Стандартные электродные потенциалы металлов таблица. Металл осаждается током

В электрохимической ячейке (гальваническом элементе) электроны, остающиеся после образования ионов, удаляются через металлический провод и рекомбинируют с ионами другого вида. Т.е.заряд во внешней цепи переносится электронами, а внутри ячейки, через электролит, в который погружены металлические электроды, ионами. Таким образом получается замкнутая электрическая цепь.

Разность потенциалов, измеряемая в электрохимической ячейке, o бъясняется различием в способности каждого из металлов отдавать электроны. Каждый электрод имеет собственный потенциал, каждая система электрод-электролит представляет собой полуэлемент, а любые два полуэлемента образуют электрохимическую ячейку. Потенциал одного электрода называют потенциалом полуэлемента, он определят способность электрода отдавать электроны. Очевидно, что потенциал каждого полуэлемента не зависит от наличия другого полуэлемента и его потенциала. Потенциал полуэлемента определяется концентрацией ионов в электролите и температурой.

В качестве «нулевого» полуэлемента был выбран водород, т.е. считается, что для него при добавлении или удалении электрона с образованием иона никакой работы не совершается. «Нулевое» значение потенциала необходимо для понимания относительной способности каждого из двух полуэлементов ячейки отдавать и принимать электроны.

Потенциалы полуэлементов, измеряемые относительно водородного электрода, называются водородной шкалой. Если термодинамическая склонность отдавать электроны в одной половине электрохимической ячейки выше, чем в другой, то потенциал первою полуэлемента выше, чем потенциал второго. Под действием разности потенциалов будет происходить переток электронов. При сочетании двух металлов можно выяснить возникающую между ними разность потенциалов и направление потока электронов.

Электроположительный металл обладает более высокой способностью принимать электроны, поэтому он будет катодным или благородным. С другой стороны находятся электроотрицательные металлы, которые способны самопроизвольно отдавать электроны. Эти металлы являются реакционноспособными, а, следовательно, анодными:

- 0 +

Al Mn Zn Fe Sn Pb H 2 Cu Ag Au


Например, Cu отдает электроны легче Ag , но хуже Fe . В присутствии медного электрода ноны серебра начнут соединяться с электронами, приводя к образованию ионов меди и осаждению металлического серебра:

2 Ag + + Cu Cu 2+ + 2 Ag

Однако та же самая медь менее реакционноспособна, чем железо. При контакте металлического железа с нонами меди та будет осаждаться, а железо переходить в раствор:

Fe + Cu 2+ Fe 2+ + Cu .

Можно говорить, что медь является катодным металлом относительно железа и анодным - относительно серебра.

Стандартным электродным потенциалом считается потенциал полуэлемента из полностью отожженого чистого металла в качестве электрода в контакте с ионами при 25 0 С. В этих измерениях водородный электрод выступает в роли электрода сравнения. В случае двухвалентного металла можно записать реакцию, протекающую в соответствующей электро-химической ячейке:

М + 2Н + М 2+ + Н 2 .

Если упорядочить металлы по убыванию их стандартных электродных потенциалов, то получается так называемый электрохимический ряд напряжений металлов (табл. 1).

Таблица 1. Электрохимический ряд напряжений металлов

Равновесие металл-ионы (единичной активности)

Электродный потенциал относительно водородного электрода при 25°С, В (восстановительный потенциал)

Благородные

или катодные

Au-Au 3+

1,498

Pt-Pt 2 +

Pd-Pd 2 +

0,987

Ag-Ag +

0,799

Hg-Hg 2+

0,788

Cu-Cu 2+

0,337

Н 2 -Н +

Pb-Pb 2 +

0,126

Sn-Sn 2+

0,140

Ni-Ni 2+

0,236

Co-Co 2+

0,250

Cd-Cd 2+

0,403

Fe-Fe 2+

0,444

Cr-Cr 2+

0,744

Zn-Zn 2+

0,763

Активные
или анодные

Al-Al 2 +

1,662

Mg-Mg 2 +

2,363

Na-Na +

2,714

K-K +

2,925

Например, в гальваническом элементе медь-цинк возникает поток электронов от цинка к меди. Медный электрод является в этой схеме положительным полюсом, а цинковый - отрицательным. Более реакционноспособный цинк теряет электроны:

Zn Zn 2+ + 2е - ; E °=+0,763 В.

