Движение в неоднородном магнитном поле. Дрейфовое приближение условия применимости, дрейфовая скорость. Дрейфы в неоднородном магнитном поле. Адиабатический ин. Движение отдельных заряженных частиц и их потоков

Сначала рассмотрим наиболее простой случай дви­жения отдельных заряженных частиц. С известным при­ближением это рассмотрение применимо к потокам ча­стиц, когда плотности их настолько малы, что всяким взаимодействием между частицами можно пренебречь. Например, для слабых пучков электронов или ионов в вакууме можно не принимать во внимание действие их собственного объемного заряда.

Движение отдельной заряженной частицы описывает­ся следующим общим уравнением:

где М j - масса частицы (электрона или иона); Z j - зарядовое число (для электронаZ e =-1);
- скорость частицы; Н о - напряженность магнитного по­ля; с-скорость электромагнитных волн в вакууме; F - равнодействующая всех энергетических сил, воз­действующих на частицы (электрических, гравитацион­ных и т. п.).

Воздействие магнитного поля учитывается для удоб­ства отдельно от остальных сил, поскольку оно, дейст­вуя перпендикулярно направлению движения, не изме­няет энергии частиц.

Уравнение (6.1) можно решить лишь в некоторых простейших случаях. Рассмотрим некоторые из них, а затем перейдем к так называемому дрейфовому приближению.

4.2. Движение частиц в электрическом полеE 0

В данном случае уравнение (6.1) запишем

(6.2)

где q j - заряд частицы.

В зависимости от вида поля, т. е. в зависимости его от координат и времени, интегрирование (6.2) дает различные результаты. Рассмотрим некоторые частные примеры, которые пригодятся нам для дальнейшего изложения.

Пример 1. Пусть напряженность поля постоянна как в пространстве, так и во времени (Е 0 =const). Найдем траекторию движения иона, влетевшего в это электрическое поле под некоторым углом θ с начальной скоростью u 0 . (рис.1)

Интегрируя (6.2), получаем

(6.3)

где u 0 x иu 0 y –компоненты начальной скорости. Исключая t, получаем

(6.5)

Это уравнение параболы. Движение аналогично движению камня, брошенного под углом к горизонту. Это понятно, поскольку электрическое поле и поле тяготения – суть потенциальные.

Пример 2. Электрическое поле однородно в пространстве, но изменяется во времени (для простоты примем гармонический закон изменения E 0 ). В поле влетает электрон, направление начальной скорости которого перпендикулярно направлению переменного электрического поля. Определим закон движения электрона.

Направим ось у вдоль поля. Тогда

(6.7)

Здесь E m 0 – амплитуда напряженности электрического поля; ψ – фазовый угол поля в момент t=0, когда электрон начинает свое движение.

Проинтегрировав (6.6), (6.7), получим



где u 0 x , u 0 y – компоненты начальной скорости электрона. В нашем случае u 0 y =0.

Перемещение частицы определяется системой

Из формул (6.8), (6.9) видно, то происходит стационарный дрейф частиц с постоянной скоростью, на который наложено синусоидальное колебание с амплитудой (рис.2).

Это происходит, например, в высокочастотных разрядах низкого давления или при очень высоких частотах, когда число упругих соударений электронов с молекулами или ионами ν m намного меньше, чем частота поля ω. Интересно отметить, что в идеальном приближении (ν m →0) поглощения высокочастотной энергии не происходит, так как колебательная составляющая скорости сдвинута по фазе с полем на угол π/2, а постоянная в разные полупериоды связана то с поглощением энергии, то с отдачей ее обратно полю.

4.3. Движение частиц в магнитном поле Н 0

Если все силы, кроме магнитного поля, отсутствуют, то уравнение движения (6.1) запишемв виде

(6.3)

Решение этого уравнения зависит, как и в случае электрического шля, отвида правой части. Рассмотрим два примера.

Пример 1 . Частица (электрон или ион) с некоторой скоростью u j влетает в однородное постоянное магнитное поле напряженностью H 0 . Необходимо определить закон ее движения.

Разложим полную скорость движения частицы в магнитном поле на две компоненты: u пр – вдоль поля, u пер – перпендикулярную к нему:

Из уравнения (6.12) следует, что

Следовательно,

т. е. частица вдоль поля движется равномерно. Для другой компоненты

(6.16)

Скорость изменения вектора u пер перпендикулярна вектору. В связи с этим изменение этого вектора во времени можно пред­ставить как вращение с некоторой угловой скоростью ω j

Частица равномерно вращается вокруг направления Н 0 с угловой скоростью ω j , называемой циклотронной или ларморовской частотой, по окружности с ларморовским радиусом,



(6.19)

Для положительно заряженной частицы угловая скорость ω j направлена против Н 0 , для электронов - по вектору Н 0 (рис. 3). Из-за большой разности в массах электронов и ионов радиусы их ларморовских окружностей отличаются друг от друга на много порядков.

