Как называется отражение предметов на поверхности. Излученный и отраженный свет. Закон отражения света

Некоторые законы физики трудно представить без использования наглядных пособий. Это не касается привычного всем света, попадающего на различные объекты. Так на границе, разделяющей две среды, происходит смена направления световых лучей в том случае, если эта граница намного превышает При света возникает, когда часть его энергии возвращается в первую среду. Если часть лучей проникает в другую среду, то происходит их преломление. В физике энергии, попадающий на границу двух различных сред, называется падающим, а тот, что от нее возвращается в первую среду, - отраженным. Именно взаимное расположение данных лучей определяет законы отражения и преломления света.

Термины

Угол между падающим лучом и перпендикулярной линией к границе раздела двух сред, восстановленной к точке падения потока световой энергии, называется Существует еще один важный показатель. Это угол отражения. Он возникает между отраженным лучом и перпендикулярной линией, восстановленной к точке его падения. Свет может распространяться прямолинейно исключительно в однородной среде. Разные среды по-разному поглощают и отражают излучение света. Коэффициентом отражения называют величину, характеризующую отражательную способность вещества. Он показывает, сколько принесенной световым излучением на поверхность среды энергии составит та, которая унесется от нее отраженным излучением. Данный коэффициент зависит от целого множества факторов, одними из самых важных являются угол падения и состав излучения. Полное отражение света происходит тогда, когда он падает на предметы или вещества с отражающей поверхностью. Так, например, это случается при попадании лучей на тонкую пленку серебра и жидкой ртути, нанесенных на стекло. Полное отражение света на практике встречается довольно часто.

Законы

Законы отражения и преломления света были сформулированы Евклидом еще в ІІІ в. до н. э. Все они были установлены экспериментально и легко подтверждаются чисто геометрическим принципом Гюйгенса. Согласно ему любая точка среды, до которой доходит возмущение, представляет собой источник вторичных волн.

Первый света: падающий и отражающий луч, а также перпендикулярная линия к границе раздела сред, восстановленная в точке падения светового луча, расположены в одной плоскости. На отражательную поверхность падает плоская волна, волновые поверхности которой являются полосками.

Другой закон гласит о том, что угол отражения света равен углу падения. Это происходит потому, что они имеют взаимно перпендикулярные стороны. Исходя из принципов равенства треугольников, следует, что угол падения равен углу отражения. Можно легко доказать, что они лежат в одной плоскости с перпендикулярной линией, восстановленной к границе раздела сред в точке падения луча. Эти важнейшие законы справедливы и для обратного хода света. Вследствие обратимости энергии луч, распространяющийся по пути отраженного, будет отражаться по пути падающего.

Свойства отражающих тел

Подавляющее большинство объектов только отражают падающее на них световое излучение. При этом они не являются источником света. Хорошо освещенные тела отлично видны с любых сторон, поскольку излучение от их поверхности отражается и рассеивается в разных направлениях. Это явление называются диффузным (рассеянным) отражением. Оно происходит при попадании света на любые шероховатые поверхности. Для определения пути отраженного от тела луча в точке его падения проводится плоскость, касающаяся поверхности. Затем по отношению к ней строят углы падения лучей и отражения.

Диффузное отражение

Только благодаря существованию рассеянного (диффузного) отражения световой энергии мы различаем предметы, не способные испускать свет. Любое тело будет абсолютно невидимым для нас, если рассеивание лучей будет равно нулю.

Диффузное отражение световой энергии не вызывает у человека неприятных ощущений в глазах. Это происходит от того, что не весь свет возвращается в первоначальную среду. Так от снега отражается около 85% излучения, от белой бумаги - 75%, ну а от велюра черного цвета - всего 0,5%. При отражении света от различных шероховатых поверхностей лучи направляются хаотично по отношению друг к другу. В зависимости от того, в какой степени поверхности отражают световые лучи, их называют матовыми или зеркальными. Но все-таки эти понятия являются относительными. Одни и те же поверхности могут быть зеркальными и матовыми при различной длине волны падающего света. Поверхность, которая равномерно рассеивает лучи в разные стороны, считается абсолютно матовой. Хотя в природе таких объектов практически нет, к ним очень близки неглазурованный фарфор, снег, чертежная бумага.

