Что такое коагуляция белка. Денатурация и коагуляция белков: физико-химическая сущность. Белки зерномучных продуктов

В тканях животных и растений белки, вследствие их легкой превращаемости, находятся в состоянии непоочной устойчивости. Неизмененные белки, находящиеся в таком первичном состоянии непрочной устойчивости, называются «нативными», или «генуинными». Как известно, между белком и водой, входящей в форме «воды набухания», имеется известная связь. При изменении в коллоидном растворе концентрации и природы солей белок может то еще более диспергироваться, то, наоборот, осаждаться. Эти процессы обратимы. Но при определенных условиях концентрации электролитов белки (альбумины, глобулины) могут быть коагулированы. Коагулированный белок хотя и может быть при определенных условиях переведен в раствор, но его свойства не будут тождественными оо свойствами «наттаного», неизмененного белка.

Коагуляция, ведущая к изменению физико-химических свойств белка, называется денатурацией. Такое изменение свойств белка, связанное с коагуляцией, может происходить в силу разных причин: влияние тепла, света, крепких кислот, щелочей, солей тяжелых металлов, алкоголя, замораживания и в результате воздействия механическими средствами.

Денатурация теплом характерна для двух групп белков - альбуминов и глобулинов, но наблюдается и у других белков. Так, казеиноген при нагревании до 90-100° изменяется с частичной потерей фосфора. Денатурация зависит от температуры, времени, концентрации водородных ионов, от концентрации и природы электролитов. При денатурации происходят не только коллоидные изменения в состоянии вещества, но и структурные изменения в молекулах растворенных белков. Повышение температуры и

присутствие кислот и щелочей способствуют этим изменениям в структурах молекул. Как выше было сказано, казеиноген при высокой температуре денатурируется с частичной потерей фосфора. После денатурации сырого яичного белка нагреванием происходят изменения состояния серы в белковой молекуле.

При современных способах обезвоживания молока, яиц, плодов и овощей стремятся ограничить тепловую денатурацию и тем самым сохранить обратимость свойств белка при использовании этих продуктов для пищевых целей.

Денатурация ультрафиолетовыми лучами и солнечным светом сходна с денатурацией теплом.

Денатурация кислотами, щелочами и солями тяжелых металлов вызывает превращение растворимых белков (альбуминов, глобулинов и казеина) в нерастворимые формы. Чем выше температура, тем при меньшей концентрации рН наступает денатурация. Молоко с повышенной кислотностью при невысокой температуре не свертывается, при нагревании же такого молока наступает свертывание белков молока. При воздействии на белок алкоголя или ацетона белки превращаются полностью в нерастворимую форму.

При действии на белки формальдегида образуются соединения, обладающие отличными от белков свойствами. Казеин под влиянием формальдегида превращается в рогоподобное вещество.

При замораживании белки мышечной ткани частично денатурируются, причем рН, как и при тепловой денатурации, оказывает сильное влияние на скорость денатурации. При рН = 5-6 скорость денатурации быстро возрастает, при рН = 6-7 денатурация идет медленно.

При сильном механическом воздействии на раствор белка в форме встряхивания наступает денатурация с появлением белковых пленок с пузырьками пены на них. Денатурация некоторых белков может наступать при очень высоком давлении.

Лекция №3-4

Тема «Физико-химические изменения белковых веществ при кулинарной

Обработке продуктов: денатурация, коагуляция, деструкция»

1. Денатурация и коагуляция белков: физико-химическая сущность.

2. Деструкция белков: физико-химическая сущность.

3. Влияние изменения белков на их пищевую ценность.

4. Состав, строение мышечной ткани мяса и изменения, протекающие при тепловой обработке

5. Состав, строение мышечной ткани рыбы и изменения, протекающие при тепловой обработке.

6. Изменение белков яиц при тепловой обработке.

7. Проблема белковой недостаточности и пути ее решения.

Денатурация и коагуляция белков: физико-химическая сущность

Денатурация – нарушение пространственной структуры белковой молекулы под воздействием внешних факторов, чаще всего нагревания, которые приводят к изменениям природных свойств белка. С физической точки зрения денатурацию рассматривают как разупорядочение конформации полипептидной цепи без изменения первичной структуры. Денатурация может быть тепловой (в результате нагревания), поверхностной (при встряхивании, взбивании), кислотная или щелочная (в результате воздействия кислот и щелочей). Тепловая денатурация сопровождает изменение пищевых продуктов практически во всех процессах кулинарной обработки белоксодержащих продуктов.