Периоды обращения по ларморовским окружностям

Кроме вращения, частица движется поступательно со скоростьюu пр , следовательно, полное ее движение происходит по винтовой линии, которая навивается на силовую линию поляН о . Шагэтой винтовой линии

(6.21)

При увеличенииН о, как видно из выражений (6.19) и (6.21), уменьшается радиус ларморовской окружности и шаг винтовой линии, но линейная скорость при этом не меняется.

Циклотронное вращение в постоянном однородном магнитном поле сохраняет свой вращательный момент (момент количества движения)

где W ⊥ – кинетическая энергия циклотронного вращения

Следовательно, и

Величина W ⊥ /H 0 равна магнитному моменту вращающегося в магнитном поле заряда. В самом деле, движение заряда по ларморовской окружности можно рассматривать как круговой ток

(6.25)

его магнитный момент

где S - площадь ларморовской окружности.

Пример 2. Теперь рассмотрим, что произойдет, если частица влетает в медленно изменяющееся (во времени) магнитное поле.

Под таким полем мы будем подразумевать поле, в котором за один оборот по ларморовской окружности радиус ее почти не меняется:

Покажем, что и в этом случае магнитный момент приблизительно сохраняет свою величину (в этом случае его называют адиабатическим инвариантом).

Если магнитное поле представляет собой функцию времени, то, как известно, возникает вихревое электрическое поле, циркуляция которого по замкнутому контуру не что иное, как электродвижущая сила (э. д. с).

(6.28)

где Е l -напряженность электрического поля вдоль ларморовскойокружности, по которой производится интегрирование; φ- магнитный поток через площадь ларморовского круга.

Изменение энергии циклотронного вращения по времени, учитывая выражения (6.24) и (6.27), равно

(6.29)

При медленном изменении магнитного поля величину можно вынести за знак дифференцирования:

Перепишем выражение (6.24) в виде

и продифференцируем его по времени:

(6.32)

Если сравнить это выражение сполученным ранее непосредственно из энергетических соображений (6.30), то сразу становится очевидным равенство нулю второго члена

Магнитный поток Ф, пронизывающий циклотронную орбиту, Также остается неизменным в процессе движения

. (6.33)

Дрейфы в магнитных полях

Уравнение движения (6.1) можно решить точно толь­ко в простых случаях, аналогичных уже рассмотренных. При наличии магнитного поля, постоянного во времени и однородного в пространстве, и отсутствии электриче­ских и других сил имеет место движение, которое сла­гается из двух движений - поступательного вдоль по­ля и вращательного в поперечной плоскости. Если маг­нитное поле неоднородно, или на частицу кроме него действуют еще какие-то силы, то такого движения мы уже не получим. Однако в некоторых случаях с извест­ным приближением можно свести реальное движение к вращению частицы по ларморовской окружности, центр которой (так называемый ведущий центр) пере­мещается поперек магнитного поля.

Движение ведущего центра поперек поля называют дрейфом в магнитном поле. Кроме того, при наличии компоненты скорости вдоль направления магнитного поля происходит смещение центра и в этом направле­нии. Такое рассмотрение можно проводить только в случае, когда влияние различных сил проявляется слабо в течение периода обращения частицы в магнитном поле, т. е., иначе говоря, когда выполняются условия адиабатичности (6.27) и (6.34). В этом случае ведущий центр заряженной частицы с магнитным моментом μ j движется как некая частица в поле силой F с кинетиче­ской энергией W пер [см. формулу (6.26)].

Приближенная теория движения частиц в адиабати­ческих системах называется дрейфовым приближением, а уравнения, описывающие усредненное движение веду­щего центра и изменение ларморовского радиуса, - дрейфовыми уравнениями. Строгий вывод их довольно сложен. По существу он сводится к рассмотре­нию условий, при которых движение мало отличается от движения в постоянных полях. Действующие силы не должны сильно меняться на протяжении ларморов­ского радиуса, в частности, поперечная сила F пер не должна приводить к чрезмерному росту поперечных ско­ростей частицы и ларморовского радиуса, что нарушило бы условия адиабатичности. Не может быть большой и продольная сила F пр . Кроме того, при рассмотрении процессов в плазме, когда применимо дрейфовое при­ближение, не учитывают влияния движения самих частиц на поля, в которых они перемещаются.