Зеркальное отражение

Зеркальное отражение лучей света отличается от других видов тем, что при падении пучков энергии на гладкую поверхность под определенным углом они отражаются в одном направлении. Это явление знакомо всем, кто когда-то пользовался зеркалом под лучами света. В этом случае оно является отражающей поверхностью. К этому разряду относятся и другие тела. К зеркальным (отражающим) поверхностям можно отнести все оптически гладкие объекты, если размеры неоднородностей и неровностей на них составляют меньше 1 мкм (не превышают величину длины волны света). Для всех таких поверхностей действительны законы отражения света.

Отражение света от разных зеркальных поверхностей

В технике нередко используются зеркала с изогнутой отражающей поверхностью (сферические зеркала). Такие объекты представляют собой тела, имеющие форму сферического сегмента. Параллельность лучей в случае отражения света от таких поверхностей сильно нарушается. При этом существует два вида таких зеркал:

Вогнутые - отражают свет от внутренней поверхности сегмента сферы, их называют собирающими, поскольку параллельные лучи света после отражения от них собираются в одной точке;

Выпуклые - отражают свет от наружной поверхности, при этом параллельные лучи рассеиваются в стороны, именно поэтому выпуклые зеркала называют рассеивающими.

Варианты отражения световых лучей

Луч, падающий практически параллельно поверхности, только немного касается ее, а далее отражается под сильно тупым углом. Затем он продолжает путь по очень низкой траектории, максимально расположенной к поверхности. Луч, падающий практически отвесно, отражается под острым углом. При этом направление уже отраженного луча будет близко к пути падающего луча, что полностью соответствует физическим законам.

Преломление света

Отражение тесно связано с иными явлениями геометрической оптики, такими как преломление и полное внутреннее отражение. Зачастую свет проходит через границу между двумя средами. Преломлением света называют изменение направления оптического излучения. Оно происходит при прохождении его из одной среды в другую. Преломление света имеет две закономерности:

Луч, прошедший через границу между средами, расположен в плоскости, которая проходит через перпендикуляр к поверхности и падающий луч;

Угол падения и преломления связаны.

Преломление всегда сопровождается отражением света. Сумма энергий отраженного и преломленного пучков лучей равна энергии падающего луча. Их относительная интенсивность зависит от в падающем пучке и угла падения. На законах преломления света основывается устройство многих оптических приборов.

Одно из основных положений геометрической оптики гласит, что световые лучи – есть полупрямые исходящие из точки своего распространения – так называемого источника света. Физическая природа света в этом определении не обсуждается, а дается лишь некая математическая картина. При этом оговаривается, что луч света не меняет своего направления, если характеристики среды, в которой свет распространяется, остаются низменными. Что же произойдет, если эти свойства изменятся? Например, изменятся скачкообразно, что случается на границе пересечения двух сред?

Непосредственные наблюдения показывают, что часть световых лучей меняет свое направление так, словно они отражаются от границы. Можно провести аналогию с бильярдным шаром: столкнувшись со стенкой бильярдного стола, шар от нее отражается. Потом шар снова движется по прямой линии, до очередного столкновения. То же происходит и с лучами света, что дало повод ученым средневековья рассуждать о корпускулярной природе света. Корпускулярной модели света придерживался, например, Ньютон. Данное явление получило название «отражение света». На рисунке ниже оно показано схематически:

С отражением света мы сталкиваемся повсеместно. Красивые картины на поверхности водяной глади образуются именно благодаря отражению лучей света от водной поверхности:

Но самое главное: не будь в природе этого явления – мы бы вообще ничего не увидели, а не только этих высокохудожественных планов. Ведь видим мы не предметы, а лучи света отраженные от этих предметов и направленные на сетчатку нашего глаза.

Закон отражения света

Физикам мало знать о существовании того или иного явления природы – его нужно описать точно, то есть на языке математики. Как конкретно отражается световой луч от поверхности? Поскольку и до, и после отражения свет распространяется по прямой линии, то для точного описания этого явления нам достаточно знать соотношение между углом падения и углом отражения. Такое соотношение существует: «Угол падения равен углу отражения».

