Изменение числа и структуры хромосом. Хромосомные нарушения. Виды численных хромосом

  • 2.2. ТИПЫ КЛЕТОЧНОЙ ОРГАНИЗАЦИИ
  • 2.3.2. Строение типичной клетки многоклеточного организма
  • 2.3.3. Поток информации
  • 2.3.4. Внутриклеточный поток энергии
  • 2.3.5. Внутриклеточный поток веществ
  • 2.3.6. Другие внутриклеточные механизмы общего значения
  • 2.3.7. Клетка как целостная структура. Коллоидная система протоплазмы
  • 2.4. ЗАКОНОМЕРНОСТИ СУЩЕСТВОВАНИЯ КЛЕТКИ ВО ВРЕМЕНИ
  • 2.4.1. Жизненный цикл клетки
  • 2.4.2. Изменения клетки в митотическом цикле
  • ГЛАВА 3
  • 3.1. НАСЛЕДСТВЕННОСТЬ И ИЗМЕНЧИВОСТЬ - ФУНДАМЕНТАЛЬНЫЕ СВОЙСТВА ЖИВОГО
  • 3.2. ИСТОРИЯ ФОРМИРОВАНИЯ ПРЕДСТАВЛЕНИЙ ОБ ОРГАНИЗАЦИИ МАТЕРИАЛЬНОГО СУБСТРАТА НАСЛЕДСТВЕННОСТИ И ИЗМЕНЧИВОСТИ
  • 3.3. ОБЩИЕ СВОЙСТВА ГЕНЕТИЧЕСКОГО МАТЕРИАЛА И УРОВНИ ОРГАНИЗАЦИИ ГЕНЕТИЧЕСКОГО АППАРАТА
  • 3.4. ГЕННЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ГЕНЕТИЧЕСКОГО АППАРАТА
  • 3.4.1. Химическая организация гена
  • 3.4.1.1. Структура ДНК. Модель Дж. Уотсона и Ф. Крика
  • 3.4.1.2. Способ записи генетической информации в молекуле ДНК. Биологический код и его свойства
  • 3.4.2 Свойства ДНК как вещества наследственности
  • 3.4.2.1. Самовоспроизведение наследственного материала. Репликация ДНК
  • 3.4.2.2. Механизмы сохранения нуклеогидной последовательности ДНК. Химическая стабильность. Репликация. Репарация
  • 3.4.2.5. Функциональная классификация генных мутаций
  • 3.4.3. Использование генетической информации
  • 3.4.3.1. Роль РНК в реализации наследственной информации
  • 3.4.3.3. Ген - функциональная единица наследственного материала. Взаимосвязь между геном и признаком
  • 3.4.4. Функциональная характеристика гена
  • 3.4.5. Биологическое значение генного уровня организации наследственного материала
  • 3.5. ХРОМОСОМНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА
  • 3.5.1. Некоторые положения хромосомной теории наследственности
  • 3.5.2.1. Химический состав хромосом
  • 3.5.2.2. Структурная организация хроматина
  • 3.5.2.3. Морфология хромосом
  • 3.5.3. Проявление основных свойств материала наследственности и изменчивости на хромосомном уровне его организации
  • 3.5.3.3. Изменения структурной организации хромосом. Хромосомные мутации
  • 3.5.4. Значение хромосомной организации в функционировании
  • 3.5.5. Биологическое значение хромосомного уровня организации наследственного материала
  • 3.6. ГЕНОМНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ НАСЛЕДСТВЕННОГО МАТЕРИАЛА
  • 3.6.1. Геном. Генотип. Кариотип
  • 3.6.2.1. Самовоспроизведение и поддержание постоянства кариотипа в ряду поколений клеток
  • 3.6.2.2. Механизмы поддержания постоянства кариотипа
  • 3.6.2.3. Рекомбинация наследственного материала в генотипе. Комбинативная изменчивость
  • 3.6.3. Особенности организации наследственного материала
  • 3.6.4. Эволюция генома
  • 3.6.4.1. Геном предполагаемого общего предка про- и эукариот
  • 3.6.4.2. Эволюция прокариотического генома
  • 3.6.4.3. Эволюция эукариотического генома
  • 3.6.4.4. Подвижные генетические элементы
  • 3.6.4.5. Роль горизонтального переноса генетического материала
  • 3.6.5. Характеристика генотипа как сбалансированной по дозам системы взаимодействующих генов
  • 3.6.5.2. Взаимодействия между генами в генотипе
  • 3.6.6. Регуляция экспрессии генов на геномном уровне организации наследственного материала
  • 3.6.6.1. Общие принципы генетического контроля экспрессии генов
  • 3.6.6.3. Регуляция экспрессии генов у прокариот
  • 3.6.6.4. Регуляция экспрессии генов у эукариот
  • 3.6.7. Биологическое значение геномного уровня организации наследственного материала
  • ГЛАВА 4
  • 4.2. КЛЕТОЧНЫЕ МЕХАНИЗМЫ ОБЕСПЕЧЕНИЯ НАСЛЕДСТВЕННОСТИ И ИЗМЕНЧИВОСТИ
  • 4.2.1. Соматические мутации
  • 4.2.2. Генеративные мутации
  • РАЗДЕЛ III
  • ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО
  • ГЛАВА 5
  • РАЗМНОЖЕНИЕ
  • 5.1. СПОСОБЫ И ФОРМЫ РАЗМНОЖЕНИЯ
  • 5.2. ПОЛОВОЕ РАЗМНОЖЕНИЕ
  • 5.2.1. Чередование поколений
  • 5.3. ПОЛОВЫЕ КЛЕТКИ
  • 5.3.1. Гаметогенез
  • 5.3.2. Мейоз
  • 5.4. ЧЕРЕДОВАНИЕ ГАПЛОИДНОЙ
  • 5.5. ПУТИ ПРИОБРЕТЕНИЯ ОРГАНИЗМАМИ БИОЛОГИЧЕСКОЙ ИНФОРМАЦИИ
  • В ФОРМИРОВАНИИ ФЕНОТИПА
  • 6.1.1. Модификационная изменчивость
  • 6.1.2. Роль наследственных и средовых факторов
  • 6.1.2.1. Доказательства генетического определения признаков пола
  • 6.1.2.2. Доказательства роли факторов среды
  • 6.2. РЕАЛИЗАЦИЯ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ В ИНДИВИДУАЛЬНОМ РАЗВИТИИ. МУЛЬТИГЕННЫЕ СЕМЕЙСТВА
  • 6.3.1.2. Одновременное наследование нескольких признаков. Независимое и сцепленное наследование
  • 6.3.2. Закономерности наследования внеядерных генов. Цитоплазматическое наследование
  • 6.4. РОЛЬ НАСЛЕДСТВЕННОСТИ И СРЕДЫ
  • 6.4.1. Наследственные болезни человека
  • 6.4.1.1. Хромосомные болезни
  • 6.4.1.4. Болезни с нетрадиционным типом наследования
  • 6.4.3. Методы изучения генетики человека
  • 6.4.3.1. Генеалогический метод
  • 6.4.3.2. Близнецовый метод
  • 6.4.3.4. Методы дерматоглифики и пальмоскопии
  • 6.4.3.5. Методы генетики соматических клеток
  • 6.4.3.6. Цитогенетичвский метод
  • 6.4.3.7. Биохимический метод
  • 6.4.3.8. Методы изучения ДНК в генетических исследованиях
  • 6.4.4. Пренатальная диагностика наследственных заболеваний
  • 6.4.5. Медико-генетическое консультирование
  • ПЕРИОДИЗАЦИЯ ОНТОГЕНЕЗА
  • 7.1. ЭТАПЫ. ПЕРИОДЫ И СТАДИИ ОНТОГЕНЕЗА
  • 7.2. ВИДОИЗМЕНЕНИЯ ПЕРИОДОВ ОНТОГЕНЕЗА, ИМЕЮЩИЕ ЭКОЛОГИЧЕСКОЕ И ЭВОЛЮЦИОННОЕ ЗНАЧЕНИЕ
  • 7.3. МОРФОФИЗИОЛОГИЧЕСКИЕ И ЭВОЛЮЦИОННЫЕ ОСОБЕННОСТИ ЯИЦ ХОРДОВЫХ
  • 7.4. ОПЛОДОТВОРЕНИЕ И ПАРТЕНОГЕНЕЗ
  • 7.5. ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ
  • 7.5.1. Дробление
  • 7.5.2. Гаструляция
  • 7.5.3. Образование органов и тканей
  • 7.5.4. Провизорные органы зародышей позвоночных
  • 7.6. ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ МЛЕКОПИТАЮЩИХ И ЧЕЛОВЕКА
  • 7.6.1. Периодизация и раннее эмбриональное развитие
  • 7.6.2. Примеры органогенезов человека, отражающих эволюцию вида
  • 8.1. ОСНОВНЫЕ КОНЦЕПЦИИ
  • 8.2. МЕХАНИЗМЫ ОНТОГЕНЕЗА
  • 8.2.1. Деление клеток
  • 8.2.2. Миграция клеток
  • 8.2.3. Сортировка клеток
  • 8.2.4. Гибель клеток
  • 8.2.5. Дифференцировка клеток
  • 8.2.6. Эмбриональная индукция
  • 8.2.7. Генетический контроль развития
  • 8.3. ЦЕЛОСТНОСТЬ ОНТОГЕНЕЗА
  • 8.3.1. Детерминация
  • 8.3.2. Эмбриональная регуляция
  • 8.3.3. Морфогенез
  • 8.3.4. Рост
  • 8.3.5. Интегрированность онтогенеза
  • 8.4. РЕГЕНЕРАЦИЯ
  • 8.5.1. Изменение органов и систем органов в процессе старения
  • 8.6.1. Генетика старения
  • 8.6.2. Влияние на процесс старения условий жизни
  • 8.6.3. Влияние на процесс старения образа жизни
  • 8.6.4. Влияние на процесс старения эндоэкологической ситуации
  • 8.8. ВВЕДЕНИЕ В БИОЛОГИЮ ПРОДОЛЖИТЕЛЬНОСТИ ЖИЗНИ ЛЮДЕЙ
  • 8.8.2. Вклад социальной и биологической компонент в общую смертность в историческом времени и в разных популяциях
  • 9.1. КРИТИЧЕСКИЕ ПЕРИОДЫ
  • 9.3. ЗНАЧЕНИЕ НАРУШЕНИЯ МЕХАНИЗМОВ ОНТОГЕНЕЗА В ФОРМИРОВАНИИ ПОРОКОВ РАЗВИТИЯ
  • РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА
  • 3.5.3.2. Распределение материала материнских хромосом между дочерними клетками в митозе

    В ходе митотического деления обеспечивается закономерное распределение сестринских хроматид каждой хромосомы между дочерними клетками. В составе дочерних хромосом (бывших сестринских хроматид) каждая клетка нового поколения получает одну из двух молекул ДНК, образовавшихся в результате репликации материнской двойной спирали. Следовательно, новое поколение клеток получает одинаковую генетическую информацию в составе каждой группы сцепления.