Рассмотрим сначала дрейфы в постоянных во време­ни полях. Уравнение (6.1) в проекциях на оси декарто­вых координат:

Эту систему можно записать в комплексном виде

Решение неоднородного уравнения (6.39) состоит из общего решения однородного уравнения

котороесоответствует циклотронному вращению, и частного решения

(6.41)

(6.42)

В векторном виде

Это и есть скорость дрейфового движения, происхож­дение которого можно наглядно пояснить следующим образом: сила в течение одной половины периода цикло­тронного вращения действует вдоль направления дви­жения частицы, скорость ее возрастает и она должна пройти больший путь, чем за вторую половину периода, когда сила действует против движения.

Как уже было сказано, дрейфовое уравнение (6.43) описывает усредненное движение ведущего центра приблизительно с постоянной скоростью. Быстрое ос­циллирующее движение по ларморовской окружности при этом не принимается в расчет. Следует отметить, что дрейфовое движение (перемещение осциллирующего центра) на первый взгляд обладает рядом свойств, как бы нарушающих привычные представления о законах механики. Действительно, постоянная сила в данном случае вызывает не равномерно ускоренное, а равно­мерное движение. В дальнейшем увидим, что электри­ческое поле не разделяет заряды, а заставляет их дви­гаться в одном направлении, в то время как силы не­электрического происхождения создают электрические токи. Дело в том, что истинным движением все же яв­ляется движение по ларморовской окружности, которое связано с отбором (и отдачей) энергии и подчиняется обычным законам механики.

Дрейфовое же движение представляет собой усред­ненное движение, как следствие циклотронного враще­ния в магнитных полях.

Электрический дрейф

Оба вида дрейфа в неодно­родном магнитном поле зависят от знака частиц. От них отличается в этом отношении электрический дрейф, т. е. дрейф ча­стиц в магнитном поле при на­личии электрического. Скорость электрического дрейфа

Действительно, электрический заряд в формулу не входит, а с ним исключается зависимость скорости от знака частиц. Электрический дрейф для ионов и для электронов происходит в одну сторону и с одинаковой скоростью, несмотря на большое различие в их массах.

Следует иметь в виду, что формула (6.47) примени­ма только при Е 0 <<Н 0 , иначе скорость дрейфа получается соизмеримой со скоростью света. Весь же наш вы­вод для дрейфовых скоростей сделан исходя из по­стоянства массы частиц, т. е. для нерелятивистских ско­ростей.

Формулу (6.47) мы получили, подставив в общее вы­ражение (6.43) для скорости дрейфов в магнитном поле значение электрической силы

Однако ее можно вывести несколько иначе - из об­щего уравнения (6.1). Это целесообразно, если учитывать некоторые полученные полезные физические вы­воды.

Преобразуем уравнение (6.1) в систему отсчета, ко­торая движется относительно исходной (лабораторной) системы координат с постоянной скоростью u " Д . Ско­рость частицы в движущейся системе u ", имлульср". Скорость в лабораторной системе координат

(6.50)

Найдем изменение импульса р :

где Е 0|| и Е 0 ⊥ ,-слагающие электрического поля вдоль и перпендикулярно магнитному полю.

Величинуu " Д можно выбрать таким образом, чтобы выполнялись два условия:

(6.53)

Условия (6.52) и (6.53) определяют u " Д совершенно однозначно. Из условия (6.52) сразу же следует, чтоu " Д Н 0 . Умножим второе условие (6.53) векторно наН о:

Член H 0 /c·(u " Д Н 0) =0 согласно условию (6.52). Следовательно,

(6.55)

т.е. представляет собой дрейфовую скорость. Уравнение движения (6.51) при учете (6.53) запишем

(6.56)

Из него полностью выпала компонента E 0пер. Отсюда можно сделать вывод, что влияние E 0пер сводится к созданию дрейфа в направлении, перпендикулярном к магнитному полю. Таким образом, получаем равномерно ускоренное движение вдоль поля и дрейфовое поперек него. Оба движения складываются в движение по па­раболе (рис. 8 ). Если Е 0 лежит в плоскости уz, то и ведущий центр не выйдет из этой плоскости. Поскольку выбор осей х и у произволен, случай, показанный на рис. 8, можно считать довольно общим.

Дрейф в скрещенных полях

Частным случаем электрического дрейфа является движение в скрещенных электрическом н магнитном полях (E o ┴H o и u 0пр =0), где u 0пр - начальная скорость частицы вдоль направленияН о . Ускорение в направлении Н 0 отсутствует. Частица движется по циклоиде, нормальной или укороченной, в зависимости от соотно­шения между угловой скоростью ω j и скоростью движения центра самой окружности. Последняя зависит от E 0 и начальной скорости u 0 =u 0пер вдоль оси у.