Медь же является менее реакционноспособной и принимает электроны от цинка:

Cu 2+ + 2е - Cu ; E °=+0,337 В.

Напряжение на соединяющем электроды металлическом проводе составит:

0,763 В + 0,337 В = 1,1 В.

Таблица 2. Стационарные потенциалы некоторых металлов и сплавов в морской воде по отношению к нормальному водородному электроду ( ГОСТ 9.005-72).

Металл

Стационарный потенциал, В

Металл

Стационарный потенциал, В

Магний

1,45

Никель (активное co стояние)

0,12

Магниевый сплав (6 % А l , 3 % Zn , 0,5 % Mn )

1,20

Медные сплавы ЛМцЖ-55 3-1

0,12

Цинк

0,80

Латунь (30 % Zn )

0,11

Алюминиевый сплав (10 % Mn )

0,74

Бронза (5-10 % Al )

0,10

Алюминиевый сплав (10 % Zn )

0,70

Томпак (5-10 % Zn )

0,08

Алюминиевый сплав К48-1

0,660

Медь

0,08

Алюминиевый сплав В48-4

0,650

Купроникель (30 % Ni )

0,02

Алюминиевый сплав АМг5

0,550

Бронза «Нева»

0,01

Алюминиевый сплав АМг61

0,540

Бронза Бр. АЖН 9-4-4

0,02

Алюминий

0,53

Нержавеющая сталь Х13 (пассивное состояние)

0,03

Кадмий

0,52

Никель (пассивное состояние)

0,05

Дюралюминий и алюминиевый сплав АМг6

0,50

Нержавеющая сталь Х17 (пассивное состояние)

0,10

Железо

0,50

Титан технический

0,10

Сталь 45Г17Ю3

0,47

Серебро

0,12

Сталь Ст4С

0,46

Нержавеющая сталь 1Х14НД

0,12

Сталь СХЛ4

0,45

Титан йодистый

0,15

Сталь типа АК и углеродистая сталь

0,40

Нержавеющая сталь Х18Н9 (пассивное состояние) и ОХ17Н7Ю

0,17

Серый чугун

0,36

Монель-металл

0,17

Нержавеющие стали Х13 и Х17 (активное состояние)

0,32

Нержавеющая сталь Х18Н12М3 (пассивное состояние)

0,20

Никельмедистый чугун (12-15 % Ni , 5-7 % Си)

0,30

Нержавеющая сталь Х18Н10Т

0,25

Свинец

0,30

Платина

0,40

Олово

0,25

Примечание . Указанные числовые значения потенциалов н порядок металлов в ряду могут изменяться в различной степени в зависимости от чистоты металлов, состава морской воды, степени аэрации и состояния поверхности металлов.

Li, K, Ca, Na, Mg, Al, Zn, Cr, Fe, Pb, H 2 , Cu, Ag, Hg, Au

Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель – металлический литий, золото – самый слабый, и, наоборот, ион золото (III) – самый сильный окислитель, литий (I) – самый слабый.

Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно-земельных металлов будут взаимодействовать непосредственно с водой.

Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

Взаимодействие с простыми веществами

    С кислородом большинство металлов образует оксиды – амфотерные и основные:

4Li + O 2 = 2Li 2 O,

4Al + 3O 2 = 2Al 2 O 3 .

Щелочные металлы, за исключением лития, образуют пероксиды:

2Na + O 2 = Na 2 O 2 .

    С галогенами металлы образуют соли галогеноводородных кислот, например,

Cu + Cl 2 = CuCl 2 .