    Таким образом, процессы, происходящие с хромосомами при подготовке клеток к делению и в самом делении, обеспечивают самовоспроизведение и постоянство их структуры в ряду клеточных поколений (см. разд. 3.6.2.1).

    После митоза хромосомы дочерней клетки представлены одной молекулой ДНК, компактно упакованной с помощью белков в одну хроматиновую нить, т.е. имеют такую же структуру, какую имели хромосомы материнской клетки до начала процесса репликации ДНК. Если вновь образованная клетка выбирает путь подготовки к делению, то в ней должны произойти все описанные выше события, связанные с динамикой структурной организации ее хромосом.

    3.5.3.3. Изменения структурной организации хромосом. Хромосомные мутации

    Несмотря на эволюционно отработанный механизм, позволяющий сохранять постоянной физико-химическую и морфологическую организацию хромосом в ряду клеточных поколений, под влиянием различных воздействий эта организация может изменяться. В основе изменения структуры хромосомы, как правило, лежит первоначальное нарушение ее целостности - разрывы, которые сопровождаются различными перестройками, называемымихромосомными мутациями или

    аберрациями.

    Разрывы хромосом происходят закономерно в ходе кроссинговера, когда они сопровождаются обменом соответствующими участками между гомологами (см. разд. 3.6.2.3). Нарушение кроссинговера, при котором хромосомы обмениваются неравноценным генетическим материалом, приводит к появлению новых групп сцепления, где отдельные участки выпадают - делении - или удваиваются -дупликации (рис. 3.57). При таких перестройках изменяется число генов в группе сцепления.

    Разрывы хромосом могут возникать также под влиянием различных мутагенных факторов, главным образом физических (ионизирующего и других видов излучения), некоторых химических соединений, вирусов.

    Рис. 3.57. Виды хромосомных перестроек

    Нарушение целостности хромосомы может сопровождаться поворотом ее участка, находящегося между двумя разрывами, на 180° - инверсия. В зависимости от того, включает ли данный участок область центромеры или нет, различают

    перицентрические и парацентрические инверсии(рис. 3.57).

    Фрагмент хромосомы, отделившийся от нее при разрыве, может быть утрачен клеткой при очередном митозе, если он не имеет центромеры. Чаще такой фрагмент прикрепляется к одной из хромосом - транслокация. Нередко две поврежденные негомологичные хромосомы взаимно обмениваются оторвавшимися участками - ре-ципрокная транслокация (рис. 3.57). Возможно присоединение фрагмента к своей же хромосоме, но в новом месте -транспозиция (рис. 3.57). Таким образом, различные виды инверсий и транслокаций характеризуются изменением локализации генов.

    Хромосомные перестройки, как правило, проявляются в изменении морфологии хромосом, что можно наблюдать в световой микроскоп. Метацентрические хромосомы превращаются в субметацентрические и

    акроцентрические и наоборот (рис. 3.58), появляются кольцевые и полицентрические хромосомы (рис. 3.59). Особую категорию хромосомных мутаций представляют аберрации, связанные с центрическим слиянием или разделением хромосом, когда две негомологичные структуры объединяются в одну - робертсоновская транслокация, или одна хромосома образует две самостоятельные хромосомы (рис. 3.60). При таких мутациях не только появляются хромосомы с новой морфологией, но и изменяется их количество в кариотипе.

    Рис. 3.58. Изменение формы хромосом в результате перицентрических инверсий

    Рис. 3.59. Образование кольцевых (I ) и полицентрических (II ) хромосом

    Рис. 3.60. Хромосомные перестройки, связанные с центрическим слиянием или разделением хромосом являются причиной изменения числа хромосом в кариотипе

    Рис. 3.61. Петля, образующаяся при конъюгации гомологичных хромосом, которые несут неравноценный наследственный материал в соответствующих участках в результате хромосомной перестройки

    Описанные структурные изменения хромосом, как правило, сопровождаются изменением генетической программы, получаемой клетками нового поколения после деления материнской клетки, так как изменяется количественное соотношение генов (при делениях и дупликациях), меняется характер их функционирования в связи с изменением взаимного расположения в хромосоме (при инверсии и транспозиции) или с переходом в другую группу сцепления (при транслокации). Чаще всего такие структурные изменения хромосом отрицательно сказываются на жизнеспособности отдельных соматических клеток организма, но особенно серьезные последствия имеют хромосомные перестройки, происходящие в предшественниках гамет.