Разберем подробнее характер движения в скрещенных полях, поскольку этот случай имеет практическое назначение, особенно для плазменных ускорителей. Рассмотрим движение электрона, а затем определим, в чем состоит отличие для ионов. Нарис. 9, а показано, что происходит, если начальная скорость u 0 >0. В этом слу­чае возникает лоренцева сила

направленная антипараллельно оси х. К электрической силе -еЕ 0 добавляется магнитная F л. Они ускоряют ча­стицу совместно. За ларморовский период τ е она долж­на пройти большее расстояние, чем при действии только одной -еЕ 0 . Это воздействие на частицу определяет движение ее по удлиненной циклоиде.

На рис. 9,б приведен случай, соответствующий на­чальной скорости u 0 =0. При этом получается нормаль­ная циклоида. Далее, если u0<0и , циклоида становится укороченной (рис. 9, в). При уравновешивании обеих сил траектория остается прямолинейной (рис. 9, г). При дальнейшем увеличении u 0 траектория переходит на правую сторону оси х, причем повторяются в обратном порядке те же формы циклоид - укороченная, нормальная и удлинен­ная (рис.9,д - ж). Расстояние между последователь­ными вершинами циклоид

Это расстояние не зависит от величины первоначальной скорости u 0 .

Для ионов дрейф осуществляется в том же направ­лении, однако вращение происходит в противоположную сторону (рис. 10-сплошные линии). Нетрудно видеть, что дрейф в скрещенных полях происходит по эквипо­тенциальным поверхностям электрического поля, поскольку он направлен по нормали к электрическому полю.

В астрофизических и термоядерных задачах значительный интерес представляет поведение частиц в магнитном поле, меняющемся в пространстве. Часто это изменение достаточно слабое, и хорошим приближением является решение уравнений движения методом возмущений, впервые полученное Альфвеном. Термин «достаточно слабое» означает, что расстояние, на котором В существенно изменяется по величине или по направлению, велико по сравнению с радиусом а вращения частицы. В этом случае в нулевом приближении можно считать, что частицы движутся по спирали вокруг силовых линий магнитного поля с частотой вращения, определяемой

локальной величиной магнитного поля. В следующем приближении появляются медленные изменения орбиты, которые можно представить в виде дрейфа их ведущего центра (центра вращения).

Первым типом пространственного изменения поля, которое мы рассмотрим, является изменение в направлении, перпендикулярном В. Пусть имеется градиент величины поля в направлении единичного вектора , перпендикулярного В, так что . Тогда в первом приближении частоту вращения можно записать в виде

здесь - координата в направлении и разложение производится в окрестности начала координат, для которого Поскольку В не меняется по направлению, движение вдоль В остается равномерным. Поэтому мы рассмотрим только изменение поперечного движения. Записав в виде , где - поперечная скорость в однородном поле, a -малая поправка, подставим (12.102) в уравнение движения

(12.103)

Тогда, удерживая только члены первого порядка, получаем приближенное уравнение

Из соотношений (12.95) и (12.96) вытекает, что в однородном поле поперечная скорость и координата связаны соотношениями

(12.105)

где X - координата центра вращения в невозмущенном круговом движении (здесь Если в (12.104) выразить через то получим

Это выражение показывает, что, помимо осциллирующего слагаемого, имеет отличное от нуля среднее значение, равное

Для определения средней величины достаточно учесть, что декартовы составляющие изменяются синусоидально с амплитудой а и сдвигом фазы 90°. Поэтому на среднее значение влияет лишь составляющая параллельная , так что

(12.108)

Таким образом, «градиентная» дрейфовая скорость дается выражением

(12.109)

или в векторной форме

Выражение (12.110) показывает, что при достаточно малых градиентах поля, когда дрейфовая скорость мала по сравнению с орбитальной скоростью .

Фиг. 12.6. Дрейф заряженных частиц, обусловленный поперечным градиентом магнитного поля.

При этом частица быстро вращается вокруг ведущего центра, который медленно движется в направлении, перпендикулярном В и grad В. Направление дрейфа положительной частицы определяется выражением (12.110). Для отрицательно заряженной частицы дрейфовая скорость имеет противоположный знак; это изменение знака связано с определением Градиентный дрейф можно качественно объяснить, рассматривая изменение радиуса кривизны траектории при движении частицы в областях, где величина напряженности поля больше и меньше средней. На фиг. 12.6 качественно показано поведение частиц с различными знаками заряда.