Механизм тепловой денатурации : при комнатной температуре определенная пространственная укладка белковой глобулы сохраняется за счет поперечных связей между участками полипептидной цепи: водородных, дисульфидных (-S-S-). Эти связи не прочны, но обладают достаточной энергией, чтобы удерживать полипептидную цепь в свернутом состоянии. При нагревании белков усиливается тепловое движение атомов и полипептидных цепей белковых молекул, в результате поперечные связи разрушаются, ослабляются гидрофобные взаимодействия между боковыми цепями. В результате полипептидная цепь разворачивается, важную роль при этом играет вода: она проникает в участки белковой молекулы и способствует развертыванию цепи. Полностью обезвоженные белки, выделенные в кристаллическом виде, очень устойчивы и не денатурируют даже при длительном нагревании до температуры 100ºС и выше. Развертывание белковой глобулы сопровождается образованием новых поперечных связей, особенно активными при этом становятся дисульфидные.



Денатурация глобулярных белков протекает путем развертывания белковой глобулы и последующем ее сворачивании по новому типу. Прочные ковалентные связи при такой перестройке не разрушаются.

Денатурация фибриллярных белков (например, коллагена соединительной ткани мяса): связи, удерживающие пространственную структуру в виде спирали разрываются и нить белка сокращается, при длительной тепловой обработке коллагеновые волокна превращаются в стекловидную массу.

Денатурация сопровождается изменением важнейших свойств белка: потерей биологической активности (инактивация ферментов), видовой специфичности (изменение окраски, например, мяса), способности к гидратации (при изменении конформации на поверхности белковой глобулы появляются гидрофобные группы, а гидрофильные оказываются блокированными в результате образования внутримолекулярных связей), улучшением атакуемости протеолитическими ферментами, повышением реакционной способности белков, агрегированием белковых молекул. А

Агрегирование – взаимодействием денатурированных молекул белка с образованием более крупных частиц. Внешне это выражается по-разному: в малоконцентрированных белковых растворах – образование пены (хлопья на поверхности бульонов), в более концентрированных белковых растворах – образование сплошного геля при их одновременном уплотнении и отделении жидкости в окружающую среду (дегидратации). Так происходит денатурация белков в мясе, рыбе, яйце. Величина дегидратации зависит от кислотности среды – при подкислении влаги теряется меньше, так при мариновании мяса птицы, рыбы изделия получаются более сочными.

В неденатурированном состоянии белки представляют собой золь (раствор),в результате денатурации происходит переход раствора в студень (гель). Если белок находится в высококонцентрированном состоянии, то в процессе варки образуется сплошной студень, который охватывает весь объем системы (например, белок яйца).

Коагуляция – переход золя в гель, то есть из одного коллоидного состояния в другое. Между процессами денатурации и коагуляции нельзя ставить знак равенства, хотя в большинстве процессов коагуляция сопровождает денатурацию, но иногда и нет. Например, при кипячении молока лактоальбумин и лактоглобулин денатурируют и коагулируют, а казеин в тоже время не меняет своего коллоидного состояния.

Каждый белок имеет определенную температуру денатурации, Например, для белков рыбы низший температурный уровень денатурации, при котором начинаются видимые денатурационные изменения, состаялет около 30ºС, яичного белка – 55ºС.

Изменение рН среды оказывает влияние на температуру денатурации: при значениях рн близких к ИТБ, денатурация происходит при более низкой температуре и сопровождается максимальной дегидратацией белка. Создание кислой среды при тепловой обработке способствует снижению дегидратации и продукт получается более сочным.

Температура денатурации повышается в присутствии других более термостабильных белков и некоторых веществ небелковой природы, например, сахарозы.

Коагуляция молока – это ни что иное как превращение его в гель (сгусток), то есть его свертывание.

Представляет собой связанную твердую фракцию белков молока с присутствием растворенных жиров, которую потом можно легко отделить от жидкой (сыворотки).

Коагуляция белка молока бывает скрытой и истинной. При скрытой коагуляции мицеллы связываются друг с другом не всей поверхностью, а только на некоторых ее участках, образуя пространственную мелкоячеистую структуру, которая называется гелем.

При дестабилизации всех или большинства частиц дисперсной фазы гель охватывает весь объем дисперсной среды (исходного молока).

Скрытую коагуляцию называют просто коагуляцией, гелеобразованием или свертыванием.

Истинная коагуляция заключается в полном слиянии коллоидных частиц и выпадении дисперсной фазы в осадок или всплывании.