    Изменения структуры хромосом в предшественниках гамет сопровождаются нарушением процесса конъюгации гомологов в мейозе и их последующего расхождения. Так, делении или дупликации участка одной из хромосом сопровождаются при конъюгации образованием петли гомологом, имеющим избыточный материал (рис. 3.61). Реципрокная транслокация между двумя

    негомологичными хромосомами приводит к образованию при конъюгации не бивалента, а квадривалента, в котором хромосомы образуют фигуру креста благодаря притягиванию гомологичных участков, расположенных в разных хромосомах (рис. 3.62). Участие в реципрокных транслокациях большего числа хромосом с образованием поливалента сопровождается формированием еще более сложных структур при конъюгации (рис. 3.63).

    Рис. 3.62. Образование при конъюгации квадривалента из двух пар хромосом, несущих реципрокную транслокацию

    Рис. 3.63. Образование при конъюгации поливалента шестью парами хромосом, участвующих

    в реципрокных транслокациях: I - конъюгация между парой

    хромосом, не несущих транслокацию; II - поливалент, образуемый шестью парами хромосом, участвующих

    в транслокации

    В случае инверсии бивалент, возникающий в профазе I мейоза, образует петлю, включающую взаимно инвертированный участок (рис. 3.64).

    Конъюгация и последующее расхождение структур, образованных измененными хромосомами, приводит к появлению новых хромосомных перестроек. В результате гаметы, получая неполноценный наследственный материал, не способны обеспечить формирование нормального организма нового поколения. Причиной этой является нарушение соотношения генов, входящих в состав отдельных хромосом, и их взаимного расположения.

    Однако, несмотря на неблагоприятные, как правило, последствия хромосомных мутаций, иногда они оказываются совместимыми с жизнью клетки и организма и обеспечивают возможность эволюции структуры хромосом, лежащей в основе биологической эволюции. Так, небольшие по размеру делении могут сохраняться в гетерозиготном состоянии в ряду поколений. Менее вредными, чем

    делении, являются дупликации, хотя большой объем материала в увеличенной дозе (более 10% генома) приводит к гибели организма.

    Рис. 3.64. Конъюгация хромосом при инверсиях:

    I - парацентрическая инверсия в одном из гомологов,II - перидентрическая инверсия в одном из гомологов

    Нередко жизнеспособными оказываются робертсоновские транслокации, часто не связанные с изменением объема наследственного материала. Этим можно объяснить варьирование числа хромосом в клетках организмов близкородственных видов. Например, у разных видов дрозофилы количество хромосом в гаплоидном наборе колеблется от 3 до 6, что объясняется процессами слияния и разделения хромосом. Возможно, существенным моментом в появлении вида Homo sapiens были структурные изменения хромосом у его обезьяноподобного предка. Установлено, что два плеча крупной второй хромосомы человека соответствуют двум разным хромосомам современных человекообразных обезьян (12-й и 13-й - шимпанзе, 13-й и-14-й -гориллы и орангутана). Вероятно, эта человеческая хромосома образовалась в результате центрического слияния по типу робертсоновской транслокации двух обезьяньих хромосом.

    К существенному варьированию морфологии хромосом, лежащему в основе их эволюции, приводят транслокации, транспозиции и инверсии. Анализ хромосом человека показал, что его 4, 5, 12 и 17-я хромосомы отличаются от соответствующих хромосом шимпанзе перицентрическими инверсиями.

    Таким образом, изменения хромосомной организации, чаще всего оказывающие неблагоприятное воздействие на жизнеспособность клетки и организма, с определенной вероятностью могут быть перспективными, наследоваться в ряду поколений клеток и организмов и создавать предпосылки для эволюции хромосомной организации наследственного материала.

    Мутационная изменчивость возникает в случае появления мутаций - стойких изменений генотипа (т.е. молекул днк), которые могут затрагивать целые хромосомы, их части или отдельные гены. Мутации могут быть полезными, вредными или нейтральными. Согласно современной классификации мутации принято делить на следующие группы. 1. Геномные мутации - связанные с изменением числа хромосом. Особый интерес представляет ПОЛИПЛОИДИЯ - кратное увеличение числа хромосом. Возникновение полиплоидии связанно с нарушением механизма деления клеток. В частности, нерасхождение гомологичных хромосом во время первого деления мейоза приводит к появлению гамет с 2n набором хромосом. Полиплоидия широко распространена у растений и значительно реже у животных (аскарид, шелкопряда, некоторых земноводных). Полиплоидные организмы, как правило, характеризуются более крупными размерами, усиленным синтезом органических веществ, что делает их особенно ценными для селекционных работ. 2. Хромосомные мутации - это перестройки хромосом, изменение их строения. Отдельные участки хромосом могут теряться, удваиваться, менять свое положение. Как и геномные мутации, хромосомные мутации играют огромную роль в эволюционных процессах. 3. Генные мутации связаны с изменением состава или последовательности нуклеотидов ДНК в пределах гена. Генные мутации наиболее важны среди всех категорий мутаций. Синтез белка основан на соответствии расположения нуклеотидов в гене и порядком аминокислот в молекуле белка. Возникновение генных мутаций (изменение состава и последовательности нуклеотидов) изменяет состав соответствующих белков-ферментов и в итоге к фенотипическим изменениям. Мутации могут затрагивать все особенности морфологии, физиологии и биохимии организмов. Многие наследственные болезни человека также обусловлены мутациями генов. Мутации в естественных условиях случаются редко - одна мутация определенного гена на 1000-100000 клеток. Но мутационный процесс идет постоянно, идет постоянное накопление мутаций в генотипах. А если учесть, что число генов в организме велико, то можно сказать, что в генотипах всех живых организмов имеется значительное число генных мутаций. Мутации - это крупнейший биологический фактор, обуславливающий огромную наследственную изменчивость организмов, что дает материал для эволюции.