Другим типом изменения поля, приводящим к дрейфу ведущего центра частицы, является кривизна силовых линий. Рассмотрим изображенное на фиг. 12.7 двумерное поле, не зависящее от . На фиг. 12.7, а показано однородное магнитное поле параллельное оси Частица вращается вокруг силовой линии по окружности радиусом а со скоростью и одновременно движется с постоянной скоростью вдоль силовой линии. Мы будем рассматривать это движение в качестве нулевого приближения для движения частицы в поле с искривленными силовыми линиями, показанном на фиг. 12.7,б, где локальный радиус кривизны силовых линий R велик по сравнению с а.

Фиг. 12.7. Дрейф заряженных частиц, обусловленный кривизной силовых линий. а - в постоянном однородном магнитном поле частица движется по спирали вдоль силовых линий; б - кривизна силовых линий магнитного поля вызывает дрейф, перпендикулярный плоскости

Поправку первого приближения можно найти следующим образом. Поскольку частица стремится двигаться по спирали вокруг силовой линии, а силовая линия изогнута, то для движения ведущего центра это эквивалентно появлению центробежного ускорения Можно считать, что это ускорение возникает под действием эффективного электрического поля

(12.111)

как бы добавленного к магнитному полю . Но, согласно (12.98), комбинация такого эффективного электрического поля и магнитного поля приводит к центробежному дрейфу со скоростью

(121,2)

Используя обозначение запишем выражение для скорости центробежного дрейфа в виде

Направление дрейфа определяется векторным произведением, в котором R представляет собой радиус-вектор, направленный от центра кривизны к точке нахождения частицы. Знак в (12.113) соответствует положительному заряду частицы и не зависит от знака Для отрицательной частицы величина становится отрицательной и направление дрейфа меняется на обратное.

Более аккуратный, но менее изящный вывод соотношения (12.113) можно получить непосредственным решением уравнений движения. Если ввести цилиндрические координаты с началом координат в центре кривизны (см. фиг. 12.7,б), то магнитное поле будет иметь только -составляющую Легко показать, что векторное уравнение движения сводится к следующим трем скалярным уравнениям:

(12-114)

Если в нулевом приближении траектория представляет собой спираль с радиусом а, малым по сравнению с радиусом кривизны то в низшем порядке Поэтому из первого уравнения (12.114) получаем следующее приближенное выражение гаусс частицы плазмы с температурой имеют дрейфовую скорость см/сек. Это означает, что за малую долю секунды они вследствие дрейфа выйдут на стенки камеры. Для более горячей плазмы скорость дрейфа соответственно еще больше. Одним из способов компенсации дрейфа при тороидальной геометрии является изгибание тора в виде восьмерки. Так как частица обычно совершает много оборотов внутри такой замкнутой системы, то она проходит области, где как кривизна, так и градиент имеют различные знаки, и дрейфует поочередно в различных направлениях. Поэтому по крайней мере в первом порядке по результирующий средний дрейф оказывается равным нулю. Такой метод исключения дрейфа, обусловленного пространственным изменением магнитного поля, применяется в термоядерных установках типа стелларатора. Удержание плазмы в таких установках в отличие от установок, использующих пинч-эффект (см. гл. 10, § 5-7), осуществляется с помощью сильного внешнего продольного магнитного поля.

Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства остальных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отличающиеся от них молекулы получат название «особых» молекул, или (для краткости) S-молекул. Молекула может быть особой по целому ряду причин: она может быть, скажем, тяжелее молекул фона. Может она отличаться от них также химическим составом. А, может быть, особые молекулы несут электрический заряд — тогда это будет ион на фоне нейтральных молекул. Из-за необычности масс или зарядов на S-молекулы действуют силы, отличающиеся от сил между молекулами фона. Изучая поведение S-молекул, можно понять основные эффекты, которые вступают в игру во многих разнообразных явлениях. Перечислим некоторые из них: диффузия газов, электрический ток в батарее, осаждение, разделение при помощи центрифуги и т. д.

Начнем с изучения основного процесса: на S-молекулу в газе из молекул фона действуют какая-то особая сила F (это может быть сила тяжести или электрическая сила) и, кроме того, более обычные силы, обусловленные столкновениями с молекулами фона. Нас интересует общий характер поведения S-молекулы. Детальное описание ее поведения — это непрерывные стремительные удары и следующие одно за другим столкновения с другими молекулами. Но если проследить внимательно, то станет ясно, что молекула неуклонно движется по направлению силы F. Мы говорим, что дрейф накладывается на беспорядочное движение. Но нам хотелось бы знать, как зависит скорость дрейфа от силы F.

