летают как попало в случайных направлениях и случайной скоростью).

Вот график, показывающий скорость реакции (сечение) в зависимости от скорости (=энергии) сталкивающихся атомов:

Вот то же, но построенное от температуры плазмы, с учетом того, что атомы там летают со случайной скоростью:


Сразу видим, что реакция D+T - самая «легкая» (ей нужны жалкие 100 миллионов градусов), D+D - примерно в 100 раз медленее при тех же температурах, D+ 3 He идет быстрее чем конкурирующая D+D только при температурах порядка 1 млрд градусов.

Таким образом, только реакция D+T хотя бы отдаленно доступна человеку, со всеми её недостатками (радиоактивность трития, сложности с его получением, наведенная нейтронами радиация).

Но как вы понимаете, взять и нагреть что-то до ста миллионов градусов и оставить реагировать не выйдет - любые нагретые предметы излучают свет, и таким образом быстро остывают. Плазма нагретая до сотни миллионов градусов - светит в рентгеновском диапазоне, и что самое печальное - она прозрачна для него. Т.е. плазма с такой температурой фатально быстро остывает, и чтобы поддерживать температуру нужно постоянно вкачивать гигантскую энергию на поддержание температуры.

Впрочем, из-за того, что в термоядерном реакторе газа очень мало (например в ITER - всего пол грамма), все получается не так плохо: чтобы нагреть 0.5г водорода до 100 млн градусов нужно потратить примерно столько же энергии, сколько для нагревания 186 литров воды на 100 градусов.

Проект завершился 30 сентября 2012 года. Оказалось, в компьютерной модели были неточности. По новой оценке, достигнутая в NIF мощность импульса 1.8 мегаджоуля - 33-50% от требуемой, чтобы выделилось столько же энергии, сколько было затрачено.

Sandy Z-machine Идея такая: возьмем большую кучу высоковольтных конденсаторов, и резко разрядим их через тоненькие вольфрамовые проволочки в центре машины. Проволочки мгновенно испаряются, через них продолжает течь огромный ток в 27 миллионов ампер на протяжении 95 наносекунд. Плазма, нагретая до миллионов и миллиардов(!) градусов - излучает рентгеновское излучение, и обжимает им капсулу с дейтерий-тритиевой смесью в центре (энергия импульса рентгеновского излучения - 2.7 мегаджоуля).

Планируется апгрейд системы с использованием российской силовой установки (Linear Transformer Driver - LTD). В 2013-м году ожидаются первые тесты, в которых получения энергия сравнится с затрачиваемой (Q=1). Возможно, у этого направления в будущем появится шанс сравниться и превзойти токамаки.

Dense Plasma Focus - DPF - «схлопывает» бегущую по электродам плазму с получением гигантских температур. В марте 2012 на установке, действующей по этому принципу была достигнута температура 1.8 млрд градусов.

Levitated Dipole - «вывернутый» токамак , в центре вакуумной камеры висит торообразный сверхпроводящий магнит который и удерживает плазму. В такой схеме плазма обещает быть стабильной сама по себе. Но финансирования у проекта сейчас нет, похоже непосредственно реакцию синтеза на установке не проводили.

Farnsworth–Hirsch fusor Идея проста - размещаем две сферические сетки в вакуумной камере наполненной дейтерием, или дейтерий-тритиевой смесью, прикладываем между ними потенциал в 50-200 тысяч вольт. В электрическом поле атомы начинают летать вокруг центра камеры, иногда сталкиваясь между собой.

Выход нейтронов есть, но он довольно мал. Большие потери энергии на тормозное рентгеновское излучение, внутренняя сетка быстро раскаляется и испаряется от столкновений с атомами и электронами. Хотя конструкция интересна с академической точки зрения (собрать её может любой студент), КПД генерации нейтронов намного ниже линейных ускорителей.

Polywell - хорошие напоминание о том, что не все работы по термоядерному синтезу публичны. Работа финансировалась ВМФ США, и была засекречена, пока не были получены отрицательные результаты.

Идея - развитие Farnsworth–Hirsch fusor. Центральный отрицательный электрод, с которым было больше всего проблем, мы заменяем облаком электронов, удерживаемых магнитным полем в центре камеры. Все тестовые модели имели обычные, а не сверхпроводящие магниты. Реакция давала единичные нейтроны. В общем, никакой революции. Возможно, увеличение размеров и сверхпроводящие магниты и изменили бы что-то.

Мюонный катализ - радикально отличающаяся идея. Берем отрицательно-заряженный мюон, и заменяем им электрон в атоме. Поскольку мюон в 207 раз тяжелее электрона - в молекуле водорода 2 атома будут намного ближе друг к другу, и произойдет реакция синтеза. Единственная проблема - если в результате реакции образуется гелий (шанс ~1%), и мюон улетит с ним - больше в реакциях он участвовать не сможет (т.к. гелий не образует химического соединения с водородом).