    1. По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими.

    2. По степени приспособительности мутации делятся на полезные и вредные. Вредные - могут быть летальными и вызывать гибель организма еще в эмбриональном развитии.

    3. Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.

    Мутации чаще рецессивные, так как доминантные проявляются сразу же и легко "отбрасываются" отбором.

    4. По характеру изменения генотипа мутации делятся на генные, хромосомные и геномные.

    Генные, или точковые, мутации - изменение нуклеотида в одном гене в молекуле ДНК, приводящее к образованию аномального гена, а следовательно, аномальной структуры белка и развитию аномального признака. Генная мутация - это результат "ошибки" при репликации ДНК.

    Хромосомные мутации - изменения структуры хромосом, хромосомные перестройки. Можно выделить основные типы хромосомных мутаций:

    а) делеция - потеря участка хромосомы;

    б) транслокация - перенос части хромосом на другую негомологичную хромосому, как результат - изменение группы сцепления генов;

    в) инверсия - поворот участка хромосомы на 180°;

    г) дупликация - удвоение генов в определенном участке хромосомы.

    Хромосомные мутации приводят к изменению функционирования генов и имеют значение в эволюции вида.

    Геномные мутации - изменения числа хромосом в клетке, появление лишней или потеря хромосомы как результат нарушения в мейозе. Кратное увеличение числа хромосом называется полиплоидией. Этот вид мутации часто встречается у растений. Многие культурные растения полиплоидны по отношению к диким предкам. Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма.

    Зная изменчивость и мутации у одного вида, можно предвидеть возможность их появления и у родственных видов, что имеет значение в селекции.

    Изменения кариотипа могут быть количественными, структурными и одновременно теми и другими. Рассмотрим отдельные формы изменения хромосом (см. схему).

    Числовые мутации кариотипа. Эта группа мутаций связана с изменением числа хромосом в кариотипе. Количественные изменения в хромосомном составе клеток называют геномными мутациями. Они подразделяются на гетерогаюидию, анеуплоидию, полиплоидию.

    Гетероплоидия обозначает общее изменение числа хромосом по отношению к диплоидному полному набору.

    Об анеуплоидии говорят в тех случаях, когда число хромосом в клетке увеличено на одну (трисомия) или более (полисемия) или уменьшено на одну (моносомия). Употребляют также термины «гиперплоидия» и «гипоплоидия». Первый из них означает увеличенное число хромосом в клетке, а второй - уменьшенное.

    Полиплоидией называют увеличение числа полных хромосомных наборов в четное или нечетное число раз. Полиплоидные клетки могут быть тригогоидньщи, тетраплоидными, пентаплоид-ными, гексаплоидными и т. д.

    Структурные мутации хромосом. Эта группа мутаций связана с изменением формы, размеров хромосом, порядка расположения генов (изменение групп сцепления), утратой или добавкой отдельных фрагментов и т. д. Изменения структуры одной или нескольких хромосом называют хромосомными мутациями. Установлено несколько типов структурных мутаций хромосом.

    Транслокации - перемещения отдельных фрагментов хромосом из одного участка в другой, обмены фрагментами между разными хромосомами, слияния хромосом. При взаимных обменах фрагментами между гомологичными или негомологичными хромосомами возникают транслокации, называемые реципрокными. Если целое плечо одной хромосомы присоединяется к концам другой хромосомы, такой тип транслокаций называют тандемным. Слияние двух акроцентрических хромосом в области центромер формирует транслокацию робертсоновского типа и образование мета-и субметацентрических хромосом. При этом обнаруживается элиминация блоков прицентромерного гетерохроматина.

    Инверсии - внутрихромосомные аберрации, при которых фрагменты хромосом разворачиваются на 180°. Различают пери-и парацентрические инверсии. Если перевернутый фрагмент содержит центромеру, инверсия называется перицентрической.

    Делеции - потеря срединного фрагмента хромосомы, в результате ^чего она укорачивается.

    Нехватки - потеря концевого фрагмента хромосомы.

    Дупликация - удвоение фрагмента одной хромосомы (интра-хромосомные дупликации) или разных хромосом- (интерхромосомные дупликации).

    Кольцевые хромосомы формируются при наличии двух концевых разрывов (нехваток).

    Изохромосомы возникают, если в противоположность нормально-. му делению хроматид в длину происходит горизонтальное (поперечное) деление хромосомы в центромере с последующим слиянием гомолргичных плеч в новую хромосому - изохромосому. Ее проксимальные и дистальные участки идентичны по строению и составу генов. В зависимости от того, сколько хроматид изменено (одна или две), структурные аномалии подразделяются на хромосомные и хро-матидные. На рисунке 34 приведены схемы образования различных типов структурных изменений хромосом или аберраций.

