Популяционно видовой уровень определение. Онтогенетический, популяционно-видовой и биогеоценотический уровни организации живого. Органный уровень организации жизни

Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность.
Выделяют следующие уровни организации живых организмов - молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический, биосферный.

Рис. 1. Молекулярно-генетический уровень

1. Молекулярно-генетический уровень. Это наиболее элементарный характерный для жизни уровень (рис. 1). Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ. Их называют иногда биологическими макро- молекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.


Рис. 2. Клеточный уровень

2. Клеточныйуровенъ. Клетка является структурной и функциональной единицей всех живых организмов на Земле (рис. 2). Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности. У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных - амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.


Рис. 3. Тканевый уровень

3. Тканевый уровень. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом (рис. 3). Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.


Рис. 4. Органный уровень

4. Органный уровень. У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень (рис. 4). В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.


Рис. 5. Организменный уровень

5. Организменный уровень. Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм (рис. 5). А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, - питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство. У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.


Рис. 6. Популяционно-видовой уровень

6. Популяционно-видовой уровень. Совокупность особей одного вида или группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида (рис. 6).


Рис. 7 Биогеоценотический уровень

7. Биогеоценотический уровень. Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы (рис. 7).


Рис. 8. Биосферный уровень

8. Биосферный уровень. Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень (рис. 8). На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека. Главную роль в биосферном уровне выполняют "живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение "биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и "косных" веществ (т. е. условий окружающей среды). На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.

Уровни организации жизни. Популяция. Биогеоценоз. Биосфера.

  1. В настоящее время выделяют несколько уровней организации живых организмов: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой, биогеоценотический и биосферный.
  2. На популяционно-видовом уровне осуществляются элементарные эволюционные преобразования.
  3. Клетка - самая элементарная структурная и функциональная единица всех живых организмов.
  4. Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань.
  5. Совокупность всех живых организмов на планете и общей природной среды их обитания составляет биосферный уровень.
    1. Назовите по порядку уровни организации жизни.
    2. Что такое ткань?
    3. Из каких основных частей состоит клетка?
      1. Для каких организмов характерен тканевый уровень?
      2. Дайте характеристику органного уровня.
      3. Что такое популяция?
        1. Дайте характеристику организменному уровню.
        2. Назовите особенности биогеоценотического уровня.
        3. Приведите примеры взаимосвязанности уровней организованности жизни.

Заполните таблицу, показывающую структурные особенности каждого уровня организации:

Порядковый номер

Уровни организации

Особенности

Адаптация человека на популяционно-видовом уровне

На ранних этапах развития вида Человек разумный (одни ученые полагают, что это произошло на стадии неандертальцев, другие – еще на более ранних стадиях) в процессе расселения людей по разным географическим средам обитания появились генетически закрепленные специфические адаптации к ландшафтно-климатическим условиям, что привело к образованию рас. Под расами понимают исторически сложившиеся группы популяций людей разной численности, занимающих общую территорию и имеющих общие специфические признаки, отличающие их от других рас (рис. 8).

Наиболее отчетливо выделяются три расовые группы : европеоидная, негроидная и монголоидная. Некоторые выделяют 4-ю расу – австралоидную.

Помимо расовых признаков, на популяционно-видовом уровне у человека появляются адаптивные признаки, которые не зависят от генетического родства и расовой принадлежности. Они лежат в основе формирования так называемых экологических адаптивных типов людей.

Выделяют 6 адаптивных типов людей : арктический, тропический, зоны умеренного климата, высокогорный, аридный и континентальный (рис. 9).

Арктический тип. Характерен для холодного климата и питанием преимущественно животной пищей. Арктическому комплексу признаков свойственны относительно сильное развитие костно-мускульного компонента тела, большие размеры грудной клетки, высокий уровень гемоглобина, относительно большое пространство, занимаемое костным мозгом, повышенное содержание минеральных веществ в костях, высокое содержание в крови белков, холестерина, повышенная способность окислять жиры. Среди аборигенов Арктики почти не встречаются лица с астеническим телосложением.

Арктический тип характеризуется усиленным энергетическим обменом, который отличается стабильностью показателей в условиях переохлаждения. Имеют свои особенности и механизмы терморегуляции. При одинаковой степени охлаждения у канадских индейцев резко падает температура кожи, но уровень обмена веществ меняется незначительно, а у пришлого белого населения наблюдается меньшая степень снижения кожной температуры, но появляется сильная дрожь, т.е. интенсифицируется обмен.

Тропический тип. Является для человека самым древним, весьма разнообразным по климато-географическим условиям.

Для тропиков и субтропиков характерны: высокая температура воздуха, высокая солнечная активность, высокая влажность воздуха, рацион с относительно низким содержанием животного белка.

В тропической области наблюдается исключительно широкая вариабельность групп населения в расовом, этническом и экономическом отношениях. К характерным признакам тропического типа относят: преобладание роста в длину над ростом в ширину, сниженную мышечную массу, относительное уменьшение массы тела при увеличении длины конечностей, уменьшение окружности грудной клетки, более интенсивное потоотделение за счет повышенного количества потовых желез на 1см кожи, низкие показатели основного обмена и синтеза жиров, повышенную пигментацию кожных покровов (уменьшает канцерогенное и мутагенное воздействие солнечных лучей), преобладание углеводной пищи, что привело к снижению концентрации холестерина в крови.

Богатство и разнообразие животного мира обеспечивает существование огромного количества промежуточных и окончательных хозяев биогельминтов и переносчиков возбудителей трансмиссивных заболеваний.

Почва, воздух и вода содержат большое количество микроорганизмов, яиц гельминтов и цист патогенных простейших.

Адаптивный тип зоны умеренного климата. По соматическим показателям, уровню основного обмена население умеренного пояса занимает промежуточное положение между коренными жителями арктического и тропического регионов. Это соответствует условиям биогеографической среды в зоне умеренного климата. Для нее характерны неравномерное распределение районов, отличающихся по количеству тепла и влаги, типу растительности (от сухих степей и полупустынь до тайги), богатству животного мира. Вместе с тем, температура и влажность воздуха здесь не достигают экстремальных величин, хорошо выражен сезонный ритм биоклиматических условий.

Высокогорный тип. Является по происхождению самым молодым. Условия высокогорья для человека во многих отношениях экстремальны. Их характеризуют низкое атмосферное давление, сниженное парциальное давление кислорода, холод, относительное однообразие пищи. Для данного экологического типа основным неблагоприятным экологическим фактором является гипоксия. В связи с этим формируются такие функциональные адаптационные изменения как: увеличение объема легких; повышение кислородной емкости крови за счет увеличения количества эритроцитов и содержания гемоглобина, относительной легкости его перехода в оксигемоглобин; гипертрофия сердечной мышцы за счет повышения вязкости крови; расширение грудной клетки.

Воздействие холода в горах приводит к изменению функции щитовидной железы из-за дефицита йода в воде и продуктах питания.

В условиях высокогорья в целом менее интенсивно идут процессы роста и развития, позднее наступает старость, продолжительность жизни выше.

Аридный тип (зоны пустынь). Для пустыни характерно воздействие сухого воздуха, круглогодичное тепловое воздействие. В этих условиях отмечается тенденция к линейности телосложения (астеники с уплощенной грудной клеткой), мускульный и жировой компоненты развиты слабо. Снижены уровни основного обмена, холестерина крови, минерализации скелета. Жители пустыни, за исключением тропических, отличаются крупными размерами тела.

Континентальный тип. Для жителей континентальной зоны Сибири характерны укороченные пропорции тела, уплощенная грудная клетка, в среднем повышенное жироотложение и явное увеличение массы тела, пониженное содержание минеральных веществ в скелете.

Таким образом, формирование и сохранение полиморфизма разных популяций человека объясняется тем, что на ранних этапах своей эволюции человечество в большей степени подвергалось непосредственному воздействию абиотических и биотических факторов, чем происходит в настоящее время. В каждой экологической нише население имеет специфические приспособительные черты, которые формируются на протяжении жизни нескольких поколений и представляют собой результат приспособления человека к экологическим условиям.

121.Биосфера как естественно-историческая система. Состав и границы.