Если в какой-то произвольный момент времени начать наблюдать за S-молекулой, то можно надеяться, что попали мы как раз где-то между двумя столкновениями. Это время молекула употребит на то, чтобы в дополнение к скорости, оставшейся у нее после всех столкновений, увеличить составляющую скорости вдоль силы F. Немного погодя (в среднем через время τ) она снова испытает столкновение и начнет двигаться по новому отрезку своей траектории. Стартовая скорость, конечно, будет другой, а ускорение от силы F останется неизменным.

Чтобы упростить сейчас дело, предположим, что после каждого столкновения наша S-молекула выходит на совершенно «свободный» старт. Это значит, что у нее не осталось никаких воспоминаний о прежних ускорениях под действием силы F. Такое предположение было бы разумным, если бы наша S-молекула была намного легче молекул фона, но это, конечно, не так. Позднее мы обсудим более разумное предположение.

А пока предположим, что все направления скорости S-молекулы после каждого столкновения равновероятны. Стартовая скорость имеет любое направление и не может дать никакого вклада в результирующее движение, поэтому мы не будем принимать во внимание начальную скорость после каждого столкновения. Но, кроме случайного движения, каждая S-молекула в любой момент имеет дополнительную скорость в направлении силы F, которая увеличивается со времени последнего столкновения. Чему равно среднее значение этой части скорости? Оно равно произведению ускорения F/m (где m — масса S-молекулы) на среднее время, прошедшее с момента последнего столкновения. Но среднее время, протекшее после последнего столкновения, должно быть равно среднему времени перед следующим столкновением, которое мы уже обозначили буквой τ. Средняя скорость, порождаемая силой F,— это как раз скорость дрейфа; таким образом, мы пришли к соотношению

Это наше основное соотношение, главное во всей главе. При нахождении τ могут появиться всякого рода усложнения, но основной процесс определяется уравнением (43.13).

Обратите внимание, что скорость дрейфа пропорциональна силе. К сожалению, о названии для постоянной пропорциональности еще не договорились. Коэффициент перед силой каждого сорта имеет свое название. В задачах, связанных с электричеством, силу можно представить как произведение варяда на электрическое поле: F=qE; в этом случае постоянную пропорциональности между скоростью и электрическим полем Е называют «подвижностью». Несмотря на возможные недоразумения, мы будем применять термин подвижность для отношения скорости дрейфа к силе любого сорта. Будем писать

и называть µ подвижностью. Из уравнения (43.13) следует

Подвижность пропорциональна среднему времени между столкновениями (редкие столкновения слабо тормозят S-молекулу) и обратно пропорциональна массе (чем больше инерция, тем медленнее набирается скорость между столкновениями).

Чтобы получить правильный численный коэффициент в уравнении (43.13) (а у нас он верен), нужна известная осторожность. Во избежание недоразумений нужно помнить, что мы используем коварные аргументы, и употреблять их можно только после осторожного и детального изучения. Чтобы показать, какие бывают трудности, хотя по виду вроде все благополучно, мы снова вернемся к тем аргументам, которые привели к выводу уравнения (43.13), но эти аргументы, которые выглядят вполне убедительно, приведут теперь к неверному результату (к сожалению, такого рода рассуждения можно найти во многих учебниках!).

Можно рассуждать так: среднее время между столкновениями равно τ. После столкновения частица, начав двигаться со случайной скоростью, набирает перед следующим столкновением дополнительную скорость, которая равна произведению времени на ускорение. Поскольку до следующего столкновения пройдет время τ, то частица наберет скорость (F/m)τ. В момент столкновения эта скорость равна нулю. Поэтому средняя скорость между двумя столкновениями равна половине окончательной скорости, а средняя скорость дрейфа равна 1 / 2 Fτ/m. (Неверно!) Этот вывод неверен, а уравнение (43.13) правильно, хотя, казалось бы, в обоих случаях мы рассуждали одинаково убедительно. Во второй результат вкралась довольно коварная ошибка: при его выводе мы фактически предположили, что все столкновения отстоят друг от друга на время τ. На самом деле некоторые из них наступают раньше, а другие позже этого времени. Более короткие времена встречаются чаще, но их вклад в скорость дрейфа невелик, потому что слишком мала в этом случае вероятность «реального подталкивания вперед». Если принять во внимание существование распределения свободного времени между столкновениями, то мы увидим, что множителю 1 / 2 , полученному во втором случае, неоткуда взяться. Ошибка произошла из-за того, что мы, обманувшись простотой аргументов, попытались слишком просто связать среднюю скорость со средней конечной скоростью. Связь между ними не столь уж проста, поэтому лучше подчеркнуть, что нам нужна средняя скорость сама по себе. В первом случае мы с самого начала искали среднюю скорость и нашли ее верное значение! Быть может, теперь вам понятно, почему мы не пытались найти точного значения всех численных коэффициентов в наших элементарных уравнениях?