Если свет падает на очень гладкую поверхность, наподобие поверхности воды или на поверхность зеркала, то все падающие под одним и тем же углом лучи, отражаются от поверхности в одном и том же направлении – под углом, равным углу падения. Поэтому зеркало так точно передает форму отражающихся в нем предметов. Если же поверхность шероховата, то (как на первом рисунке) то такой закономерности не наблюдается – тогда говорят о диффузном отражении.

Свет является важной составляющей нашей жизни. Без него невозможна жизнь на нашей планете. При этом многие явления, которые связаны со светом, сегодня активно используются в разнообразных сферах человеческой деятельности, начиная от производства электротехнических приборов до космических аппаратов. Одним из основополагающих явлений в физике является отражение света.

Отражение света

Закон отражения света изучается еще в школе. Что следует знать о нем, а также много еще полезной информации сможет рассказать вам наша статья.

Основы знаний о свете

Как правило, физические аксиомы являются одними из наиболее понятных, поскольку они имеют наглядное проявление, которые можно легко пронаблюдать в домашних условиях. Закон отражения света подразумевает ситуацию, когда у световых лучей происходит смена направления при столкновении с различными поверхностями.

Обратите внимание! Граница преломления значительно увеличивает такой параметр, как длина волны.

В ходе преломления лучей часть их энергии возвратятся обратно в первичную среду. При проникновении части лучей в иную среду наблюдается их преломление.
Чтобы разбираться во всех этих физических явлениях, необходимо знать соответствующую терминологию:

  • поток световой энергии в физике определяется как падающий при попадании на границу раздела двух веществ;
  • часть энергии света, которая в данной ситуации возвращается в первичную среду, называется отраженной;

Обратите внимание! Существует несколько формулировок правила отражения. Как вы его не сформулируйте, но он все равно будет описывать взаимное расположение отраженных и падающих лучей.

  • угол падения. Здесь подразумевается угол, который формируется между перпендикулярной линией границы сред и падающим на нее светом. Он определяется в точке падения луча;

Углы луча

  • угол отражения. Он формируется между отраженным лучом и перпендикулярной линией, которая была восстановлена в точке его падения.

Кроме этого необходимо знать, что свет может распространяться в однородной среде исключительно прямолинейно.

Обратите внимание! Различные среды могут по-разному отражать и поглощать излучение света.

Отсюда выходит коэффициент отражения. Это величина, которая характеризует отражательную способность предметов и веществ. Он означает, сколько излучения принесенного световым потоком на поверхность среды составит та энергия, которая будет отражена от нее. Данный коэффициент зависит от целого ряда факторов, среди которых наибольшее значение имеют состав излучения и угол падения.
Полное отражение светового потока наблюдается тогда, когда луч падает на вещества и предметы, обладающие отражающей поверхностью. К примеру, отражение луча можно наблюдать при попадании его на стекло, жидкую ртуть или серебро.

Небольшой исторический экскурс

Законы преломления и отражения света были сформированы и систематизированы еще в ІІІ в. до н. э. Их разработал Евклид.

Все законы (преломления и отражения), которые касаются данного физического явления, были установлены экспериментальным путем и легко могут подтвердиться геометрическим принципом Гюйгенса. По этому принципу любая точка среды, до которой может дойти возмущение, выступает в роли источника вторичных волн.
Рассмотрим существующие на сегодняшний день законы более детально.

Законы – основа всего

Закон отражения светового потока определяется как физическое явление, в ходе которого свет, направляющийся из одной среды в другую, на их разделе будет частично возвращен обратно.

Отражение света на границе раздела

Зрительный анализатор человека наблюдает свет в момент, когда луч, идущий от своего источника, попадает в глазное яблоко. В ситуации, когда тело не выступает в роли источника, зрительный анализатор может воспринимать лучи от иного источника, которые отражаются от тела. При этом световое излучение, падающее на поверхность объекта, может изменить направление своего дальнейшего распространения. В результате этого тело, которое отражает свет, будет выступать в роли его источника. При отражении часть потока будет возвращаться в первую среду, из которой он первоначально направлялся. Здесь тело, которое отразит его, станет источником уже отраженного потока.
Существует несколько законов для данного физического явления:

  • первый закон гласит: отражающий и падающий луч, вместе с перпендикулярной линией, возникающей на границе раздела сред, а также в восстановленной точке падения светового потока, должны располагаться в одной плоскости;

Обратите внимание! Здесь подразумевается, что на отражательную поверхность предмета или вещества падает плоская волна. Ее волновые поверхности являются полосками.