Проблема тут в том, что генерация мюона на данный момент требует больше энергии, чем может получится в цепочке реакций, и таким образом пока энергию тут не получить.

«Холодный» термоядерный синтез (сюда не включен «холодный» мюонный катализ) - давно является пастбищем псевдоученых. Научно подтвержденных и независимо повторяемых положительных результатов нет. А сенсации на уровне желтой прессы были уже не раз и до E-Cat-а Андреа Росси.

термоядерный синтез, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Ядерный синтез – это реакция, обратная делению атомов: в последней энергия выделяется за счет расщепления тяжелых ядер на более легкие. См. также ЯДЕР ДЕЛЕНИЕ; АТОМНАЯ ЭНЕРГЕТИКА.

Согласно современным астрофизическим представлениям, основным источником энергии Солнца и других звезд является происходящий в их недрах термоядерный синтез. В земных условиях он осуществляется при взрыве водородной бомбы. Термоядерный синтез сопровождается колоссальным энерговыделением на единицу массы реагирующих веществ (примерно в 10 миллионов раз большим, чем в химических реакциях). Поэтому представляет большой интерес овладеть этим процессом и на его основе создать дешевый и экологически чистый источник энергии. Однако несмотря на то, что исследованиями управляемого термоядерного синтеза (УТС) заняты большие научно-технические коллективы во многих развитых странах, предстоит решить еще немало сложных проблем, прежде чем промышленное производство термоядерной энергии станет реальностью.

Современные атомные станции, использующие процесс деления, лишь отчасти удовлетворяют мировые потребности в электроэнергии. Топливом для них служат естественные радиоактивные элементы уран и торий, распространенность и запасы которых в природе весьма ограничены; поэтому для многих стран возникает проблема их импорта. Главным компонентом термоядерного топлива является изотоп водорода дейтерий, который содержится в морской воде. Запасы его общедоступны и очень велики (мировой океан покрывает ~ 71% площади поверхности Земли, а на долю дейтерия приходится ок. 0,016% общего числа атомов водорода, входящих в состав воды). Помимо доступности топлива, термоядерные источники энергии имеют следующие важные преимущества перед атомными станциями: 1) реактор УТС содержит гораздо меньше радиоактивных материалов, чем атомный реактор деления, и поэтому последствия случайного выброса радиоактивных продуктов менее опасны; 2) при термоядерных реакциях образуется меньше долгоживущих радиоактивных отходов; 3) УТС допускает прямое получение электроэнергии.

Арцимович Л.А. Управляемые термоядерные реакции . М., 1963
Тепловые и атомные электрические станции (кн. 1, разд. 6; кн. 3, разд. 8). М., 1989

Найти "ЯДЕРНЫЙ СИНТЕЗ " на

«Мы сказали, что поместим Солнце в коробку. Идея прекрасна. Но проблема в том, что мы не знаем, как создать эту коробку» - Пьер Жиль де Жен, лауреат нобелевской премии по физике 1991 года.

В то время, как тяжёлых элементов, требующихся для ядерных реакций на Земле и в целом в космосе довольно мало, лёгких элементов для термоядерных реакций очень много как на Земле, так и в космосе. Поэтому идея использовать термоядерную энергию во благо человечества пришла практически сразу с пониманием процессов, лежащих в её основе – это сулило поистине безграничные возможности, так как запасов термоядерного топлива на Земле должно было хватить на десятки тысяч лет вперёд.

Уже в 1951 году появились два основных направления развития термоядерных реакторов: Андреем Сахаровым и Игорем Таммом была разработана архитектура токамака в котором рабочая камера представляла из себя тор, в то время как Лайманом Спитцером была предложена архитектура более замысловатой конструкции по форме более всего напоминающая лист Мёбиуса перевёрнутый не один, а несколько раз.

Простота принципиальной конструкции токамака позволила длительное время развивать это направление за счёт повышения характеристик обычных и сверхпроводящих магнитов, а также путём постепенного увеличения размеров реактора. Но с повышением параметров плазмы постепенно стали также проявляться и проблемы с её нестабильным поведением, которые тормозили процесс.

Сложность конструкции стеллатора и вовсе привела к тому что после первых экспериментов в 50-х годах развитие этого направления на долгое время остановилось. Новое дыхание оно получило совсем недавно с появлением современных систем автоматизированного проектирования, которые позволили спроектировать стеллатор Wendelstein 7-X с необходимыми для его работы параметрами и точностью конструкции.

Физика процесса и проблемы в его реализации

Атомы железа имеют максимальную энергию связи на нуклон – то есть показатель энергии которую нужно затратить чтобы разделить атом на его составляющие нейтроны и протоны, делённый на их общее количество. Все атомы с меньшей и большей массой имеют этот показатель ниже железа:

При этом в термоядерных реакциях слияния лёгких атомов вплоть до железа выделяется энергия, а масса образующегося атома становится слегка меньше суммы масс исходных атомов на величину, соотносящуюся с выделяемой энергией по формуле E=mc² (так называемый дефект массы). Таким же образом выделяется энергия при ядерных реакциях деления атомов тяжелее железа.