Коагулянты — это вещества, которые выполняют несколько функций, но самое главное — формируют желеобразный сгусток — отделяют плотные фракции молока от жидких.

Для этой цели раньше использовали только , который получают из желудков телят.

Именно этот фермент в желудках телят (химозин) помогает им сквашивать молоко матери для питания.

В современном мире для формирования сгустка (также его называют калья) используют:

  • Телячий сычужный фермент (сычуг), изготовленный из желудков телят (молокосвертывающий фермент — химозин).
    Он бывает порошкообразным, пастообразным и жидким. Именно химозин (из телячьего сычужного фермента или искусственно выращенный химозин) лучше всего подходит для производства твердых и полумягких сыров.
  • Пепсины – экстракты желудков других домашних животных. Главным образом используют коровий или , также в продаже есть свиной и куриный пепсины, однако они очень чувствительны к кислотности и нестабильны. Их использование не рекомендовано.
    Коровий пепсин (особенно в смеси с химозином) можно использовать для производства рассольных сыров (брынза, сулугуни). Для производства мягких, полумягких и твердых сыров пепсины использовать не рекомендуется.
  • Микробиальный реннин (микробиальный пепсин) – некоторые дрожжи, плесени и грибы естественным образом продуцируют пригодные для коагуляции ферменты. Наиболее широко используются ферменты, полученные из микроскопического гриба Rhizomucor meihei (прежнее название Mucor meihei). Это вегетарианский коагулянт. Примером такого коагулянта может служить .
  • Химозин, полученный путем ферментации (рекомбинированный химозин) – ген телячьего химозина был внедрен в геном нескольких микроорганизмов-хозяев (Kluyveromyces lactis, Aspergilleus niger, Escherichia), в результате чего они стали способны при ферментации продуцировать протеин, полностью идентичный телячьему химозину.
    Этот фермент прекрасно зарекомендовал себя при изготовлении всех видов сыров, где обычно использовался телячий сычужный фермент. Это вегетарианский коагулянт.

Для приготовления свежих сыров, творога, рассольных сыров можно использовать любой коагулянт.

Однако для полумягких и твердых сыров подходит только химозин (животный сычужный фермент или рекомбинированный химозин), поскольку он вместе с молочнокислыми бактериями (заквасками) участвует в формировании консистенции сыра, его вкуса и способности к сохранению длительное время.

При коагуляции белков молочный жир и вода с растворенными веществами (сыворотка) достаточно прочно захватываются образующимся гелем, при осаждении белков только небольшое количество молочного жира и водной фазы может быть механически удержано осадком.

Выработку и созревание сычужных сыров ведут при невысоких температурах и активной кислотности, называемых физиологическими, чтобы обеспечить возможность осуществления биологической трансформации компонентов молока с минимальными потерями пищевой ценности.

При использовании термокислотного метода отделяют жировую фазу молока сепарированием, осаждают белки обезжиренного молока и смешивают их со сливками.

Осаждение заключается в быстром подкислении молока до более низкого, чем изоэлектрическая точка, уровня добавлением кислой сыворотки, кислого молока, лимонного сока, уксусной кислоты и нагревании его до высоких температур (90-95° С).

Таким образом, при энзиматической коагуляции казеин и жир молока концентрируются одновременно, при термокислотном — в результате двух процессов: центробежного и осаждения.

Кислотный метод заключается в свертывании молока в изоэлектрической точке казеина (pH 4,6) путем медленного образования микроорганизмами кислот или внесения в молоко кислот (обычно соляной), или ацидогенов (например, глюколактона); он применяется в производстве свежих сыров или сыров с короткими сроками созревания.

Энзимы, участвующие в созревании сычужных сыров, не проявляют активности в кислотных сырах из-за низкого pH. Степень трансформации белков и липидов молока в кисломолочных сырах ниже, вкусовой букет уже, чем в сычужных сырах.

Кислотно-энзиматический метод является вариантом кислотной коагуляции, с внесением в молоко небольшого количества молокосвертывающих энзимов, недостаточного для энзиматической коагуляции при pH свежего молока.

В этом случае коагуляция молока происходит при pH 5,1-5,4 (в изоточке параказеина). Добавление молокосвертывающих энзимов благоприятно сказывается на скорости свертывания, прочности сгустка и выделении сыворотки, однако при pH кислотносычужной коагуляции молока происходят радикальные изменения мицелл казеина, что резко изменяет структуру сгустка и сыра по сравнению с таковыми при сычужном свертывании.