    С водородом самые активные металлы образуют ионные гидриды – солеподобные вещества, в которых водород имеет степень окисления -1.

2Na + H 2 = 2NaH.

    С серой металлы образуют сульфиды – соли сероводородной кислоты:

    С азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании:

3Mg + N 2 = Mg 3 N 2 .

    С углеродом образуются карбиды:

4Al + 3C = Al 3 C 4 .

    С фосфором – фосфиды:

3Ca + 2P = Ca 3 P 2 .

    Металлы могут взаимодействовать между собой, образуя интерметаллические соединения :

2Na + Sb = Na 2 Sb,

3Cu + Au = Cu 3 Au.

    Металлы могут растворяться друг в друге при высокой температуре без взаимодействия, образуя сплавы .

Сплавы

Сплавами называются системы, состоящие из двух или более металлов, а также металлов и неметаллов, обладающих характерными свойства, присущими только металлическому состоянию.

Свойства сплавов – самые разнообразные и отличаются от свойств их компонентов, так, например, для того чтобы золото стало более твердым и пригодным для изготовления украшений, в него добавляют серебро, а сплав, содержащий 40 % кадмия и 60 % висмута, имеет температуру плавления 144 °С, т.е намного ниже температуры плавления его компонентов (Cd 321 °С, Bi 271 °С).

Возможны следующие типы сплавов:

Расплавленные металлы смешиваются между собой в любых соотношениях, неограниченно растворяясь друг в друге, например, Ag-Au, Ag-Cu, Cu-Ni и другие. Эти сплавы однородны по составу, обладают высокой химической стойкостью, проводят электрический ток;

Расправленные металлы смешиваются между собой в любых соотношениях, однако при охлаждении расслаиваются, и получается масса, состоящая из отдельных кристалликов компонентов, например, Pb-Sn, Bi-Cd, Ag-Pb и другие.

Ряд напряжений характеризует некоторые свойства металлов:

1. Чем меньшее значение имеет электродный потенциал металла, тем он химически активнее, легче окисляется и труднее восстанавливается из своих ионов. Активные металлы в природе существуют только в виде соединœений Na, K, ..., встречаются в природе, как в виде соединœений, так и в свободном состоянии Cu, Ag, Hg; Au, Pt - только в свободном состоянии;

2. Металлы, имеющие более отрицательный электродный потенциал, чем магний, вытесняют водород из воды;

3. Металлы, стоящие в ряду напряжений до водорода, вытесняют водород из растворов разбавленных кислот (анионы которых не проявляют окислительных свойств);

4. Каждый металл ряда, не разлагающий воду, вытесняет металлы, имеющие более положительные значения электродных потенциалов из растворов их солей;

5. Чем больше отличаются металлы значениями электродных потенциалов, тем большее значение э.д.с. будет иметь построенный из них гальванический элемент.

Зависимость величины электродного потенциала (Е) от природы металла, активности его ионов в растворе и температуры выражается уравнением Нернста

Е Ме = Е о Ме + RTln(a Ме n +)/nF,

где Е о Ме – стандартный электродный потенциал металла, a Me n + – активность ионов металла в растворе. При стандартной температуре 25 о С, для разбавленных растворов заменяя активность (а) концентрацией (с), натуральный логарифм десятичным и подставляя значения R , T и F, получим

Е Ме = Е о Ме + (0,059/n)lgс.

К примеру, для цинкового электрода, помещенного в раствор своей соли, концентрацию гидратированных ионов Zn 2+ × mH 2 O сокращенно обозначим Zn 2+ , тогда

Е Zn = Е о Zn + (0,059/n) lg[ Zn 2+ ].

В случае если = 1 моль/дм 3 , то Е Zn = Е о Zn .