Первый и второй закон

  • второй закон. Его формулировка имеет следующий вид: угол отражения светового потока будет равен углу падения. Это связано с тем, что они обладают взаимно перпендикулярными сторонами. Беря во внимание принципы равенства треугольников, становится понятным, откуда берется это равенство. Используя данные принципы можно легко доказать то, что эти углы находятся в одной плоскости с проведенной перпендикулярной линией, которая была восстановлена на границе разделения двух веществ в точке падения светового луча.

Эти два закона в оптической физике являются основными. При этом они справедливы и для луча, имеющего обратный ход. В результате обратимости энергии луча, поток, распространяющийся по пути ранее отраженного, будет отражаться аналогично пути падающего.

Закон отражения на практике

Проверить исполнение данного закона можно на практике. Для этого необходимо направить тонкий луч на любую отражающую поверхность. В этих целях отлично подойдет лазерная указка и обычное зеркало.

Действие закона на практике

Направляем лазерную указку на зеркало. В результате этого лазерный луч отразится от зеркала и распространится дальше в заданном направлении. При этом углы падающего и отраженного луча будут равны даже при обычном взгляде на них.

Обратите внимание! Свет от таких поверхностей будет отражаться под тупым углом и дальше распространяться по низкой траектории, которая расположена достаточно близко к поверхности. А вот луч, который будет падать практически отвесно, отразится под острым углом. При этом его дальнейший путь будет практически аналогичным падающему.

Как видим, ключевым моментом данного правила является тот факт, что углы необходимо отчитывать от перпендикуляра к поверхности в месте падения светового потока.

Обратите внимание! Этому закону подчиняется не только свет, но и любые виды электромагнитных волн (СВЧ, радио-, рентгеновские волны и т.п).

Особенности диффузного отражения

Многие предметы могут только отражать падающее на их поверхность световое излучение. Отлично освещенные объекты хорошо видны с разных сторон, так как их поверхность отражает и рассеивает свет в разных направлениях.

Диффузное отражение

Такое явление называется рассеянным (диффузным) отражением. Это явление образуется при попадании излучения на различные шероховатые поверхности. Благодаря ему мы имеем возможность различать объекты, которые не имеют способности испускать свет. Если рассеивание светового излучения будет равно нулю, то мы не сможем увидеть эти предметы.

Обратите внимание! Диффузное отражение не вызывает у человека дискомфорта.

Отсутствие дискомфорта объясняется тем, что не весь свет, согласно вышеописанному правилу, возвращается в первичную среду. Причем этот параметр у разных поверхностей будет различным:

  • у снега – отражается примерно 85% излучения;
  • у белой бумаги — 75%;
  • у черного цвета и велюра - 0,5%.

Если же отражение идет от шероховатых поверхностей, то свет будет направляться по отношению друг к другу хаотично.

Особенности зеркального отображения

Зеркальное отражение светового излучения отличается от ранее описанных ситуаций. Это связано с тем, что в результате падения потока на гладкую поверхность при определенном угле они будут отражаться в одном направлении.

Зеркальное отражение

Это явление можно легко воспроизвести, используя обычное зеркало. При направлении зеркала на солнечные лучи, оно будет выступать в роли отличной отражающей поверхности.

Обратите внимание! К зеркальным поверхностям можно отнести целый ряд тел. К примеру, в эту группу всходят все гладкие оптические объекты. Но такой параметр, как размеры неровностей и неоднородностей у этих объектов будут составлять менее 1 мкм. Величина длины волны света составляет примерно 1 мкм.

Все такие зеркальные отражающие поверхности подчиняются ранее описанным законам.