Термин «биосфера» (греч.»биос» -жизнь, «сфера» - шар) ввел в 1975 году австрийский ученый Эдуард Зюсс для оюозначения оболочки земли, населенной живыми организмами.

Основоположником современного учения о биосфере является В.И.Вернадский (1853-1945). Опираясь на работы Ж.Б.Ламарка по гидрологии, идеи К.А.Тимирязева о способности хлорофилла фиксировать энергия Солнца, а также работы Докучаева по почвообразованию, В.И.Вернадский выдвинул гипотезу о преобразующем влиянии живого вещевтва как совокупности всех житвых организмов, населяющих нашу планету, на геологические оболочки Земли в масштабах глобального пространства и времени. По В.И.Вернадскому. биосфера – поверхностная оболочка Земли, глубоко переработанная живым веществом былых геологических эпох и перерабатываемая в настоящее время разными формами живых организмов, возникающих в ходе эволюции на планете Земля.

По В.И.Вернадскому биосфера возникла одновременно с появлением жизни на Земле, и ее основу составляет непрерывный биотический круговорот веществ, осуществляющийся при участии всех населяющих планету организмов. Он выражается в том. что зеленые растения создают из неорганических веществ органические вещества, а животные и микроорганизмы потребляют и разрушают его. Из минеральных соединений, полученных от распада органического вещества, зеленые растения строят новое органическое вещество и так без конца.

Биосфера по В.И.Вернадскому – это устойчивая динамическая система. Со времен архейской эры устойчивость биосферы проявляется в постоянстве ее общей массы, а также массы живого вещества и энергии. связанной с живым веществом.

Несмотря на постоянство этих показателей видовой состав биосферы в ходе эволюции изменился до неузнаваемости. как полагал В.И.Вернадский. эволюционный процесс в биосфере вначале привел к вовлечению в живое вещество максимального количества химических элементов из окружающей среды. а затем к увеличивающейся биогенной миграции атомов и разнообразию новых форм живых организмов, устойчивых в биосфере.

Вернадский указывал также, что биосфера. будучи целостной и организованной системой, связана с Космосом. Электромагнитные лучи солнечного и космического происхождения играют важную роль в регуляции пространственно – временной организации биосферы. Кроме того, солнечная энергия является основным источником энергии для биосферы. И в этом отношении биосфера является открытой системой.

В.И.Вернадский считал, что после возникновения человека биосфера стала постепенно переходить в новое состояние. преобразованное человеческой деятельностью. – в ноосферу. то есть сферу разума. Под ноосферой Вернадский понимал новый этап в развитии биосферы. а именно, этап разумного регулирования взаимоотношений человека и природы

С учетом современных представлений биосферу можно охарактеризовать как целостную, термодинамически открытую. саморегулирующуюся устойчивую систему. в основе функционирования которой лежит непрерывный круговорот вещества и энергии, поддерживающий в состоянии равновесия входящие в нее компоненты.

ГРАНИЦЫ БИОСФЕРЫ

Границы биосферы совпадают с границами распространения живых организмов в оболочках Земли, что определяется наличием условий существования жизни. Биосфера охватывает всю поверхность суши, а также океаны, моря и ту часть недр Земли, где находятся породы, созданные в процессе жизнедеятельности живых организмов.

Для существования живых организмов необходимы следующие условия:

1) достаточное количество жидкой воды, минеральных веществ, кислорода, углекислого газа,

2) наличие ряда химических биогенных элементов,

3) поступление солнечной энергии,

4) температура в диапазоне от −50º С до +50ºС с различным температурным оптимумом для каждого вида организмов,

5) оптимальный уровень радиации и др.

По Вернадскому, к биосфере относятся нижние слои стратосферы, вся тропосфера, верхняя часть литосферы, сложенная осадочными породами, и гидросфера, заселенная живым веществом.

Над поверхностью литосферы и гидросферы вверх до 100 км простирается атмосфера . Нижний слой атмосферы в среднем высотой 15 км называют тропосферой , которая включает взвешенные в воздухе водяные пары, перемещающиеся при неравномерном нагреве поверхности Земли. Над тропосферой различают стратосферу – слой высотой до 100 км. У границы ее возникают северные сияния. Верхняя граница биосферы определяется озоновым экраном. На высоте от 10 до 50 км расположен слой озона, с максимальной его концентрацией на высоте 20-25 км (озоновый экран ). Роль озонового экрана, представляющего собой тонкий слой (2-4 мм) газа озона (О 3) в биосфере велика: он задерживает губительные для всего живого ультрафиолетовые лучи солнечного света.

Нижняя граница биосферы очень изрезана. К примеру, в литосфере живые организмы или продукты их жизнедеятельности можно встретить на глубине 3,5-7,5 км, а в Мировом океане организмы проникают на глубину 10-12 км.

Таким образом, границы биосферы (рис. 8) включают все 15 км тропосферы, 5-10 км стратосферы, всю гидросферу суши и Мировой океан, которые простираются до глубины 11 км, на материках биосфера проникает в среднем в земную кору до глубин 5 км. Верхний предел жизни биосферы ограничен интенсивной концентрацией ультрафиолетовых лучей; нижний – высокой температурой земных недр (свыше 100° С). Крайних пределов ее достигают только низшие организмы – бактерии. Споры аэробных бактерий и грибов залетают на высоту
20 км, а анаэробные – находят в земной коре на глубине свыше 3км, в водах месторождений нефти.

Нижняя граница на суше связана с областями "былых биосфер" – так В.И. Вернадский назвал сохранившиеся остатки биосфер прошлых геологических эпох (накопления осадочных пород, углей, горючих сланцев и др.). "Былые биосферы" служат доказательством длительной эволюции биосферы Земли.

Ученый отмечал, что живое вещество распределено в биосфере неравномерно (рис. 9). В биосфере существуют «пленка жизни» и «сгустки жизни», в которых концентрация живого вещества максимальна. Это поверхность суши, почвы и верхние слои вод Мирового океана. Кверху и книзу от нее количество живого вещества в биосфере Земли резко убывает. Основная его масса сконцентрирована в приповерхностном слое суши толщиной 50-100 м и в приповерхностной толще воды (10-20 м). Здесь находится более 90% биомассы Земли. Но и в приповерхностном слое имеются пространства, густо заселенные живыми организмами (тропики и субтропики, теплые моря), и менее заселенные территории (пустыни, высокогорья, арктические и антарктические области). Для остальных территорий биосферы характерно, по словам В.И. Вернадского, "разрежение живого вещества".

Тем не менее, в пределах биосферы нет абсолютно безжизненных пространств. Даже в самых суровых условиях обитания можно найти бактерии и другие микроорганизмы. В.И. Вернадский высказал идею о "всеюдности жизни", живое вещество способно "растекаться" по поверхности планеты; оно с огромной скоростью захватывает все незанятые участки биосферы, что обусловливает "давление жизни" на неживую природу.

СТРУКТУРА БИОСФЕРЫ

В.И. Вернадский определяет биосферу как одну из геосфер, которая коренным и необратимым образом изменена под влиянием живых существ, их современной и ранее протекавшей жизнедеятельности.

В биосфере можно выделить следующие основные компоненты (рис. 5):

1) живое вещество (живые организмы),

2) косное (неживое) вещество (атмосфера, газы, горные породы и пр.),

3) неживое биогенное вещество (продукты жизнедеятельности живых организмов),

4) биокосное вещество (совместный результат живых организмов и абиогенных процессов неживой природы),

5) радиоактивное вещество,

6) рассеянные атомы,

7) вещество космического происхождения(метеориты, космическая пыль).

Живым веществом В.И. Вернадский назвал совокупность живых организмов, населяющих нашу планету (рис. 6).

Это главная сила, преобразующая поверхность планеты, основа формирования и существования самой биосферы. Во все геологические эпохи живое вещество, преобразуя и аккумулируя солнечную энергию, влияло на химический состав земной коры, было мощной геохимической силой, формирующей лик Земли.