  • - Ряд напряжений металлов

    По величине стандартного электродного потенциала металлы принято располагать в ряд напряжений металлов: Li+/Li, Rb+/Rb, K+/K, Cs+/Cs, Ba2+/Ba, Sr2+/Sr, Ca2+/Ca, Na+/Na, Mg2+/Mg, Al3+/Al, Mn2+/Mn, Zn2+/Zn, Cr3+/Cr, Fe2+/Fe, Cd2+/Cd, Co2+/Co, Ni2+/Ni, Sn2+/Sn, Pb2+/Pb, Fe3+/Fe, 2H+/H2, Sb3+/Sb, Bi3+/Bi, Cu2+/Cu, Hg2+/Hg, Ag+/Ag, Pt2+/Pt, Au+/Au 1. Ряд напряжений характеризует... [читать подробенее]


  • - Ряд напряжений металлов

    Уравнение Нернста Ряд стандартных электродных потенциалов (напряжений). Располагая металлы в порядке возрастания их стандартных электродных потенциалов, получают ряд напряжений Николая Николаевича Бекетова (1827-1911), или ряд стандартных электродных потенциалов....


  • Ряд стандартных электродных потенциалов количественно характеризует восстановительную способность атомов металлов и окислительную способность их ионов.  

    Ряд стандартных электродных потенциалов позволяет решать вопрос о направлении самопроизвольного протекания окислительно-восстановительных реакций. Как и в общем случае любой химической реакции, определяющим фактором служит здесь знак изменения изобарного потенциала реакции. Но это означает, что первая из этих систем будет выступать в качестве восстанови теля, а вторая - в качестве окислителя. При непосредственном взаимодействии веществ возможное направление реакции будет, конечно, таким же, как и при ее осуществлении в гальваническом элементе.  

    Ряд стандартных электродных потенциалов позволяет решать вопрос о направлении самопроизвольного протекания окислительно-восстановительных реакций. Как и в общем случае любой химической реакции, определяющим фактором служит здесь знак изменения энергии Гиббса реакции. Но это означает, что первая из этих систем будет выступать в качестве восстановителя, а вторая - в качестве окислителя. При непосредственном взаимодействии веществ возможное направление реакции будет, конечно, таким же, как и при ее осуществлении в гальваническом элементе.  

    Ряд стандартных электродных потенциалов характеризует х и-мические свойства металлов.  

    Стандартный водородный электрод.| Гальваническая цепь для измерения стандартного электродного потенциала металла.  

    Ряд стандартных электродных потенциалов характеризует химические свойства металлов. Он используется при рассмотрении последовательности разряда ионов при электролизе, а также при описании общих свойств металлов.  

    Ряд стандартных электродных потенциалов позволяет решат вопрос о направлении самопроизвольного протекания окислителi нэ-восстановительных реакций. Как и в общем случае любо химической реакции, определяющим фактором служит здесь зна изменения изобарного потенциала реакции. Но это означает что первая из этих систем будет выступать в качестве восстанови теля, а вторая - в качестве окислителя. При непосредственном взаимодействии веществ возмож ное направление реакции будет, конечно, таким же, как и при е осуществлении в гальваническом элементе.  

    Ряд стандартных электродных потенциалов характеризует химические свойства металлов. Он используется для определения последовательности разряда ионов при электролизе, а также для описания общих свойств металлов. При этом величины стандартных электродных потенциалов количественно характеризуют восстановительную способность металлов и окислительную способность их ионов.  

    К металлам относятся s-элементы 1 и 2 групп, все d- и f-элементы, а также ряд р-элементов главных подгрупп: 3 (кроме бора), 4 (Ge, Sn, Pb), 5 (Sb, Bi) и Ро. Наиболее типичные элементы-металлы расположены в начале периодов. Ранее мы говорили о том, что в металлах имеет место сильно делокализованная связь. Это вызвано тем, что, вследствие эффекта экранирования, валентные электроны в атомах металлов слабее притягиваются к ядру и первые энергии ионизации для них относительно невелики. При обычной для нас температуре (порядка 300 К), которая довольно далека от абсолютного нуля, энергии теплового движения достаточно для свободного передвижения электронов по всему металлу.