Использование закона в технике

На сегодняшний день в технике достаточно часто применяются зеркала или зеркальные объекты, имеющие изогнутую отражающую поверхность. Это так называемые сферические зеркала.
Подобные объекты представляют собой тела, которые имеют форму сферического сегмента. Для таких поверхностей характерно нарушение параллельности лучей.
На данный момент существуют два типа сферических зеркал:

  • вогнутые. Они способны отражать световое излучение от внутренней поверхности своего сегмента сферы. При отражении лучи собираются здесь в одной точке. Поэтому их часто еще называют «собирающими»;

Вогнутое зеркало

  • выпуклые. Для таких зеркал характерно отражение излучения от наружной поверхности. В ходе этого происходит рассеивание в стороны. По этой причине такие объекты получили название «рассеивающие».

Выпуклое зеркало

При этом существует несколько вариантов поведения лучей:

  • паление почти параллельно поверхности. В данной ситуации он лишь немного касается поверхности, а отражается под очень тупым углом. Далее он идет по достаточно низкой траектории;
  • при ответном падении, лучи отбиваются под острым углом. При этом, как мы говорили выше, отраженный луч будет следовать по пути очень близкому падающему.

Как видим, закон исполняется во всех случаях.

Заключение

Законы отражения светового излучения очень важны для нас, поскольку они являются основополагающими физическими явлениями. Они нашли обширное применение в различных сферах человеческой деятельности. Изучение основ оптики происходит еще в средней школе, что лишний раз доказывает важность таких базовых знаний.


Как самому сделать ангельские глазки для ваза?

Темы кодификатора ЕГЭ: закон отражения света, построение изображений в плоском зеркале.

Когда световой луч падает на границу раздела двух сред, происходит отражение света: луч изменяет направление своего хода и возвращается в исходную среду.

На рис. 1 изображены падающий луч , отражённый луч , а также перпендикуляр , проведённый к отражающей поверхности в точке падения .

Рис. 1. Закон отражения

Угол называется углом падения. Обратите внимание и запомните: угол падения отсчитывается от перпендикуляра к отражающей поверхности, а не от самой поверхности! Точно так же угол отражения - это угол , образованный отражённым лучом и перпендикуляром к поверхности.

Закон отражения.

Сейчас мы сформулируем один из самых древних законов физики. Он был известен грекам ещё в античности!

Закон отражения.
1) Падающий луч, отражённый луч и перпендикуляр к отражающей поверхности, проведённый в точке падения, лежат в одной плоскости.
2) Угол отражения равен углу падения.

Таким образом, , что и показано на рис. 1 .

Закон отражения имеет одно простое, но очень важное геометрическое следствие. Давайте посмотрим на рис. 2 . Пусть из точки исходит световой луч. Построим точку , симметричную точке относительно отражающей поверхности .

Из симметрии точек и ясно, что . Кроме того, . Поэтому , и, следовательно, точки лежат на одной прямой! Отражённый луч как бы выходит из точки , симметричной точке относительно отражающей поверхности. Данный факт нам чрезвычайно пригодится в самом скором времени.

Закон отражения описывает ход отдельных световых лучей - узких пучков света. Но во многих случаях пучок является достаточно широким, то есть состоит из множества параллельных лучей. Картина отражения широкого пучка света будет зависеть от свойств отражающей поверхности.

Если поверхность является неровной, то после отражения параллельность лучей нарушится. В качестве примера на рис. 3 показано отражение от волнообразной поверхности. Отражённые лучи, как видим, идут в самых разных направлениях.

Но что значит "неровная" поверхность? Какие поверхности являются "ровными"? Ответ таков: поверхность считается неровной, если размеры её неровностей не меньше длины световых волн. Так, на рис. 3 характерный размер неровностей на несколько порядков превышает величину длин волн видимого света.

Поверхность с микроскопическими неровностями, соизмеримыми с длинами волн видимого света, называется матовой. В результате отражения параллельного пучка от матовой поверхности получается рассеянный свет - лучи такого света идут во всевозможных направлениях. (Именно поэтому мы видим окружающие предметы: они отражают рассеянный свет, который мы и наблюдаем с любого ракурса.)
Само отражение от матовой поверхности называется поэтому рассеянным или диффузным . (Латинское слово diffusio как раз и означает распространение, растекание, рассеивание.)