    Изменение числа хромосом в клетке означает изменение генома. (Поэтому такие изменения часто называют геномными мутациями.) Известны различные цитогенетические феномены, связанные с изменением числа хромосом.

    Автополиплоидия

    Автополиплоидия представляет собой многократное повторение одного и того же генома, или основного числа хромосом (х).

    Этот тип полиплоидии характерен для низших эукариот и покрытосеменных растений. У многоклеточных животных автополиплоидия встречается крайне редко: у дождевых червей, некоторых насекомых, некоторых рыб и земноводных. Автополиплоиды у человека и других высших позвоночных погибают на ранних стадиях внутриутробного развития.

    У большинства эукариотических организмов основное число хромосом (x) совпадает с гаплоидным набором хромосом (n); при этом гаплоидное число хромосом – это число хромосом в клетках, образовавшихся в хорде мейоза. Тогда в диплоидных (2n) содержится два генома x, и 2n=2x. Однако у многих низших эукариот, многих споровых и покрытосеменных растений в диплоидных клетках содержится не 2 генома, а некоторое иное число. Число геномов в диплоидных клетках называется геномным числом (Ω). Последовательность геномных чисел называется полиплоидным рядом.

    Различают сбалансированные и несбалансированные автополиплоиды. Сбалансированными полиплоидами называются полиплоиды с чётным числом хромосомных наборов, а несбалансированными – полиплоиды с нечетным числом хромосомных наборов, например:

    несбалансированные полиплоиды

    гаплоиды

    триплоиды

    пентаплоиды

    гектаплоиды

    эннеаплоиды

    сбалансированные полиплоиды

    диплоиды

    тетраплоиды

    гексаплоиды

    октоплоиды

    декаплоиды

    Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов, повышенным содержанием сахаров и витаминов. Например, триплоидная осина (3х = 57) достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (ряд сортов земляники, яблони, арбузов, бананов, чая, сахарной свеклы), так и тетраплоиды (ряд сортов ржи, клевера, винограда). В природных условиях автополиплоидные растения обычно встречаются в экстремальных условиях (в высоких широтах, в высокогорьях); более того, здесь они могут вытеснять нормальные диплоидные формы.

    Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Однако в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.

    Однако автополиплоиды (особенно несбалансированные) характеризуются сниженной плодовитостью или полным бесплодием, что связано с нарушениями мейоза. Поэтому многие из них способны только к размножению вегетативным путем.

    Аллополиплоидия

    Аллополиплоидия представляет собой многократное повторение двух и более разных гаплоидных хромосомных наборов, которые обозначаются разными символами. Полиплоиды, полученные в результате отдаленной гибридизации, то есть от скрещивания организмов, принадлежащих к различным видам, и содержащие два и более набора разных хромосом, называются аллополиплоиды.

    Аллополиплоиды широко распространены среди культурных растений. Однако, если в соматических клетках содержится по одному геному от разных видов (например, один геном А и один – В), то такой аллополиплоид – бесплоден. Бесплодие простых межвидовых гибридов связано с тем, что каждая хромосома представлена одним гомологом, и образование бивалентов в мейозе оказывается невозможным. Таким образом, при отдаленной гибридизации возникает мейотический фильтр, препятствующий передаче наследственных задатков в последующие поколения половым путем.

    Поэтому у плодовитых полиплоидов каждый геном должен быть удвоен. Например, у разных видов пшеницы гаплоидное число хромосом (n) равно 7. Дикая пшеница (однозернянка) содержит в соматических клетках 14 хромосом лишь одного удвоенного генома А и имеет геномную формулу 2n = 14 (14А). Многие аллотетраплоидные твердые пшеницы содержат в соматических клетках 28 хромосом удвоенных геномов А и В; их геномная формула 2n = 28 (14А + 14В). Мягкие аллогексаплоидные пшеницы содержат в соматических клетках 42 хромосомы удвоенных геномов А, В, и D; их геномная формула 2n = 42 (14A + 14B + 14D).

    Плодовитые аллополиплоиды можно получать искусственным путем. Например, редечно-капустный гибрид, синтезированный Георгием Дмитриевичем Карпеченко, был получен путем скрещиванием редьки и капусты. Геном редьки обозначается символом R (2n = 18 R, n = 9 R), а геном капусты – символом B (2n = 18 B, n = 9 B). Первоначально полученный гибрид имел геномную формулу 9 R + 9 B. Этот организм (амфигаплоид) был бесплодным, поскольку в мейозе образовывалось 18 одиночных хромосом (унивалентов) и ни одного бивалента. Однако у этого гибрида некоторые гаметы оказались нередуцированными. При слиянии таких гамет был получен плодовитый амфидиплоид: (9 R + 9 B) + (9 R + 9 B) → 18 R + 18 B. У этого организма каждая хромосома была представлена парой гомологов, что обеспечило нормальное образование бивалентов и нормальное расхождение хромосом в мейозе: 18 R + 18 B → (9 R + 9 B) и (9 R + 9 B).

    В настоящее время ведется работа по созданию искусственных амфидиплоидов у растений (например, пшенично-ржаных гибридов (тритикале), пшенично-пырейных гибридов) и животных (например, гибридных шелкопрядов).