    Поскольку связь в металлах сильно делокализована и распространяется на весь кристалл, то металлы обладают высокой пластичностью, электро- и теплопроводностью. Наибольшей электро- и теплопроводностью обладают серебро и медь, наименьшей – ртуть. Последняя является и самым легкоплавким металлом (-38,9 С). самым тугоплавким металлом является вольфрам (3390 С). Такое большое различие в температурах плавления и кипения объясняется наличием в металлах, кроме металлической связи, и определенной доли ковалентных связей, особенно для переходных элементов, обладающих большим количеством валентных электронов.

    Рассмотрим электронные конфигурации ртути и вольфрама.

    Hg – 5d 10 6s 2 ; W – 5d 4 6s 2 . Межмолекулярное взаимодействие между атомами ртути очень мало, настолько мало, что в целом при большой плотности, вследствие тяжести атомов, она является самым легкоплавким металлом. Поскольку все подуровни в атоме ртути заполнены, то образование ковалентных связей вообще невозможно, а металлическая связь довольно слаба, слабее, чем в щелочных металлах, которые вообще являются самыми легкоплавкими среди всех металлов. Наоборот, в атоме W возможно образование сразу четырех валентных связей. Кроме того, металлическая связь наиболее сильна среди всех 5d-элементов, а сами атомы тяжелее, чем у электронных аналогов: Mo и Cr. Совокупность данных факторов и приводит к наибольшей тугоплавкости вольфрама.

    Электронная конфигурация осмия (5d 6 6s 2) такова, что ему до завершения 5d-подуровня не хватает 4 электронов, поэтому он наиболее сильно способен притягивать электроны соседних атомов, что вызывает укорочение связи металл-металл. Поэтому осмий обладает наибольшей плотностью (22,4 г/см 3).

    В чистом виде металлы встречаются сравнительно мало. В основном, это инертные в химическом отношении металлы (золото, а также металлы платиновой группы – платина, родий, иридий, осмий и т.д.). Серебро, медь, ртуть, олово могут находиться как в самородном состоянии, так и в виде соединений. Остальные металлы встречаются в виде соединений, которые называются рудами.

    Металлы из их соединений получают, восстанавливая их из оксидов. В качестве восстановителей применяют С, СО, активные металлы, водород, метан. Если в качестве руды выступает сульфид металла (ZnS, FeS 2), то его предварительно переводят в оксид. Восстановление металлов из их соединений другими металлами называется металлотермией. Некоторые металлы извлекают из растворов их солей электролизом, например, алюминий или натрий. В основе всех способов получения металлов из их соединений лежат окислительно-восстановительные процессы.

    Процесс перехода электронов в окислительно-восстановительной полуреакции можно представить следующим общим уравнением:

    Процессу перехода электронов отвечает изменение энергии Гиббса, равное ∆G = –nFE, где F (постоянная Фарадея, отвечает количеству электричества, необходимое для восстановления или окисления одного моля вещества) = 96500 Кл/моль, n – количество электронов, Е – электродный потенциал, В – это разность напряжений между окислителем и восстановителем. C другой стороны, ∆G = –RTlnK = –nFE; RTlnK = nFE. Отсюда Е = RTlnK/nF. Поскольку K = /, а 2,3lnK = lgK, то зависимость электродного потенциала от концентраций веществ – участников электродного процесса – и от температуры выражает следующее уравнение:

    E = E 0 + lg/ – уравнение Нернста.

    При стандартной температуре (298 К) уравнение принимает вид:

    E = E 0 + 0,059lg/

    Концентрация окислителя всегда указывается в числителе, а потенциал всегда указывается для полуреакции восстановления: Ox + ne = Red.