Если же размер неровностей поверхности меньше длины световой волны, то такая поверхность называется зеркальной . При отражении от зеркальной поверхности параллельность пучка сохраняется: отражённые лучи также идут параллельно (рис. 4 )

Приблизительно зеркальной является гладкая поверхность воды, стекла или отполированного металла. Отражение от зеркальной поверхности называется соответственно зеркальным . Нас будет интересовать простой, но важный частный случай зеркального отражения - отражение в плоском зеркале.

Плоское зеркало.

Плоское зеркало - это часть плоскости, зеркально отражающая свет. Плоское зеркало - привычная вещь; таких зеркал несколько в вашем доме. Но теперь мы сможем разобраться, почему, смотрясь в зеркало, вы видите в нём отражение себя и находящихся рядом с вами предметов.

Точечный источник света на рис. 5 испускает лучи в разных направлениях; давайте возьмём два близких луча, падающих на плоское зеркало. Мы уже знаем, что отражённые лучи пойдут так, будто они исходят из точки , симметричной точке относительно плоскости зеркала.

Самое интересное начинается, когда расходящиеся отражённые лучи попадают к нам в глаз. Особенность нашего сознания состоит в том, что мозг достраивает расходящийся пучок, продолжая его за зеркало до пересечения в точке . Нам кажется, что отражённые лучи исходят из точки - мы видим там светящуюся точку!

Эта точка служит изображением источника света Конечно, в реальности ничего за зеркалом не светится, никакая энергия там не сосредоточена - это иллюзия, обман зрения, порождение нашего сознания. Поэтому точка называется мнимым изображением источника . В точке пересекаются не сами световые лучи, а их мысленные продолжения "в зазеркалье".

Ясно, что изображение будет существовать независимо от размеров зеркала и от того, находится ли источник непосредственно над зеркалом или нет (рис. 6 ). Важно только, что-бы отражённые от зеркала лучи попадали в глаз - а уж глаз сам сформирует изображение источника.

От расположения источника и размеров зеркала зависит область видения - пространственная область, из которой видно изображение источника. Область видения задаётся краями и зеркала . Построение области видения изображения ясно из рис. 7 ; искомая область видения выделена серым фоном.

Как построить изображение произвольного предмета в плоском зеркале? Для этого достаточно найти изображение каждой точки этого предмета. Но мы знаем, что изображение точки симметрично самой точке относительно зеркала. Следовательно, изображение предмета в плоском зеркале симметрично предмету относительно плоскости зеркала (рис. 8 ).

Расположение предмета относительно зеркала и размеры самого зеркала не влияют на изображение (рис. 9 ).

Впервые закон отражения упоминается в «Катоптрике» Евклида , датируемой примерно 300 до н. э.

Законы отражения. Формулы Френеля

Закон отражения света - устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:

Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики . Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света , он ничего не утверждает об интенсивности отражённого света.

Механизм отражения

При попадании электромагнитной волны на проводящую поверхность возникает ток, электромагнитное поле которого стремится компенсировать это воздействие, что приводит к практически полному отражению света.

Виды отражения

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения j. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от j и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля . Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

(n2 - n1)²/(n2 + n1)²

В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд " 1,0; nст = 1,5) он составляет " 4 %.

Характер поляризации отражённого света меняется с изменением j и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах j, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов. При j, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением j, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если j = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 < n1 - остаётся неизменной. Сдвиг фазы при О. с. в случае j ¹ 0 может быть различен для р- и s-составляющих падающего света в зависимости от того, больше или меньше j угла Брюстера, а также от соотношения n2 и n1. О. с. от поверхности оптически менее плотной среды (n2 < n1) при sin j ³ n2 / n1 является полным внутренним отражением, при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное О. с. от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2 становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света.