    Тутовый шелкопряд – объект интенсивной селекционный работы. Нужно учесть, что у этого вида (как и у большинства бабочек) самки – гетерогаметный пол (XY), а самцы – гомогаметный (XX). Для быстрого размножения новых пород шелкопряда используют индуцированный партеногенез – из самок извлекают неоплодотворенные яйца еще до мейоза и нагревают их до 46 °С. Из таких диплоидных яиц развиваются только самки. Кроме того, у шелкопряда известен андрогенез – если яйцеклетку нагреть до 46 °С, убить ядро рентгеновскими лучами, а затем осеменить, то в яйцеклетку могут проникнуть два мужских ядра. Эти ядра сливаются между собой, и образуется диплоидная зигота (ХХ), из которой развивается самец.

    Для тутового шелкопряда известна автополиплоидия. Кроме того, Борис Львович Астауров скрещивал тутового шелкопряда с дикой форой мандаринового шелкопряда, и в результате были получены плодовитые аллополиплоиды (точнее, аллотетраплоиды).

    У тутового шелкопряда выход шелка из коконов мужского пола на 20-30 % выше, чем из коконов женского пола. В.А. Струнников с помощью индуцированного мутагенеза вывел породу, у которой самцы в Х–хромосомах несут разные летальные мутации (система сбалансированных леталей) – их генотип l1+/+l2. При скрещивании таких самцов с нормальными самками (++/Y) из яиц выходят только будущие самцы (их генотип l1+/++ или l2/++), а самки погибают на эмбриональной стадии развития, поскольку их генотип или l1+/Y, или +l2/Y. Для разведения самцов с летальными мутациями используются специальные самки (их генотип +l2/++·Y). Тогда при скрещивании таких самок и самцов с двумя летальными аллелями в их потомстве половина самцов погибает, а половина – несет два летальных аллеля.

    Существуют породы тутового шелкопряда, у которых в Y–хромосоме имеется аллель темной окраски яиц. Тогда темные яйца (XY, из которых должны вывестись самки), отбраковываются, а оставляются только светлые (ХХ), которые в дальнейшем дают коконы самцов.

    Анеуплоидия

    Анеуплоидия (гетерополиплоидия) – это изменение числа хромосом в клетках, некратное основному хромосомному числу. Различают несколько типов анеуплоидии. При моносомии утрачивается одна из хромосом диплоидного набора (2n – 1). При полисомии к кариотипу добавляется одна или несколько хромосом. Частным случаем полисомии является трисомия (2n + 1), когда вместо двух гомологов их становится три. При нуллисомии отсутствуют оба гомолога какой-либо пары хромосом (2n – 2).

    У человека анеуплоидия приводит к развитию тяжелых наследственных заболеваний. Часть из них связана с изменением числа половых хромосом (см. главу 17). Однако существуют и другие заболевания:

    – Трисомия по 21-ой хромосоме (генотип 47, +21); синдром Дауна; частота среди новорожденных – 1:700. Замедленное физическое и умственное развитие, широкое расстояние между ноздрями, широкая переносица, развитие складки века (эпикант), полуоткрытый рот. В половине случаев встречаются нарушения в строении сердца и кровеносных сосудов. Обычно понижен иммунитет. Средняя продолжительность жизни – 9-15 лет.

    – Трисомия по 13-ой хромосоме (генотип 47, +13); синдром Патау. Частота среди новорожденных – 1:5.000.

    – Трисомия по 18-ой хромосоме (генотип 47, +18); синдром Эдвардса. Частота среди новорожденных – 1:10.000.

    Гаплоидия

    Уменьшение числа хромосом в соматических клетках до основного числа называется гаплоидия. Существуют организмы–гаплобионты, для которых гаплоидия – это нормальное состояние (многие низшие эукариоты, гаметофиты высших растений, самцы перепончатокрылых насекомых). Гаплоидия как аномальное явление встречается среди спорофитов высших растений: у томата, табака, льна, дурмана, некоторых злаков. Гаплоидные растения отличаются пониженной жизнеспособностью; они практически бесплодны.

    Псевдополиплоидия (ложная полиплоидия)

    В некоторых случаях изменение числа хромосом может произойти без изменения объема генетического материала. Образно выражаясь, изменяется число томов, но не изменяется число фраз. Такое явление называется псевдополиплоидия. Различают две основные формы псевдополиплоидии:

    1. Агматополиплоидия. Наблюдается в том случае, если крупные хромосомы распадаются на множество мелких. Встречается у некоторых растений и насекомых. У некоторых организмов (например, у круглых червей) происходит фрагментация хромосом в соматических клетках, но в половых клетках сохраняются исходные крупные хромосомы.

    2. Слияние хромосом. Наблюдается в том случае, если мелкие хромосомы объединяются в крупные. Встречается у грызунов.

    Хромосомные мутации (их также называют перестройками, аберрациями) вызываются неправильным делением клетки и меняют структуру самой хромосомы. Чаще всего это происходит спонтанно и непредсказуемо под влиянием внешних факторов. Поговорим про виды хромосомных мутаций в генах и вызывающих их причинах. Мы расскажем что такое хромосомная мутация и какие последствия возникают для организма вследствие подобных изменений.