При реакциях слияния атомов выделяется огромная энергия, но для того чтобы извлечь эту энергию нам в начале необходимо приложить определённое усилие для преодоления сил отталкивания между атомными ядрами которые являются положительно заряженными (преодолеть кулоновский барьер). После того как нам удалось сблизить пару атомов на необходимое расстояние в действие вступает сильное ядерное взаимодействие, которое связывает нейтроны и протоны. Для каждого вида топлива кулоновский барьер для начала реакции отличается также, как и отличается оптимальная температура реакции:

При этом первые термоядерные реакции атомов начинают фиксироваться задолго до достижения средней температурой вещества этого барьера благодаря тому, что кинетическая энергия атомов подвержена распределению Максвелла:

Но реакция при относительно низкой температуре (порядка нескольких млн °C) идёт крайне медленно. Так скажем в центре температура достигает 14 млн °C, но удельная мощность термоядерной реакции в таких условиях составляет только 276,5 Вт/м³, а для полного расходования своего топлива Солнцу требуются несколько млрд лет. Такие условия являются неприемлемыми для термоядерного реактора, так как при таком низком уровне выделения энергии мы неизбежно будем затрачивать на нагрев и сжатие термоядерного топлива больше, чем будем получать от реакции взамен.

По мере роста температуры топлива всё большая доля атомов начинает обладать энергией, превышающий кулоновский барьер и эффективность реакции растёт, достигая своего пика. С дальнейшим повышением температуры скорость реакции снова начинает падать уже за счёт того, что кинетическая энергия атомов становится слишком большой и они «проскакивают» мима друг друга не в состоянии удержаться сильным ядерным взаимодействием.

Таким образом решение как получить энергию из управляемой термоядерной реакции было получено довольно быстро, но вот реализация этой задачи затянулась на полвека и так ещё до конца и не закончена. Причина этого кроется в поистине безумных условиях, в которые оказалось необходимо поместить термоядерное топливо – для положительного выхода от реакции его температура должна была составлять несколько десятков млн °C.

Такую температуру физически не могли выдержать никакие стенки, но эта проблема почти сразу привела и к её решению: так как разогретое до таких температур вещество является горячей плазмой (полностью ионизованным газом) которое заряжено положительно, то решение оказалось лежащим на поверхности – нам просто надо было поместить такую разогретую плазму в сильное магнитное поле, которое будет удерживать термоядерное топливо на безопасном расстоянии от стенок.

Прогресс на пути его реализации

Исследования по данной теме идут в нескольких направлениях сразу:

  1. с помощью использования сверхпроводящих магнитов учёные стараются сократить энергию, затрачиваемую на зажигание и поддержание реакции;
  2. с помощью новых поколений сверхпроводников повышается индукция магнитного поля внутри реактора, которая позволяет удерживать плазму с более высокими показателями плотности и температуры, что увеличивает удельную мощность реакторов на единицу их объёма;
  3. исследования в области горячей плазмы и успехи в сфере вычислительной техники позволяют лучше контролировать потоки плазмы, тем самым приближая термоядерные реакторы к их теоретическим пределам эффективности;
  4. прогресс в предыдущей области также позволяет дольше удерживать плазму в стабильном состоянии, что увеличивает эффективность реактора за счёт того, что нам не надо так часто разогревать плазму вновь.

Не смотря на все трудности и проблемы, лежавшие на пути к управляемой термоядерной реакции, эта история уже приближается к своему финалу. В энергетике принято использовать показатель EROEI – energy return on energy investment (соотношение затраченной энергии при производстве топлива к тому объёму энергии, который мы из него получаем в итоге) для расчёта эффективности топлива. И в то время как EROEI угля продолжает расти, то этот показатель у нефти и газа достиг своего пика в середине прошлого века и теперь неуклонно падает за счёт того, что новые месторождения этих топлив находятся во всё в более труднодоступных местах и на всё больших глубинах:

При этом наращивать производство угля мы также не можем по той причине, что получение энергии из него является очень грязным процессом и буквально уносит жизни людей прямо сейчас от различных заболеваний лёгких. Так или иначе мы сейчас стоим на пороге заката эры ископаемых топлив – и это не происки экологов, а банальные экономические расчёты при взгляде в будущее. При этом EROI у экспериментальных термоядерных реакторов, появившихся также в середине прошлого века, неуклонно росли и в 2007 году достигли психологического барьера в единицу – то есть в этом году человечеству впервые удалось получить посредством термоядерной реакции больше энергии, чем затратить на её осуществление. И несмотря на то что на реализацию реактора , эксперименты с ним и производство уже первой демонстрационной термоядерной электростанции DEMO на основе полученного при реализации ITER опыта потребуется ещё много времени. Уже нет никаких сомнений в том, что за такими реакторами находится наше будущее.