Много внимания в своих работах по биосфере В.И. Вернадский уделял зеленому живому веществу растений, потому что только оно автотрофное, только оно способно захватывать лучистую энергию Солнца и с ее помощью создавать первичные органические соединения. Рассмотрев объем и энергетические коэффициенты различных групп растительности, В.И. Вернадский пришел к выводу, что «зеленые просторы океана являются главными трансформаторами солнечной энергии нашей планеты». Живое вещество имеет количественные характеристики, его можно изучать, используя математические законы.

Количество живого вещества в биосфере (биомасса ) – величина постоянная или мало изменяющаяся с течением времени. Во все геологические эпохи на Земле количество живого вещества было практически одинаковым. Ученый подчеркивал, что современное живое вещество генетически родственно живому веществу прошлых геологических эпох.

В современном мире насчитывается огромное количество видов живых организмов, все они составляют ИМПЕРИЮ – клеточные формы жизни (организмы).

В 1982 г. Маргелис и Шварц (Margulis, Schwartz) предложили систематику, предусматривающую наличие пяти царств – одно царство в НАДЦАРСТВЕ прокариот и четыре царства в НАДЦАРСТВЕ эукариот (рис. 7). Система Маргелиса и Шварца получила широкое признание, и именно ее теперь рекомендуют использовать.

Самая противоречивая группа – это протисты, возможно, потому, что это не естественная группа.

Царство Монера (Дробянки) представлено прокариотическими организмами, которые распределяются между тремя подцарствами: Архебактерии, Настоящие бактерии, Цианобактерии (Сине-зеленые водоросли);

Царство Протисты – одноклеточные эукариотические организмы, напоминающие предков растений, животных и грибов, сюда относятся одноклеточные водоросли, простейшие, слизевики и оомицеты (ранние грибы);

Царство Растения, образованное многоклеточными автотрофными организмами;

Царство Грибы, занимающее промежуточное положение между растениями и животными;

Царство Животные – многоклеточные гетеротрофные организмы.

Под косным веществом В.И. Вернадский понимал такие вещества биосферы, в создании которых живые организмы не участвуют. Это, например, газы, твердые частицы и водяные пары, выбрасываемые вулканами, гейзерами, породы магматического и метаморфического происхождения.

Неживое биогенное вещество , которое образовано живым веществом современной и прошлых геологических эпох (ископаемые остатки организмов, нефть, уголь, газы атмосферы, озерный ил – сапропель, осадочные породы, например, известняки). Значительная часть энергии «живого вещества» идет на образование в пределах биосферы новых вадозных минералов, вне биосферы не известных, а часть захороняется в виде самого органического вещества, образуя в конечном счете залежи бурых и каменных углей, горючих сланцев, нефти и газа. «Мы имеем здесь дело, – пишет В.И. Вернадский, – с новым процессом – с медленным проникновением внутрь планеты лучистой энергии Солнца, достигшей поверхности Земли. Этим путем «живое вещество» меняет биосферу и земную кору. Оно непрерывно оставляет в ней часть прошедших через него химических элементов, создавая огромные толщи неведомых, помимо его, вадозных минералов или пронизывая тончайшей пылью своих остатков косную материю биосферы».

Биокосное вещество , которое создавалось одновременно и живыми организмами, и косным веществом (например, почва, вода обитаемых водоемов, глинистые минералы).

Радиоактивное вещество – атомы радиоактивных элементов – уран, торий, радий и др.

Все живые существа на Земле постоянно подвергаются воздействию ионизирующей радиации от естественных (космическое излучение и природные радиоактивные вещества) источников ионизирующих излучений. Радионуклиды широко распространены в природе; они рассеяны в земной коре, воде, воздухе, растениях и теле животных. К радионуклидам естественного происхождения относят те, которые образовались на Земле без участия человека. Это долгоживущие изотопы I, U, Ra, Th, K и др. Совместно с космическим излучением они и создают природный радиоактивный фон, постоянно облучая все живые организмы на Земле.

Рассеянные атомы – отдельные атомы элементов, встречающиеся в природе в рассеянном состоянии (в таком состоянии часто существуют атомы микро- и ультрамикроэлементов: Mn, Zn, Au, Hg и др.). Создаются из земного вещества под влиянием космических излучений.

Вещество космического происхождения – вещество, поступающее на поверхность Земли из космоса (метеориты, космическая пыль).

122.Современные концепции биосферы.

Организованность биосферы – явление многоплановое, и по мере изучения этого вопроса шесть концепций, отражающих основные принципы структурной организации биосферы: биогеоценотическая, биогеохимическая, геофизическая, термодинамическая, кибернетическая исоциально-экономическая.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Клетка – элементарная единица живого.

Клетка представляет собой обособленную, наименьшую по размерам структуру, которой присуща вся совокупность свойств жизни и которая может в подходящих условиях окружающей среды поддерживать эти свойства в самой себе, а также передавать их в ряду поколений.

Клетка составляет основу строения, жизнедеятельности и развития всех живых форм – одноклеточных, многоклеточных и даже неклеточных.

В природе существует значительное разнообразие клеток, различающихся по размерам, форме, химическим особенностям. Число же главных типов клеточной организации ограничено двумя. Выделяют прокариотический и эукариотический типы с подразделением второго на подтип, характерный для простейших организмов, и подтип, характерный для многоклеточных.

Клетками прокариотического типа свойственны малые размеры (не более 0,5-3 мкм в диаметре и длине), отсутствие обособленного ядра. В клетке отсутствует развитая система мембран. Генетический аппарат представлен ДНК единственной кольцевой хромосомы, которая лишена основных белков – гистонов.

Эукариотический тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших является то, что они соответствуют в структурном отношении уровню одной клетки, а в физиологическом – полноценной особи. Одной из черт клеток простейших является наличие в цитоплазме миниатюрных образований, выполняющих на клеточном уровне функции жизненно важных органов многоклеточного организма.

Впервые название "клетка" в середине XVII в. применил Р.Гук. Рассматривая тонкий срез пробки с помощью микроскопа, Гук увидел, что пробка состоит из ячеек - клеток.

Современная клеточная - теория включает следующие положения:

Клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого;

Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки;

В сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

Особи в природе не абсолютно изолированы друг от друга, а объединены более высоким рангом биологической организации. Это - популяционно-видовой уровень. Он возникает там и тогда, где и когда происходит объединение особей в популяции, а популяций в виды.

Основной, элементарной и реально существующей единицей органического мира, или иначе - универсальной формой существования жизни, является вид (от лат. species - взгляд, образ).

Вид - исторически сложившаяся совокупность популяций, особи которых обладают наследственным сходством морфологических, физиологических и биохимических особенностей, могут свободно скрещиваться и давать плодовитое потомство, приспособлены к определенным условиям жизни и занимают определенную область - ареал.

Понятие «вид» впервые было введено в конце 17 в. английским ботаником Джоном Реем

Так, например, явно различаются между собой по внешним признакам медведь и волк, в то время как волк, шакал, гиена, лисица внешне более сходны, так как принадлежат к одному семейству - волчьих.

Признаки, по которым один вид можно отличить от другого, называют критериями вида:

1. морфологический критерий- сходство внешнего и внутреннего строения между особями одного вида

2. физиологический критерий сходство всех процессов жизнедеятельности у особей одного вида, прежде всего сходство размножения. Особи разных видов, как правило, не скрещиваются, или потомство их бесплодно. Например, у многих видов мухи дрозофилы сперма особей чужого вида вызывает иммунную реакцию, что приводит к гибели сперматозоидов в половых путях самки. В то же время в природе есть виды, особи которых скрещиваются и дают плодовитое потомство (некоторые виды канареек, зябликов, тополей, ив).

3. Географический критерий основан на том, что каждый вид занимает определенную территорию или акваторию, называемую ареалом. Он может быть большим или меньшим, прерывистым или сплошным. Однако огромное число видов имеет накладывающиеся или перекрывающиеся ареалы. Кроме того, существуют виды, не имеющие четких границ распространения, а также виды-космополиты, обитающие на огромных пространствах суши всех континентов или океана. Например, растения - пастушья сумка, одуванчик лекарственный, виды рдестов, ряски, тростника, животные-синантропы - постельный клоп, рыжий таракан, комнатная муха). Поэтому географический критерий, как и другие, не является абсолютным.