    При равновесных концентрациях окислителя и восстановителя, равных единице, Е = Е 0 – стандартный электродный потенциал: это потенциал данного электродного процесса при единичных концентрациях всех веществ. Поскольку абсолютное значение стандартных электродных потенциалов определить невозможно, то за точку отсчета принят потенциал полуреакции: 2Н + + 2е = Н 2 . Потенциал данного электродного процесса принят равным 0 при единичных концентрациях катиона водорода. Водородный электрод состоит из платиновой пластинки, которая погружена в раствор серной кислоты с [Н + ] = 1 моль/л и омывается струей Н 2 под давлением 101325 Па при 298 К.

    Электродным потенциалом называют ЭДС гальванического элемента, который состоит из исследуемого электрода и стандартного водородного электрода. Располагая металлы в порядке возрастания величины их электродных потенциалов, получаем ряд стандартных электродных потенциалов металлов. Он характеризует химические свойства металлов. Каждый металл в ряду вытесняет все последующие металлы из раствора их солей. Металлы, стоящие в ряду левее водорода, вытесняют его из растворов кислот.

    Потенциал любой окислительно-восстановительной реакции можно вычислить, исходя из значения потенциалов полуреакций.

    Рассмотрим простой пример: Zn + 2HCl = ZnCl 2 + H 2 . Для данного процесса имеют место две полуреакции:

    Zn 2+ + 2e = Zn 0 E 0 (Zn 2+ /Zn) = –0,76 B

    2H + + 2e = H 2 0 E 0 (2H + /H 2) = 0,00 B

    Поскольку потенциал второй полуреакции выше, чем первой, вторая полуреакция будет протекать слева направо, то есть в сторону образования молекул водорода. Первая же полуреакция будет протекать справа налево, то есть в сторону образования катионов цинка.

    При рассмотрении получения металлов мы говорили о том, что ряд металлов восстанавливают из их оксидов другими, более активными металлами. Например, магнием можно восстановить медь из оксида меди(II). Сравним две полуреакции:

    Cu 2+ + 2e = Cu Е 0 = +0,34 В

    Mg 2+ + 2e = Mg Е 0 = –2,36 В

    Потенциал первой полуреакции выше, чем второй и именно она будет протекать слева направо, а вторая – справа налево.

    Таким образом, для определения направления протекания окислительно-восстановительных реакций необходимо записать две полуреакции от окисленной форме к восстановленной и сравнить их потенциалы. Реакция, потенциал которой будет выше, будет протекать слева направо, а та, у которой потенциал ниже – справа налево.

    Почти все реакции металлов являются окислительно-восстановительными процессами и для определения их направления необходимо, в первую очередь, учитывать потенциалы каждой из полуреакций в окислительно-восстановительном процессе. Но, кроме того, бывают и исключения. Например, свинец нерастворим в серной кислоте, несмотря на то, что потенциал пары Pb 2+ /Pb составляет –0,15 В. Дело в том, что сульфат свинца нерастворим и его образование препятствует дальнейшему окислению свинца.

    Лекция 15.

    Электролиз.

    В растворах и расплавах электролитов находятся противоположно заряженные ионы (катионы и анионы), которые находятся в постоянном движении. Если в такого рода жидкость, например в расплав хлорида натрия (плавится при 801 0 С) погрузить инертные (графитовые) электроды и пропустить постоянный электрический ток, то ионы под действием внешнего электрического поля будут двигаться к электродам катионы – к катоду, а анионы – к аноду. Катионы натрия, достигнув катода, принимают от него электроны и восстанавливаются до металлического натрия:

    Хлорид-ионы окисляются на аноде:

    2Сl ­­– – 2e = Cl 2 0 ­

    В итоге на катоде выделяется металлический натрий, а аноде молекулярный хлор. Суммарное уравнение электролиза расплава хлорида натрия выглядит следующим образом.

    К: Na + + e = Na 0 2

    А: 2Сl ­­– – 2e = Cl 2 0 ­ 1

    2Na + + 2Сl ­­– электролиз ® 2Na 0 + Cl 2 0 ­

    2NaСl = 2Na + Cl 2 ­

    Эта реакция является окислительно-восстановительной: на аноде протекает процесс окисления, а на катоде – процесс восстановления.