Вернемся к нашему предположению о том, что каждое столкновение полностью стирает из памяти молекулы все о былом ее движении и что после каждого столкновения для молекулы начинается новый старт. Предположим, что наша S-молекула — это тяжелый объект на фоне более легких молекул. Тогда уже недостаточно одного столкновения, чтобы отобрать у S-молекулы ее направленный «вперед» импульс. Только несколько последовательных столкновений вносят в ее движение «беспорядок». Итак, вместо нашего первоначального рассуждения предположим теперь, что после каждого столкновения (в среднем через время τ) S-молекула теряет определенную часть своего импульса. Мы не будем исследовать детально, к чему приведет такое предположение. Ясно, что это эквивалентно замене времени τ (среднего времени между столкновениями) другим, более длинным τ, соответствующим среднему «времени забывания», т. е. среднему времени, за которое S-молекула забудет о том, что у нее когда-то был импульс, направленный вперед. Если понимать τ так, то можно использовать нашу формулу (43.15) для случаев, не столь простых, как первоначальный.

ДРЕЙФ ЗАРЯЖЕННЫХ ЧАСТИЦ в плазме, относительно медленное направленное перемещение заряженных частиц под действием различных причин, налагающееся на их основное движение (регулярное или беспорядочное). Дрейф заряженных частиц возникает под действием сил электрического поля и обычно накладывается на тепловое (беспорядочное) движение частиц. Средняя скорость υ ср теплового движения гораздо больше скорости дрейфа υ д. Отношение υ д /υ ср характеризует степень направленности движения заряженных частиц и зависит от типа заряженных частиц и величины сил, вызывающих дрейф.

Для плазмы, находящейся в магнитном поле, характерен дрейф заряженных частиц в скрещенных магнитном и каком-либо другом (электрическом, гравитационном) полях. Заряженная частица, находящаяся в однородном магнитном поле при отсутствии других сил, описывает так называемую ларморовскую окружность радиусом r H = υ/ω Н = cm υ/qH, здесь Н - напряжённость магнитного поля, q - заряд частицы, m и υ - масса и скорость частицы, ω Н - ларморовская (циклотронная) частота, с - скорость света. При наличии каких-либо внешних сил F (электрических, гравитационных, градиентных) на быстрое ларморовское вращение накладывается плавное смещение орбиты в направлении, перпендикулярном магнитному полю и действующей силе. Скорость дрейфа υ д = c/qH 2 .

Т.к. в знаменателе выражения стоит заряд q частицы, то если сила F действует одинаково на ионы и электроны, они будут дрейфовать под действием этой силы в противоположных направлениях - возникает дрейфовый ток плотностью j д = nqυ д = nc/H 2 , где n - концентрация частиц.

В зависимости от вида сил различают несколько типов дрейфа заряженных частиц: электрический, гравитационный, градиентный. Электрическим дрейфом называется дрейф заряженных частиц в однородном постоянном электрическом поле Е, перпендикулярном магнитному полю (скрещенные электрическое и магнитное поля). В случае электрического дрейфа F = qE отсюда υ д Е = c/H 2 т. е. скорость электрического дрейфа не зависит ни от знака и величины заряда, ни от массы частицы и одинакова для ионов и электронов. Таким образом, электрический дрейф заряженных частиц в магнитном поле приводит к движению всей плазмы и не возбуждает дрейфовых токов. Однако сила тяжести и центробежная сила, которые при отсутствии магнитного поля действуют одинаково на все частицы независимо от их заряда, в магнитном поле заставляют электроны и ионы дрейфовать в разные стороны, приводя к появлению дрейфовых токов.

В скрещенных гравитационном и магнитном полях возникает гравитационный дрейф со скоростью υ д г = /gH 2 где g - ускорение силы тяжести. Т. к. υ дг зависит от массы и знака заряда, возникают дрейфовые токи и неустойчивости.

В неоднородном магнитном поле могут возникнуть два вида дрейфа заряженных частиц. Поперечная неоднородность магнитного поля приводит к так называемому градиентному дрейфу со скоростью υ дгр = r H υ ⊥ H/2H, где υ ⊥ - скорость частицы поперёк магнитного поля. При движении частицы со скоростью υ | вдоль искривлённой магнитной силовой линии с радиусом кривизны R возникает дрейф под действием центробежной силы инерции mυ | 2 /R (так называемый центробежный дрейф) со скоростью υ дц = υ | 2 /Rω Н.

Скорости градиентного и центробежного дрейфа заряженных частиц имеют противоположные направления для ионов и электронов, т. е. возникают дрейфовые токи.