4. Экологический критерий основан на том, что каждый вид может существовать только в определенных условиях, выполняя свойственные ему функции в определенном биогеоценозе. Так, например, лютик едкий произрастает на пойменных лугах, лютик ползучий - по берегам рек и канав, лютик жгучий - на заболоченных местах. Существуют, однако, виды, которые не имеют строгой экологической приуроченности. К ним относятся многие сорные растения, а также виды, находящиеся под опекой человека: комнатные и культурные растения, домашние животные.

5. Генетический (цитоморфологический) критерий основан на различии видов по кариотипам, т.е. числу, форме и размерам хромосом. Для подавляющего большинства видов характерен строго определенный кариотип. Однако и этот критерий не является универсальным. Во-первых, у многих видов число хромосом одинаково и форма их сходна. Например, некоторые виды семейства бобовых имеют 22 хромосомы (2п = 22). Во-вторых, в пределах одного и того же вида могут встречаться особи с разным числом хромосом, что является результатом геномных мутаций (поли- или анеу-плоидия). Например, ива козья может иметь диплоидное (38) или тетра-плоидное (76) число хромосом

6. Биохимический критерий позволяет различать виды по составу и структуре определенных белков, нуклеиновых кислот и др. Особи одного вида имеют сходную структуру ДНК, что обусловливает синтез одинаковых белков, отличающихся от белков другого вида. Вместе с тем у некоторых бактерий, грибов, высших растений состав ДНК оказался очень близким. Следовательно, есть виды-двойники и по биохимическим признакам.

Таким образом, только учет всех или большинства критериев позволяет отличить особей одного вида от другого.

Часть земной поверхности (или акватории), в пределах которой встречается данный вид, называется ареалом .

Размеры ареалов разных видов могут сильно различаться. У наземных малоподвижных видов, распространение которых ограничено какими-нибудь непреодолимыми преградами, ареал может занимать территорию всего в несколько квадратных километров и даже менее. К ним относятся островные или пещерные виды, обитатели горных долин или верхних зон горных хребтов. Например, живородящая рыба голомянка населяет только озеро Байкал, жуки жужелицы-брызгуны обитают на Кавказе в пределах одного - двух хребтов. Виды, имеющие узкий ареал распространения, называются эндемичными, или эндемиками.

Другие виды имеют обширные ареалы, нередко располагающиеся на нескольких материках. Например, на всех континентах встречаются жуки-навозники, соколы-сапсаны. Огромный ареал имеют подвижные морские животные - кашалот, серый дельфин, синий кит, касатка. Такое же широкое распространение свойственно многим растениям и животным, сопровождающим человека, - синантропным видам (вши, блохи, тараканы, крысы). Виды, ареалы которых расположены в пределах всех континентов, называются всесветными, или космополитами.

Главными причинами, которые влияют на формирование и особенности структуры ареала, являются экологическая пластичность вида, его способность к расселению и исторический возраст.

Популяция - структурная единица вида. Ареалов, сплошь заселенных тем или иным видом, в природе не существует. В пределах ареала особи данного вида осваивают лишь подходящие для их жизни место обитания. Степень заполнения занимаемого пространства у разных видов различна. Но всегда в нем выделяются «пустоты» и скопления. Иными словами, ареал состоит из более или менее многочисленных участков, на которых и встречается определенный вид

Численность особей в таких группах может значительно увеличиваться при благоприятных условиях и снижаться при неблагоприятных, однако они имеют шансы к длительному существованию на данной территории. Такие группировки (совокупности) особей одного вида, длительно населяющих определенную часть ареала, свободно скрещивающихся друг с другом и дающих плодовитое потомство, относительно обособленные от других совокупностей этого же вида, называются популяцией (от лат. populus - народ, население).

Каждая популяция любого вида как биологическая система обладает определенной структурой. Под структурой популяции понимается определенное количественное соотношение особей, отличающихся по морфологическим и физиологическим признакам, возрасту, полу, характеру распределения в пространстве и другим свойствам.

Основными параметрами популяции являются, прежде всего, ее численность и плотность.

Численность - общее количество особей в популяции. Она не бывает постоянной, так как изменчивы условия среды обитания популяции. Численность популяции зависит от соотношения интенсивности размножения (плодовитости) и смертности. В процессе размножения происходит рост популяции, смертность же приводит к сокращению ее численности. Для каждой популяции есть верхний и нижний пределы численности, которые можно измерить, изучая ее сезонные и межгодовые изменения.

Плотность популяции - это количество особей или их биомасса на единицу площади или объема (например, 150 растений сосны на 1 га; 0,5 циклопа на 1 м 3 воды). Плотность популяции также изменчива и зависит от численности. При возрастании численности плотность не увеличивается лишь в том случае, если возможно расселение популяции, расширение ее ареала.

Повышение плотности сверх оптимальной неблагоприятно сказывается на состоянии популяции, поскольку при этом иссякает кормовая база, сокращается жизненное пространство и т.д.

Падение плотности ниже оптимальной приводит к ослаблению защитных реакций популяции, снижает ее плодовитость, что в конечном итоге может привести к вымиранию популяции.

Возрастная структура отражает соотношение различных возрастных групп в популяции, а также сезонную и межгодовую динамику этого соотношения. В популяции обычно выделяют три экологических возраста: предрепродуктивный (до размножения), репродуктивный (в период размножения) и пострепродуктивный (после размножения).

Любая популяция представляет собой непрерывный поток поколений благодаря обмену генами, который происходит в результате скрещивания особей друг с другом. Признаки, появившиеся в ходе независимого комбинирования генов, определяют формирование фенотипа организмов и обусловливают изменчивость в популяции. В ходе естественного отбора адаптивные фенотипы сохраняются, а неадаптивные исчезают. Так формируется генетическая реакция всей популяции, которая определяет выживание данного вида. Только те особи популяции, которые выжили и оставили потомство, вносят вклад в будущее своего вида.

Популяция включает огромное количество разнообразных генов, которые образуют ее генофонд. Каждый ген может существовать в нескольких формах называемых аллелями. Число особей в конкретной популяции, несущих определенный аллель, определяет частоту данного аллеля.

Численность популяций не остается постоянной, так как меняются условия их существования. Возникающие изменения численности популяций во времени называются динамикой численности

Живые организмы встречаются на Земле не в любых случайных сочетаниях, как независимые особи, а образуют закономерные комплексы (сообщества). Впервые на возможность выделения таких сообществ обратил внимание немецкий биолог Карл Август Мёбиус (1825- 1908). В 1877 г. он предложил для обозначения комплекса живых организмов, постоянно встречающихся вместе, при наличии одинаковых условий существования, термин биоценоз (от греч. bios - жизнь и koinos - общий, делать что-либо общим).

Биоценоз - это исторически сложившаяся группировка растений, животных, грибов и микроорганизмов, населяющих относительно однородное жизненное пространство (участок суши или водоема) .

Итак, каждый биоценоз состоит из определенной совокупности живых организмов, относящихся к разным видам. Но мы знаем, что особи одного вида объединяются в природные системы, которые называются популяциями. Поэтому биоценоз может быть определен также и как совокупность популяций всех видов живых организмов, заселяющих общие места обитания.

В состав биоценоза входят совокупность растений на определенной территории - фитоценоз (от греч. phyton - растение), совокупность животных, проживающих в пределах фитоценоза, - зооценоз (от греч. zoon - животное), микробоценоз - совокупность микроорганизмов, населяющих почву, и микоценоз (от греч. mykes - гриб) - совокупность грибов. Примерами биоценозов являются лиственный, еловый, сосновый или смешанный лес, луг, болото и т.д.

Каждый биоценоз развивается в пределах однородного пространства, которое характеризуется определенным сочетанием абиотических факторов, таких как количество приходящей солнечной радиации, температура, влажность, химический и механический состав почвы, ее кислотность, рельеф местности и др. Такое однородное пространство (часть абиотической среды), занимаемое биоценозом, называется биотоп. Это может быть какой-либо участок суши или водоема, берег моря или склон горы. Биотоп - это неорганическая среда, которая является необходимым условием существования биоценоза. Между биоценозом и биотопом существует тесное взаимодействие.