Поглощение в отражающей среде приводит к отсутствию угла Брюстера и более высоким (в сравнении с диэлектриками) значениям коэффициента отражения - даже при нормальном падении он может превышать 90% (именно этим объясняется широкое применение гладких металлических и металлизированных поверхностей в зеркалах).Отличаются и поляризационные характеристики отражённых от поглощающей среды световых волн (вследствие иных сдвигов фаз р- и s-составляющих падающих волн). Характер поляризации отражённого света настолько чувствителен к параметрам отражающей среды, что на этом явлении основаны многочисленные оптические методы исследования металлов (см. Магнитооптика, Металлооптика).

Диффузное О. с. - его рассеивание неровной поверхностью 2-й среды по всем возможным направлениям. Пространственное распределение отражённого потока излучения и его интенсивность различны в разных конкретных случаях и определяются соотношением между l и размерами неровностей, распределением неровностей по поверхности, условиями освещения, свойствами отражающей среды. Предельный, строго не выполняющийся в природе случай пространственного распределения диффузно отражённого света описывается Ламберта законом. Диффузное О. с. наблюдается также от сред, внутренняя структура которых неоднородна, что приводит к рассеянию света в объёме среды и возвращению части его в 1-ю среду. Закономерности диффузного О. с. от таких сред определяются характером процессов однократного и многократного рассеяния света в них. И поглощение, и рассеяние света могут обнаруживать сильную зависимость от l. Результатом этого является изменение спектрального состава диффузно отражённого света, что (при освещении белым светом)визуально воспринимается как окраска тел.

Полное внутреннее отражение

При увеличении угла падения i , угол преломления тоже увеличивается, при этом интенсивность отраженного луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При каком-то значении i = i k угол r = π / 2 , интенсивность преломленного луча станет равной нулю, весь свет отразится. При дальнейшем увеличении угла i > i k преломленного луча не будет, происходит полное отражение света.

Значение критического угла падения, при котором начинается полное отражение найдем, положим в законе преломления r = π / 2 , тогда sinr = 1 , значит:

sini k = n 2 / n 1

Диффузное рассеяние света

θ i = θ r .
Угол падения равен углу отражения

Принцип действия уголкового отражателя


Wikimedia Foundation . 2010 .

Смотреть что такое "Отражение света" в других словарях:

    Явление, заключающееся в том, что при падении света (оптического излучения) из первой среды на границу раздела со второй средой вз ствие света с в вом приводит к появлению световой волны, распространяющейся от границы раздела обратно в первую… … Физическая энциклопедия

    Возвращение световой волны при ее падении на поверхность раздела двух сред с различными показателями преломления обратно в первую среду. Различают отражение света зеркальное (размеры l неровностей на поверхности раздела меньше длины световой… … Большой Энциклопедический словарь

    ОТРАЖЕНИЕ СВЕТА, возвращение части светового пучка, падающего на границу раздела двух сред, обратно в первую среду. Различают зеркальное отражение света (размеры L неровностей на поверхности раздела меньше длины световой волны l) и диффузное (L?… … Современная энциклопедия

    Отражение света - ОТРАЖЕНИЕ СВЕТА, возвращение части светового пучка, падающего на границу раздела двух сред, “обратно” в первую среду. Различают зеркальное отражение света (размеры L неровностей на поверхности раздела меньше длины световой волны l) и диффузное (L … Иллюстрированный энциклопедический словарь

    отражение света - Явление, состоящее в том, что свет, падающий на поверхность раздела двух сред с различными коэффициентами преломления, частично или полностью возвращается в среду, из которой он падает. [Сборник рекомендуемых терминов. Выпуск 79. Физическая… … Справочник технического переводчика

    Явление, заключающееся в том, что при падении света (оптического излучения (См. Оптическое излучение)) из одной среды на границу её раздела со 2 й средой взаимодействие света с веществом приводит к появлению световой волны,… … Большая советская энциклопедия

    Возвращение световой волны при её падении на поверхность раздела двух сред с различными показателями преломления «обратно» в первую среду. Различают отражения света зеркальное (размеры l неровностей на поверхности раздела меньше длины световой… … Энциклопедический словарь

    отражение света - šviesos atspindys statusas T sritis fizika atitikmenys: angl. light reflection vok. Reflexion des Lichtes, f rus. отражение света, n pranc. réflexion de la lumière, f … Fizikos terminų žodynas