    Хромосомная мутация – это самопроизвольно произошедшая аномалия с отдельной хромосомой либо с участием нескольких из них. Произошедшие изменения бывают:

    • внутри единичной хромосомы, их называют внутрихромосомными;
    • межхромосомными, когда отдельные хромосомы обмениваются между собой определёнными фрагментами.

    Что может происходить с носительницей информации в первом случае? В результате утраты хромосомного участка происходит нарушение эмбриогенеза и возникают различные аномалии, приводящие к умственному недоразвитию ребёнка или физическим уродствам (пороки сердца, нарушение строения гортани и других органов). Если происходит разрыв хромосомы , после которого вырванный фрагмент встраивается на своё место, но уже перевёрнутым на 180° – говорят об инверсии. Порядок расположения генов меняется. Ещё одна внутрихромосомная мутация – дупликация. В её процессе происходит удвоение участка хромосомы или он дублируется несколько раз, что приводит к множественным порокам умственного и физического развития.

    Если же две хромосомы обмениваются фрагментами, явление носит название “реципрокной транслокации”. Если фрагмент одной хромосомы встраивается в другую, это называют “нереципрокной транслокацией”. “Центрическим слиянием” называют соединение пары хромосом в районе их центромер с утратой соседних участков. При мутации в виде поперечного разрыва соседних хромосом их называют изохромосомами. Такие изменения не имеют внешних проявлений у родившегося потомства, но делает его носителем аномальных хромосом, что может повлиять на возникновение отклонений у следующих поколений. Все типы хромосомной мутации закрепляются в генах и передаются по наследству.

    Основные причины, вызывающие мутации хромосом

    Точные причины хромосомных мутаций в каждом конкретном случае нельзя назвать определённо. Вообще мутации ДНК являются инструментом естественного отбора и непременным условием эволюции. Они могут иметь положительное нейтральное или отрицательное значение и передаются по наследству. Все мутагены, способные приводить к изменениям в хромосомах, принято делить на 3 типа:

    Могут возникать и самопроизвольные хромосомные перестройки, без воздействия ухудшающих факторов, но такие случаи крайне редки. Происходит это под влиянием внутренних и внешних условий (так называемого мутационного давления среды). Такая случайность приводит к изменению генов и их новому распределению в геноме. Дальнейшая жизнеспособность организмов с возникшими изменениями определяется возможностью приспособления к выживанию, что является частью естественного отбора. Для человека, к примеру, мутационные процессы часто становятся источником различных наследственных болезней, порой несовместимых с жизнью.

    В чём различие генной, геномной и хромосомной мутаций

    Мутации в хромосомах, генах и геноме часто бывают связаны друг с другом. Генной называется мутация , происходящая внутри гена, хромосомной – внутри хромосомы. Мутации, приводящие к изменению числа хромосом, называют геномными.

    Эти изменения объединяют в общее понятие “хромосомные аномалии”, они имеют общую классификацию, которая подразделяет их на анеуплоидии и полиплоидии.

    Всего науке известны около тысячи хромосомных и геномных аномалий, включающих различные синдромы (около 300 видов). Это и хромосомные болезни (яркий пример – синдром Дауна), и внутриутробные патологии, приводящие к выкидышам, и соматические заболевания.

    Хромосомные болезни

    Об их проявлении говорят при обнаружении тяжёлых врождённых генетически обусловленных заболеваний, проявляющихся врождёнными пороками развития. Такие болезни свидетельствуют о наиболее масштабных изменениях, произошедших в ДНК.

    Сбой может возникнуть на любом этапе , даже в момент зачатия, при слиянии нормальных родительских клеток. Учёным пока ещё не удаётся влиять на этот механизм и предотвращать его. Вопрос этот изучен не до конца.

    Для человека хромосомные мутации чаще носят негативный характер, что проявляется в возникновении выкидышей, мертворождении, проявлении уродств и отклонений в интеллекте, появлении генетически обусловленных опухолей. Все подобные болезни условно делят на 2 группы:

    Можно ли вылечить или предотвратить хромосомные аномалии

    В перспективе наукой ставятся задачи научиться вмешиваться в структуру клеток и менять ДНК человека при необходимости, но в текущий момент это невозможно. Как такового лечения хромосомных болезней не существует, разработаны лишь методы перинатальной диагностики (дородового обследования плода). С помощью этого метода возможно выявить синдромы Дауна и Эдвардса, а также врождённые пороки органов ещё не рождённого младенца.

    По данным обследования врач вместе с родителями принимает решение о продлении или прерывании текущей беременности . Если патология предполагает возможность вмешательства, может быть проведена реабилитация плода ещё на стадии внутриутробного развития, в том числе и устраняющая порок операция.

    Будущие родители ещё на стадии планирования беременности могут посетить генетическую консультацию, которая существует почти в каждом городе. Это особенно необходимо если в роду одного или обоих есть родственники с тяжёлыми наследственными заболеваниями . Генетик составит их родословную и порекомендует исследование – полного набора хромосом.

    Врачи считают, что такой анализ генов необходим каждой паре, планирующей появление малыша. Это малозатратный универсальный и быстрый метод, позволяющий определить наличие большинства хромосомных болезней любого типа. Будущим родителям всего лишь потребуется сдать кровь. Тем, у кого уже есть в семье ребёнок с генетическим заболеванием, сделать это необходимо в обязательном порядке перед повторной беременностью.