Масштабы биоценозов могут быть различны - от сообществ подушек лишайников на стволах деревьев, моховых кочек на болоте или разлагающегося пня до населения целых ландшафтов. Так, на суше можно выделить биоценоз суходольного (незаливаемого водой) луга, биоценоз сосняка-беломошника, биоценоз ковыльной степи, биоценоз пшеничного поля и т.д.

В водной среде биоценозы обычно выделяют в соответствии с экологическими подразделениями водоемов - биоценоз прибрежных песчанистых или

илистых грунтов, биоценоз приливной зоны моря, биоценоз крупных водных растений прибрежной зоны озера, биоценоз пресного водоема и т.д. (рис. 2.2).

В конкретный биоценоз включаются не только организмы, постоянно обитающие на определенной территории, но и те, которые оказывают существенное воздействие на его жизнь, хоть и обитают в других биоценозах.

Например, многие насекомые размножаются в водоемах, где являются важным источником питания рыб и некоторых других животных. В молодом возрасте они входят в состав водного биоценоза, а во взрослом состоянии ведут наземный образ жизни, т.е. выступают как элементы сухопутных биоценозов. Зайцы могут питаться на лугу, а обитать в лесу. То же касается и многих видов лесных птиц, которые ищут себе пропитание не только в лесу, а и на прилегающих лугах или болотах.

Каждый биоценоз можно описать, основываясь на совокупности составляющих его видов. Видовое разнообразие различных биоценозов разное, что обусловлено их разным географическим положением. Установлено: оно уменьшается по направлению от тропиков в сторону высоких широт, что объясняется ухудшением условий жизни организмов.

Если какой-либо вид растения (или животного) количественно преобладает в сообществе (имеет большую биомассу, продуктивность или численность), то такой вид называется доминантным, или доминирующим.

Виды распределяются в пространстве в соответствии с их потребностями и условиями местообитания. Такое распределение в пространстве видов, составляющих биоценоз, называется пространственной структурой биоценоза . Различают вертикальную и горизонтальную структуру биоценоза.

Вертикальная структура биоценоза образована отдельными его элементами, особыми слоями, которые называются ярусами. Ярус - совместно произрастающие группы видов растении, различающиеся по высоте и положению в биоценозе ассимилирующих органов (листья, стебли, подземные органы - клубни, корневища, луковицы и т.п.). Как правило, разные ярусы образованы разными жизненными формами (деревьями, кустарниками, кустарничками, травами, мхами).

Ярусность наблюдается также в биоценозах океанов и морей. Разные виды планктона держатся на разной глубине, в зависимости от освещения, а разные виды рыб - в зависимости от того, где они находят себе пропитание.

Живые организмы распределены в пространстве неравномерно. Обычно они составляют группировки, что является приспособительным фактором в их жизни. Такие группировки организмов определяют горизонтальную структуру биоценоза.

Особи разных видов существуют в биоценозах не изолированно; они вступают между собой в разнообразные прямые и косвенные отношения. Прямые отношения разделяют на четыре типа: трофические, топические, форические, фабрические.

Трофические отношения возникают тогда, когда один вид в биоценозе питается другим (либо мертвыми остатками особей этого вида, либо продуктами их жизнедеятельности). Божья коровка, питающаяся тлей, корова на лугу, поедающая сочную траву, волк, охотящийся на зайца, - это все примеры прямых трофических связей между видами.

Топические отношения характеризуют изменение условий обитания одного вида в результате жизнедеятельности другого. Ель, затеняя почву, вытесняет светолюбивые виды из-под своей кроны, ракообразные поселяются на коже китов, мхи и лишайники располагаются на коре деревьев. Все эти организмы связаны друг с другом топическими связями.

Форические отношения - участие одного вида в распространении другого. В этой роли обычно выступают животные, переносящие семена, споры, пыльцу растений. Так, обладающие цепляющимися шипами семена лопуха или череды могут захватываться шерстью крупных млекопитающих и переноситься на большие расстояния.

Фабрические отношения - тип связей, при которых особи одного вида используют для своих сооружений продукты выделения, мертвые остатки либо даже живых особей другого вида. Например, птицы строят гнезда из сухих веточек, травы, шерсти млекопитающих и т.п. Личинки ручейников для строительства своих домиков используют кусочки корыпесчинки, обломки раковин или же сами раковины с живыми моллюсками мелких видов.

Биогеоценоз - это совокупность растений, животных, грибов и микроорганизмов, почвы и атмосферы на однородном участке суши, которые объединены обменом веществ и энергии в единый природный комплекс. Важной особенностью биогеоценоза является то, что он связан с определенным участком земной поверхности. Биогеоценоз - это один из вариантов наземной экосистемы.

Объединение особей в популяции, а последних – в виды по степени генетического и экологического единства приводит к появлению новых свойств и особенностей в живой природе. Популяция – система особей одного вида, длительно занимающих определенное пространство и воспроизводящих себя в течение большого числа поколений. Вид –система популяций особей, обладающих рядом общих морфо-физиологических признаков, способных к скрещиванию с образованием плодовитого потомства. Популяция - элементарная структура на популяционно-видовом уровне, а элементарное явление на этом уровне - изменение генотипического состава популяции; элементарный материал на этом уровне - мутации. Особую роль играют отношения между особями внутри популяции и вида. При этом популяции выступают как основные эволюционные единицы, представляющие собой генетически открытые системы (особи из разных популяций иногда скрещиваются, - таким образом, происходит обмен генетической информацией). Популяции и виды способны к существованию в течение длительного времени и к самостоятельному эволюционному развитию. Жизнь отдельной особи при этом находится в зависимости от популяционных процессов. Популяционно-видовая целостность связана с взаимодействием особей внутри популяций и поддерживается обменом" генетического материала в процессе полового размножения.

6. Биогеоценотический (экосистемный) уровень. Принципы устойчивости биогеоценоза .

Популяции разных видов образуют сложные сообщества - биоценозы. Биоценозы - совокупность растений, животных, грибов и прокариот, населяющих участки суши или водоема и находящихся в определенных отношениях между собой. Вместе с конкретными участками земной поверхности, занимаемыми биоценозами, и прилежащей атмосферой они формирую экосистему (биогеоценоз). Экосистема - взаимообусловленный комплекс живых и неживых (косных) компонентов, связанных между собой обменом веществ и энергии. Название «биогеоценоз» используется только по отношению к природным системам. В целом жизнь биогеоценоза регулируется в основном силами, действующими внутри самой системы, т.е. можно говорить о саморегуляции биогеоценоза. Биогеоценоз представляет собой открытую систему, имеющую энергетические «входы» и «выходы», связывающие соседние биогеоценозы, обмен веществ между которыми может осуществляться как в газообразной, так и в жидкой и твердой фазах, а также в форме живого вещества (например, миграции животных). Нынешнее состояние экосистем – результат длительной эволюции и адаптации организмов друг к другу и к условиям существования. Все группы экосистемы - продукт совместного исторического развития различающихся и приспосабливающихся друг к другу видов. Первичной основой для функционирования экосистемы служат растения и прокариоты - автотрофы, синтезирующие из неорганических веществ (воды, двуокиси углерода, соединений азота) необходимые для жизни органические вещества. Автотрофы используют энергию фотосинтеза (зеленые растения) или хемосинтеза (бактерии). Они являются продуцентами, создающими жизненную среду для гетеротрофов, потребляющих готовые органические вещества и неспособные к их синтезу из неорганических. Гетеротрофами являются животные и грибы. Эти потребители в свою очередь подразделяются на консументы -(растительноядные животные и хищники) и редуценты (грибы, микроорганизмы, разлагающие органическое вещество.) Популяции разных видов в экосистемах воздействуют друг на друга по принципу прямой и обратной связи. В экосистемах выделяют пищевые (трофические) цепи – через них происходит трансформация вещества и энергии. При переходе энергии от одного звена к другому до 80-90% ее теряется в виде теплоты, поэтому цепи обычно включают не более 4-5 звеньев, и продукция каждого последующего звена меньше предыдущего. Совокупность всех организмов, объединенных единым типом питания образуют трофический уровень. В экосистеме реализуется правило пирамиды: продукция каждого последующего трофического уровня меньше предыдущего приблизительно в 10 раз. В состав пищи каждого вида могут входить другие разные виды, и каждый вид может служить пищей другим разным видам, т.е. трофические цепи переплетаются, образуя трофические сети. В экосистеме реализуются принципы устойчивости и равновесия:



принцип устойчивости : чем больше трофических уровней в экосистеме и чем они разнообразнее, тем более устойчива экосистема;

принцип равновесия : между видами в экосистеме существует равновесие, и отклонение от него в ту или другую сторону может привести к катастрофе.