    Окислительно-восстановительный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита, называется электролизом.

    Сущность электролиза состоит в осуществлении за счет электрической энергии химических реакций. При этом катод отдает электроны катионам, а анод принимает электроны у анионов. Действие постоянного электрического тока намного сильнее действия химических восстановителей и окислителей. Именно путем электролиза удалось впервые получить газообразный фтор.

    Электролиз проводили в растворе фторида калия в плавиковой кислоте. В данном случае на аноде выделяется фтор, а на катоде – водород. Электролиз осуществляется в электролитической ванне.

    Следует различать электролиз расплавленных электролитов и их растворов. В последнем случае в процессах могут участвовать молекулы воды. Например, при электролизе водного раствора хлорида натрия на инертных (графитовых) электродах на катоде вместо катионов натрия восстанавливаются молекулы воды.

    2Н 2 О + 2е = Н 2 ­ + 2ОН –

    а на аноде окисляются хлорид-ионы:

    2Сl ­­– – 2e = Cl 2 0 ­

    В итоге на катоде выделяется водород, на аноде – хлор, а в растворе накапливаются молекулы гидроксида натрия. Общее уравнение электролиза водного раствора хлорида натрия имеет вид:

    К: 2Н 2 О + 2е = Н 2 ­ + 2ОН –

    А: 2Сl ­­– – 2e = Cl 2 0 ­

    2Н 2 О + 2Сl ­­– = Н 2 ­ + Cl 2 ­ + 2ОН –

    Кстати, именно таким образом в промышленности получают гидроксиды всех щелочных и некоторых щелочноземельных металлов, а также алюминия.

    В чем же отличие электролиза расплавов и водных растворов электролитов? Восстановительные процессы на катоде водных растворов электролитов зависят от величины стандартных электродных потенциалов металлов, а именно они чаще всего выступают в качестве катионов, восстанавливающихся на катоде. Здесь возможны три варианта:

    1. Катионы металлов, которые имеют стандартный электродный потенциал, выше, чем у водорода, то есть больше нуля при электролизе полностью восстанавливаются на катоде (медь, серебро, золото и другие).

    2. Катионы металлов, имеющих очень маленькое значение стандартного электродного потенциала (от лития до алюминия включительно), не восстанавливаются на катоде, а восстанавливаются молекулы воды.

    3. Катионы металлов, у которых значение стандартного электродного потенциала, меньше, чем у водорода, но больше, чем у алюминия, при электролизе восстанавливаются на катоде вместе с молекулами воды.

    Если же в водном растворе находятся одновременно несколько катионов металлов, то при электролизе выделение их на катоде протекает в порядке уменьшения алгебраической величины стандартного электродного потенциала соответствующего металла. Например, при анализе бронзы типа БрАЖ или БрАЖМц (медь, алюминий, железо и марганец) можно, подобрав определенное значение силы тока, отделить медь на инертный электрод (например, платиновый), вытащить электрод, взвесить его и определить содержание меди. Затем отделить алюминий, определить его содержание. Таким способом хорошо отделять металлы с положительным значением стандартного электродного потенциала.

    Все электроды делят на нерастворимые (инертные) – угольные, графитовые, платиновые, иридиевые. Растворимые – медь, серебро, цинк, кадмий, никель и другие. Понятие растворимого электрода имеет значение для анода, поскольку именно он способен растворяться при электролизе. На нерастворимом аноде в процессе электролиза происходит окисление анионов или молекул воды. При этом анионы бескислородных кислот достаточно легко окисляются. Если же в растворе присутствуют анионы кислородсодержащих кислот, то на аноде окисляются молекулы воды с выделением кислорода по реакции:

    2Н 2 О – 4е = О 2 ­ + 4Н +

    Растворимый анод при электролизе сам окисляется, отдавая электроны во внешнюю электрическую цепь и переходя в раствор:

    А: Ме Û Ме n+ + nе –

    Рассмотрим примеры электролиза расплавов и растворов электролитов.