Дрейф в неоднородном магнитном поле затрудняет удержание плазмы в тороидальной магнитной ловушке, поскольку он приводит к разделению зарядов, и возникающее электрическое поле заставляет всю плазму двигаться к наружной стенке тора (так называемый тороидальный дрейф).

Лит.: Брагинский С. И. Явления переноса в плазме // Вопросы теории плазмы. М., 1963. Вып. 1; Франк-Каменецкий Д. А. Плазма - четвертое состояние вещества. 4-е изд. М., 1975; Павлов Г. А. Процессы переноса в плазме с сильным кулоновским взаимодействием. М., 1995.

Лекция № 3.

Движение в неоднородном магнитном поле. Дрейфовое приближение - условия применимости, дрейфовая скорость. Дрейфы в неоднородном магнитном поле. Адиабатический инвариант. Движение в скрещенных электрическом и магнитном полях. Общий случай скрещенных поля любой силы и магнитного поля.

III. Дрейфовое движение заряженных частиц

§3.1. Движение в скрещенных однородных полях.

Рассмотрим движение заряженных частиц в скрещенных полях в дрейфовом приближении. Дрейфовое приближение применимо в случае, если можно выделить некоторую одинаковую для всех частиц одного сорта постоянную скорость дрейфа, не зависящую от направления скоростей частиц:
, где
- скорость дрейфа. Покажем, что это можно сделать для движения заряженных частиц в скрещенных
полях. Как было показано ранее, магнитное поле не влияет на движение частиц в направлении магнитного поля. Поэтому скорость дрейфа может быть направлена только перпендикулярно магнитному, т. е. пусть:
, причем
, где
. Уравнение движения:
(по-прежнему в СГС пишем множитель). Тогда для поперечной составляющей скорости:
, подставляем разложение через скорость дрейфа:
, т.е.
. Заменим это уравнение на два для каждой компоненты и с учетом
, т.е.,
, получим уравнение для скорости дрейфа:
. Домножим векторно на магнитное поле, получим:
. С учетом правила, получим
, откуда:

- скорость дрейфа. (3.1)

.

Скорость дрейфа не зависит от знака заряда и от массы, т.е. плазма смещается как целое. Из соотношения (3.1) видно, что при
скорость дрейфа становится больше скорости света, а значит, теряет смысл. И дело не в том, что необходимо учитывать релятивистские поправки. При
будет нарушено условие дрейфового приближения. Условие дрейфового приближения для дрейфа заряженных частиц в магнитном поле заключается в том, что влияние силы, вызывающей дрейф, должно быть незначительно в течение периода обращения частицы в магнитном поле, только в этом случае скорость дрейфа будет постоянна. Это условие можно записать в виде:
, откуда получим условие применимости дрейфового движения в
полях:
.

Для определения возможных траекторий заряженных частиц в
полях рассмотрим уравнение движения для вращающейся компоненты скорости:
, откуда
. Пусть плоскость (x ,y ) перпендикулярна магнитному полю. Векторвращается с частотой
(электрон и ион вращаются в разные стороны) в плоскости (x ,y ), оставаясь постоянным по модулю.

Если начальная скорость частицы попадет в этот круг, то частица будет двигаться по эпициклоиде.

Область 2. Окружность, задаваемая уравнением
, соответствует циклоиде. При вращении векторавектор скорости на каждом периоде будет проходит через начало координат, то есть, скорость будет равна нулю. Эти моменты соответсвуют точкам в основании циклоиды.Траектория аналогична той, что описывает точка, находящаяся на ободе колеса радиуса
. Высота циклоиды равна, то есть пропорциональна массе частицы, поэтому ионы будут двигаться по гораздо более высокой циклоиде, чем электроны, что не соответствует схематическому изображению на рис.3.2.

Область 3. Область вне круга, в которой
, соответсвует трохоиде с петлями (гипоциклоида), высота которой
. Петли соответствуют отрицательным значениям компоненты скорости, когда частицы движутся в обратном направлении.

Область 4: Точка
(
) соответсвует прямой. Ели запустить частицу с начальной скоростью
, то сила действие электрической и магнитной силы в каждый момент времени уравновешено, поэтому частица движется прямолинейно. Можно представить, что все эти траектории соответствуют движению точек находящихся на колесе радиуса
, поэтому для всех траекторий продольный пространственный период
. За период
для всех траекторий происходит взаимная компенсация действия электрического и магнитного поля. Средняя кинетическая энергия частицы остается постоянной
. Важно еще раз отметить, что

Рис. 3.2. Характерные траектории частиц в
полях: 1) трохоида без петель; 2) циклоида; 3) трохоида с петлями; 4) прямая.