Хозяйственная деятельность человека привела к резким изменениям всех компонентов биоценозов. На смену естественным биоценозам проходят искусственные – агробиоценозы, городские биоценозы. Агробиоценоз (и городской биоценоз) – вторичный биогеоценоз, который может существовать только при постоянном возобновлении человеком.

Биосферный уровень

Биосфера – единство всех биогеоценозов, система, охватывающая все явления жизни на Земле. Этот термин ввел в 1875 г. геолог Э. Зюсс (), но широкое распространение он получил в 20-е годы ХХ века, когда было развито учение В.И. Вернадского о биосфере. Согласно Вернадскому, биосфера – те части земных оболочек (лито-, гидро- и атмосферы), которые на протяжении геологической истории подвергались влиянию живых организмов и несут следы их жизнедеятельности. Биосфера возникла в процессе формирования земной коры и в настоящее время занимает пространство приблизительно от 10 км под Землей до 33 км над ней. Следует отметить очень узкий диапазон физических условий существования жизни, и в определенном смысле уникальность среды, в которой возможна жизнь. Вместе с тем, Жизнь постепенно, медленно приспосабливаясь, захватила существенную часть Земли, и этот захват продолжается.

Биогеохимический подход Вернадского позволяет всю совокупность живых организмов рассматривать как определенный тип - живое вещество. Кроме него в составе биосферы есть неживое или косное вещество, а также сложное по своей природе биокосное вещество, включающее как живые организмы, так и видоизмененное ими неживое вещество (почвы, илы, природные воды). Важнейшей чертой биосферы является наличие биотических круговоротов вещества. В результате способности к преобразованиям энергии и обмену веществ, а также к размножению и расселению живые организмы вызывают биогенную миграцию атомов. При этом, как указывал Вернадский, биогенная миграция химических элементов в биосфере стремится к максимальному своему проявлению. Жизнедеятельность организмов – один из важнейших геологических факторов. Своеобразие этого фактора связана в первую очередь с эволюцией. «Благодаря эволюции видов, непрерывно идущей и никогда не прекращающейся, резко меняется отражение живого вещества на окружающей среде... Эволюция видов переходит в эволюцию биосферы» (В.И. Вернадский).

Современное естествознание в ходе изучения взаимодействия биоценозов в биосфере вводит новое понятие – «коэволюция», означающее взаимное приспособление видов. Коэволюция является перспективной концепцией естественных и социальных наук, в которой решающую роль в существовании играет не борьба, а согласованность, сотрудничество различных видов, не связанных между собой генетически. В настоящее время интенсивно разрабатываются энергетическая, информационная и социальная концепции биосферы.

Раздел V. ПОПУЛЯЦИОННО-ВИДОВОЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИЗНИ. Глава 10. БИОЛОГИЧЕСКИЙ ВИД. ПОПУЛЯЦИОННАЯ СТРУКТУРА ВИДА

Раздел V. ПОПУЛЯЦИОННО-ВИДОВОЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИЗНИ. Глава 10. БИОЛОГИЧЕСКИЙ ВИД. ПОПУЛЯЦИОННАЯ СТРУКТУРА ВИДА

10.1. ПОНЯТИЕ О ВИДЕ

Видом называют совокупность особей, сходных по основным морфологическим и функциональным признакам, кариотипу, поведенческим реакциям, имеющих общее происхождение, заселяющих определенную территорию (ареал), в природных условиях скрещивающихся исключительно между собой и при этом производящих плодовитое потомство.

Видовая принадлежность особи определяется по соответствию ее перечисленным критериям: морфологическому, физиолого-биохими-ческому, кариотипическому, этологическому, экологическому и др. Наиболее важные признаки вида - его генетическая (репродуктивная) изоляция, заключающаяся в нескрещиваемости особей данного вида с представителями других видов, а также генетическая устойчивость в природных условиях, приводящая к независимости эволюционной судьбы.

Ни один из перечисленных критериев не является абсолютным. Наиболее размыт географический (экологический, территориальный)

Морфологический критерий вида более четок, однако строение тела самок и самцов у раздельнополых животных отличается всегда. У полигамных видов, живущих обычно группами, состоящими из многих самок и одного самца, эти отличия наиболее выражены. Иногда они столь значительны, что особи разных полов кардинально отлича-

Физиологический и биохимический критерии вида более четкие, но и они неоднозначны. Так, особенности физиологических процессов и обмена веществ у разных неродственных видов иногда могут разительно совпадать. Известно, что конечным продуктом распада азотсодержащих веществ у рыб является аммиак, у земноводных и большинства млекопитающих - легко растворимая мочевина, а у птиц и пресмыкающихся - мочевая кислота. Человекообразные обезьяны и человек наряду с мочевиной, возникающей при распаде аминокислот, в качестве конечного продукта диссимиляции пуриновых оснований образуют мочевую кислоту, которая в виде солей - уратов выделяется с мочой. Эта особенность метаболизма характерна также для собак породы далматин. В связи с тем, что мочевая кислота слаборастворима, ее избыток может накапливаться в разных структурах, в частности, в суставах, вызывая как у человека, так и у собак этой породы болезненное состояние, называемое подагрой. У остальных млекопитающих подагра, естественно, не встречается.

Рис. 10.1. Разнообразие фенотипов организмов в пределах вида: половой диморфизм: а - у морских котиков; б - у райских вдовушек; в - морфофизиоло-гический диморфизм у медовых муравьев; г - у глубоководных удильщиков

Видовые особенности поведения представляют собой важный это-логический критерий. По нему, в частности, легко отличаются близкие виды, родственные по происхождению: своеобразное пение разных видов птиц, специфические способы постройки гнезд, особенности ухаживания самцов за самками позволяют особям одного вида находить себе подобных. Однако известно, что сходные поведенческие реакции организмов могут в процессе эволюции многократно возникать у неродственных форм, относящихся к разным систематическим группам - классам (рис. 10.2) и даже типам. Так, ритуальное кормление самок самцами широко известно не только в типе Хордовых, но и среди беспозвоночных, например у насекомых и паукообразных.

Даже такой важный критерий вида, как цитогенетический, не всегда однозначно характеризует видовую принадлежность организмов. В ряде случаев набор хромосом и их строение оказываются сильно отличающимися у организмов, сходных морфологически, физиологически и даже способных скрещиваться друг с другом, давая плодовитое потомство. Об этом свидетельствуют данные цитогенетического анализа вида грызунов Ellobius talpinus, число хромосом в диплоидном наборе которого может варьировать в очень широких пределах (подробнее см. гл. 13, рис. 13.4.). С другой стороны, среди малярийных комаров рода Anopheles с одинаковым хромосомным набором обнаруживается много видов, отличающихся друг от друга только локализацией хромосом в ядрах интерфазных клеток и особенностями их фиксации к внутренней поверхности ядерной оболочки в ядрах интерфазных клеток. Этих отличий, кажущихся незначительными, оказывается достаточно для обеспечения репродуктивной изоляции видов.

Со времен К. Линнея вид является основной единицей систематики. Особое положение вида среди других систематических единиц (таксонов) обусловлено тем, что это та группировка, в которой отдельные особи существуют реально. В составе вида в природных условиях особь рождается, достигает половой зрелости и выполняет свою главную биологическую функцию: участвуя в репродукции, обеспечивает продолжение рода. В отличие от вида таксоны надвидового ранга, такие, как род, отряд, семейство, класс, тип, не являются ареной реальной жизни организмов. Выделение их в естественной системе органического мира отражает результаты предшествующих этапов исторического развития живой природы. Распределение организмов по надвидовым таксонам указывает на степень их филогенетического родства.

Рис. 10.2. Примеры конвергенции в поведенческих реакциях неродственных видов: а - ритуальное кормление; б - дарение цветов; в - поцелуй у птиц рода Podiceps и человека (по В.Р. Дольнику. - М., 2004)

Важнейшим фактором объединения организмов в виды служит половой процесс. Представители одного вида, скрещиваясь друг с другом, обмениваются наследственным материалом. Это ведет к перекомбинации в каждом поколении генов (аллелей), составляющих генотипы отдельных особей. В результате достигается нивелировка различий между организмами внутри вида и длительное сохранение основных морфологических, физиологических и прочих признаков, отличающих один вид от другого. Благодаря половому процессу происходит также объединение генов (аллелей), распределенных по генотипам разных особей, в общий генофонд (аллелофонд) 1 вида. Этот генофонд заключает в себе весь объем наследственной информации, которым располагает вид на определенном этапе его существования.

Определение вида, приведенное выше, не может быть применено к агамным (размножающимся бесполым путем) видам (некоторые микроорганизмы, сине-зеленые водоросли), самооплодотворяющимся и строго партеногетическим организмам. Группировки таких организмов, эквивалентные виду, выделяют по сходству фенотипов, общности ареала, близости генотипов по происхождению. Практическое использование понятия «вид» даже у организмов с половым размножением нередко затруднено. Это обусловлено динамичностью видов, проявляющейся во внутривидовой изменчивости, «размытости» границ ареала, образовании и распаде внутривидовых группировок различного объема и состава (популяций, рас, подвидов). Динамичность видов - следствие действия элементарных эволюционных факторов (см. гл. 11).

10.2. ПОНЯТИЕ О ПОПУЛЯЦИИ

В природных условиях организмы одного вида расселены неравномерно. Имеет место чередование участков повышенной и пониженной концентрации особей (рис. 10.3). В результате вид распадается на группировки или популяции, соответствующие зонам более плотного заселения. «Радиусы индивидуальной активности» отдельных особей ограничены. Так, виноградная улитка способна преодолеть расстояние в несколько десятков метров, ондатра - в несколько сотен метров, песец - в несколько сотен километров. Благодаря этому размножение (репро-

1 Объем генетической информации, которой располагает вид или популяция, обусловлен совокупностью наследственных задатков во всех аллельных формах. Таким образом, более полно объем наследственной информации отражает термин «аллелофонд», но более употребим - «генофонд».

Рис. 10.3. Неравномерное расселение особей по ареалу вида: а - ленточный ареал; б - пятнистый ареал; в - островной ареал

дуктивные ареалы) в основном приурочено к территориям с повышенной плотностью организмов.

Вероятность случайных скрещиваний (панмиксии), обеспечивающих из поколения в поколение эффективную перекомбинацию генов, внутри «сгущений» оказывается выше, чем в зонах между ними и для вида в целом. Таким образом, в репродуктивном процессе генофонд вида представлен генофондами популяций.

Популяцией называют минимальную самовоспроизводящуюся группу особей одного вида, населяющих определенную территорию (ареал) достаточно долго (в течение многих поколений). В популяции фактически осуществляется сравнительно высокий уровень панмиксии, и она в определенной степени отделена от других популяций той или иной формой изоляции 1 .

10.2.1. ЭКОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПУЛЯЦИИ

Экологически популяция характеризуется величиной, оцениваемой по занимаемой территории (ареалу), численности особей, возрастному и половому составу. Размеры ареала зависят от радиусов индивидуальной активности организмов данного вида и особенностей природных условий на соответствующей территории. Численность особей в популяциях организмов разных видов различается. Так, число стрекоз Leucorrhinia albifrons в популяции на одном из подмосковных озер достигало 30 тыс., тогда как численность земляной улитки Cepaea nemoralis оценивалась в 1000 экземпляров. Существуют минимальные значения

Определение справедливо для видов с половым размножением.

численности, при которых популяция способна поддерживать себя во времени. Сокращение численности ниже этого минимума приводит к вымиранию популяции. Примером могут быть популяции морских птиц, образующих так называемые птичьи базары на скалистых островах в морях и океанах. Для успешного воспроизводства во время размножения они должны постоянно наблюдать вокруг себя множество спаривающихся особей. При отсутствии этого условия у них подавляются рефлексы взаимного ухаживания и гнездостроения. Вероятно, исчезновение с лица Земли американского странствующего голубя - самого многочисленного известного вида птиц, насчитывавшего многие сотни миллионов особей еще в середине XIX века, было результатом охоты на него европейских переселенцев с помощью огнестрельного оружия. Отстрелять всех птиц данного вида, разумеется, было невозможно, однако, уменьшение числа особей ниже критической массы привело к остановке их дальнейшего размножения. Величина большинства популяций постоянно колеблется, что зависит от изменений экологической ситуации. Так, осенью благоприятного по кормовым условиям года популяция диких кроликов на одном из островов у юго-западного побережья Англии состояла из 10 тыс. особей. После холодной малокормной зимы число особей снизилось до 100.

Возрастная структура популяций организмов разных видов варьирует в зависимости от продолжительности жизни, интенсивности размножения, возраста достижения половой зрелости. В зависимости от вида организмов она может быть то более, то менее сложной. Так, у стадных млекопитающих, например дельфинов белух Delphinapterus leucas, в популяции одновременно представлены детеныши текущего года рождения, подросший молодняк прошлого года рождения, половозрелые, но, как правило, не размножающиеся животные в возрасте 2-3 лет, взрослые размножающиеся особи в возрасте 4-20 лет. С другой стороны, у землероек Sorex весной рождаются 1-2 приплода, после чего взрослые особи вымирают, так что осенью вся популяция состоит из молодых неполовозрелых животных. Оба типа популяций с точки зрения эволюционных перспектив имеют свои преимущества и недостатки. Популяции первого типа, или асинхронные, более устойчивы во времени, менее зависимы от действия случайных факторов, в них возможна передача жизненного опыта из поколения в поколение. Второй, или синхронный тип популяций, постоянно подвержен риску исчезновения под действием неожиданных изменений условий. Преимущество таких популяций - наиболее широкие возможности комбинативной

изменчивости в связи с одновременным достижением половой зрелости практически всеми членами популяции.

Половой состав популяций обусловлен эволюционно закрепленными механизмами формирования первичного (на момент зачатия), вторичного (на момент рождения) и третичного (во взрослом состоянии) соотношения полов. В качестве примера рассмотрим изменение полового состава популяции людей. На момент рождения оно составляет 106 мальчиков на 100 девочек, в возрасте 16-18 лет выравнивается, в возрасте 50 лет насчитывает 85 мужчин на 100 женщин, а в возрасте 80 лет - 50 мужчин на 100 женщин.

У абсолютного большинства видов животных генетический механизм определения пола сходен с таковым у человека. Однако у полигамных видов, таких, как морские котики, птицы семейства куриных, а также гориллы и некоторые другие высшие обезьяны, несмотря на первичное соотношение полов 1/1, к оплодотворению самок допускаются только наиболее сильные и успешные самцы. Преимущества популяций с равным количеством самцов и самок заключаются в свободе выбора партнера при размножении и возможностях проявления комби-нативной изменчивости в максимальной степени. Преимущества же популяций полигамных видов заключаются в быстром распространении и закреплении в следующих поколениях генов и признаков наиболее успешных самцов, обеспечивших им победу в борьбе за самок. Человечество на протяжении длительной эволюции постепенно и асинхронно осуществляет переход от полигамии к моногамии. В ряде восточных культур полигамия остается нормой и в настоящее время. Следствие этого - относительно малое разнообразие мужчин по хромосоме У на территории Средней Азии и прилежащих районов. Существует предположение о том, что наиболее частый вариант азиатской хромосомы У ведет свое происхождение от потомков Чингис-хана.

10.2.2. ГЕНЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПУЛЯЦИИ

Генетически популяция характеризуется своим генофондом (аллело-фондом). Он представлен совокупностью аллелей, образующих генотипы организмов данной популяции. Генофонды природных популяций отличает наследственное разнообразие (генетическая гетерогенность, или полиморфизм), генетическое единство, динамическое равновесие доли особей с разными генотипами.

Наследственное разнообразие заключается в присутствии в генофонде одновременно различных аллелей отдельных генов. Первично оно создается мутационным процессом. Рецессивные мутации, не влияя на фенотипы гетерозиготных организмов, сохраняются в генофондах популяций в скрытом от естественного отбора состоянии. Накапливаясь, они образуют резерв наследственной изменчивости. Благодаря комбинативной изменчивости этот резерв используется для создания в каждом поколении новых комбинаций аллелей. Объем такого резерва огромен. Так, при скрещивании организмов, различающихся по 1000 ло-кусов 1 , каждый из которых представлен десятью аллелями, число вариантов генотипов достигает 10 1000 , что превосходит число электронов во Вселенной.

Генетическое единство популяции обусловлено достаточным уровнем панмиксии. В условиях случайного подбора скрещивающихся особей источником аллелей для генотипов организмов последовательных поколений является весь генофонд популяции. Генетическое единство проявляется также в общей генотипической изменчивости популяции при изменении условий существования, что обеспечивает как выживание вида, так и образование новых видов.

10.2.3. ЧАСТОТЫ АЛЛЕЛЕЙ В ПОПУЛЯЦИЯХ. ЗАКОН ХАРДИ-ВАЙНБЕРГА

В пределах генофонда популяции доля генотипов, содержащих разные аллели одного гена, при соблюдении некоторых условий из поколения в поколение не изменяется. Эти условия описываются основным законом популяционной генетики, сформулированным в 1908 г. английским математиком Дж. Харди и немецким врачом-генетиком Г. Вайн-бергом. «В популяции из бесконечно большого числа свободно скрещивающихся особей в отсутствие мутаций, избирательной миграции организмов с различными генотипами и давления естественного отбора первоначальные частоты аллелей сохраняются из поколения в поколение».

Допустим, что в генофонде популяции, удовлетворяющей описанным условиям, некий ген представлен аллелями A 1 и A 2 , обнаруживаемыми с частотой р и q. Так как других аллелей в данном генофонде не встречается, то р + q = 1. При этом q = 1 - р.

Число локусов (генов) у человека превышает эту цифру в 30-50 раз.

Соответственно особи данной популяции образуют р гамет с аллелем A 1 и q гамет с аллелем A 2 . Если скрещивания происходят случайным образом, то доля половых клеток, соединяющихся с гаметами A 1 , равна р, а доля половых клеток, соединяющихся с гаметами A 2 , - q. Возникающее в результате описанного цикла размножения поколение F 1 образовано генотипами A 1 A 1 , A 1 A 2 , A 2 A 2 , число которых соотносится как + q) . + q) = Ρ 2 + 2pq + q 2 = 1 (рис. 10-4). По достижении половой зрелости особи A 1 A 1 и A 2 A 2 образуют по одному типу гамет - A 1 или A 2 - с частотой, пропорциональной числу организмов указанных генотипов (р 2 и q 2). Особи A 1 A 2 образуют оба типа гамет с равной частотой 2pq/2.

Таким образом, доля гамет A 1 в поколении F 1 составит р 2 + 2pq/2 = р 2 + + р (1-р) = р, а доля гамет A 2 будет равна q 2 + 2pq/2 = q 2 + q (I - q) = q.

Так как частоты гамет с разными аллелями в поколении F 1 в сравнении с родительским поколением не изменены, поколение F 2 будет представлено организмами с генотипами A 1 A 1 , A 1 A 2 и A 2 A 2 в том же соотношении р 2 + 2pq + q 2 = 1. Благодаря этому очередной цикл размножения произойдет при наличии р гамет A 1 и q гамет A 2 . Аналогичные расчеты можно провести для локусов с любым числом аллелей. В основе сохранения частот аллелей лежат статистические закономерности случайных событий в больших выборках.

Уравнение Харди-Вайнберга в том виде, в котором оно рассмотрено выше, справедливо для аутосомных генов. Для генов, сцепленных с полом, равновесные частоты генотипов A 1 A 1 , A 1 A 2 и A 2 A 2 совпадают с таковыми для аутосомных генов: р 2 + 2pq + q 2 = 1. Для самцов (в случае гетерогаметного пола) в силу их гемизиготности возможны лишь два генотипа A 1 - или A 2 -, которые воспроизводятся с частотой, равной частоте соответствующих аллелей у самок в предшествующем поколении: р и q.

Рис. 10.4. Закономерное распределение генотипов в ряду поколений в зависимости от частоты образования гамет разных типов (закон Харди-Вайнберга)

Из этого следует, что фенотипы, определяемые рецессивными аллелями сцепленных с хромосомой X генов, у самцов встречаются чаще, чем у самок.

Так, при частоте аллеля гемофилии, равной 0,0001, это заболевание у мужчин данной популяции наблюдается в 10 тыс. раз чаще, чем у женщин (1 на 10 тыс. у первых и 1 на 100 млн у вторых).

Еще одно следствие общего порядка заключается в том, что в случае неравенства частоты аллеля у самцов и самок разность между частотами в следующем поколении уменьшается вдвое, причем меняется знак этой разницы. Обычно требуется несколько поколений для того, чтобы возникло равновесное состояние частот у обоих полов. Указанное состояние для аутосомных генов достигается за одно поколение.

Закон Харди-Вайнберга описывает условия генетической стабильности популяции. Популяцию, генофонд которой не изменяется в ряду поколений; называют менделевской. Генетическая стабильность менделевских популяций ставит их вне процесса эволюции, так как в таких условиях приостанавливается действие естественного отбора. Выделение менделевских популяций имеет чисто теоретическое значение. В природе такие популяции не встречаются. В законе Харди-Вайнберга перечислены условия, закономерно изменяющие генофонды популяций. К указанному результату приводят, например, факторы, ограничивающие свободное скрещивание (панмиксию), такие, как конечная численность организмов в популяции, изоляционные барьеры, препятствующие случайному подбору брачных пар. Генетическая инертность преодолевается также благодаря мутациям, притоку в популяцию или оттоку из нее особей с определенными генотипами, отбору.

10.2.4. МЕСТО ВИДОВ И ПОПУЛЯЦИЙ В ЭВОЛЮЦИОННОМ ПРОЦЕССЕ

Вследствие общей адаптивной (приспособительной) направленности эволюции виды, возникающие в результате этого процесса, являются совокупностями организмов, так или иначе приспособленных к определенной среде. Эта приспособленность сохраняется на протяжении длительного ряда поколений благодаря наличию в генофондах и передаче потомству при размножении соответствующей биологической информации. Из этого следует, что при мало меняющихся условиях обитания сохранность вида во времени зависит от стабильности, консерватизма его генофонда. С другой стороны, стабильные генофонды не обеспечи-

вают выживания в случае изменения условий жизни в историческом развитии планеты. Такие генофонды дают меньше возможностей для расширения ареала вида и освоения новых экологических ниш в текущий исторический период.

Популяционная структура вида позволяет совместить долговремен-ность приспособлений, сформировавшихся на предшествующих этапах развития, с эволюционными и экологическими перспективами. Генофонд вида фактически распадается на генофонды популяций, каждый из которых отличается собственным направлением изменчивости. Популяции - это генетически открытые в рамках вида группировки организмов.

Межпопуляционные миграции особей, сколь бы незначительными они ни были, препятствуют углублению различий и объединяют популяции в единую систему вида. Однако в случае длительной изоляции некоторых популяций от остальной части вида первоначально минимальные различия нарастают. В конечном итоге это приводит к генетической (репродуктивной) изоляции, что и означает появление нового вида. В эволюционный процесс непосредственно включены отдельные популяции, а завершается он образованием вида.

Таким образом, популяция является элементарной эволюционной единицей, тогда как вид - качественным этапом эволюции, закрепляющим ее существенный результат.

Вопросы для самоконтроля

1. Перечислите основные признаки биологического вида.

2. Объясните, в чем заключается реальность вида.

3. Дайте определение популяции. Каковы экологические и генетические характеристики популяции?

4. Сформулируйте закон Харди-Вайнберга.

5. Каково значение популяций в эволюционном процессе?