Сгусток, образующийся при производстве сыров кислотно-энзиматическим методом, по своим свойствам ближе к кислотному сгустку, качество продуктов — ближе к кисломолочным сырам.

Определенное распространение в производстве рассольных и некоторых других сыров получило концентрирование молока ультрафильтрацией.


Под коагуляцией понимают сближение и склеивание белковых частиц, в результате чего увеличивается их размер, и они легко выпадают в осадок. Явление коагуляции может быть обратимым, когда при устранении факторов коагуляции белок-коллоид может снова возвратиться к своему первоначальному состоянию. При подогревании растворов белка выше С большинство белков коагулирует, особенно легко этот процесс протекает в изоэлектрической точке. При этом разрушается гидратационная оболочка белковой частицы, и третичная структура молекулы белка теряет гидрофильность, становится гидрофобной и легко осаждается. Соли тяжёлых металлов (Си,Pb, Ag) в небольших концентрациях способны вызывать коагуляцию белков в их растворах. Коагуляция белков как под давлением ионов тяжёлых металлов, так и под действием высокой температуры – процесс необратимый. Коагуляцию белка можно вызвать с помощью концентрированных растворов некоторых минеральных кислот (азотная, серная, соляная). Механизм действия этих веществ сводится к подавлению электрического заряда, дегидратации и частичного гидролиза белковой частицы. Под влиянием солей щелочных металлов (NaCl, ) происходит обратимая коагуляция и осаждение белков, которое называется высаливанием. Механизм этой коагуляции состоит в том, что приведённые электролиты нейтрализуют электрический заряд коллоидных частиц белка и, как сильные водоотнимающие средства, разрушают их гидратационную оболочку. Под влиянием высоких или низких температур, изменений рН, действия ионов тяжёлых металлов и некоторых химических веществ в молекулах белков происходят изменения, называемые денатурацией. Наиболее ярким проявлением денатурации глобулярных белков является уменьшение их растворимости и выпадение в осадок. У многих белков денатурация наступает в результате нагревания их до 50-60 С, а некоторые белки денатурируют при охлаждении до температуры ниже 10-15 С. При денатурации белки теряют свою биологическую активность.

13.Классификация белков. Простые белки. Сложные белки – протеиды.

По химическому строению белки разделяются на простые (протеины) и сложные (протеиды). Простые белки состоят только из аминокислот, а сложные при гидролизе распадаются на аминокислоты и различные вещества небелкового характера. К группе простых белков относят альбумины, глобулины, гистоны, протамины, протеиноиды, глютелины и проламины. Альбумины – наиболее распространённая группа белков, они встречаются во всех тканях животных и растений, хорошо растворимы в воде и ненасыщенных солевых растворах. Глобулины – наиболее многочисленная группа белков в организме животных. Гистоны – группа ядерных белков, в состав молекул которых входит от 20 до 30% диаминомонокарбоновых кислот (лизин, аргинин) и циклической аминокислоты – гистидина. Гистоны в значительной степени обусловливают уникальную структуру ДНК и дезоксинуклеопротеидов в ядре, что служит необходимым условием для биосинтеза белков. Протамины – белки, отличающиеся высоким содержанием диаминомонокарбоновых кислот (от 50 до 80%). Протамины, как и гистоны, составляют белковую часть нуклеопротеидов. Протеиноиды – белки опорных тканей – костей, хрящей, сухожилий, связок, шерсти, волос, копыт. Проламины – группа белков растительного происхождения, встречаются главным образом в семенах злаков. Отличительной чертой проламинов является хорошая растворимость в 60-80% этиловом спирте. Глютелины – большая группа белков растительного происхождения, которые растворимы только в слабых растворах щелочей (0,2%). Их обнаруживают вместе с проламинами в семенах злаковых растений.К группе сложных белков относят: нуклеопротеиды, хромопротеиды, фосфопротеиды, гликопротеиды, липопротеиды, металлопротеиды и белки ферменты. Нуклеопротеиды построены из простого белка и нуклеиновых кислот. Белки, входящие в состав нуклеопротеидов, чаще всего представлены гистонами и протаминами. Хромопротеиды построены из простого белка и какого-либо окрашенного соединения небелкового характера. Фосфопротеиды построены из простого белка и остатков фосфорной кислоты. Гликопротеиды – группа сложных белков, которые построены из простого белка и небелковой части, состоящей из углеводов, производных углеводов (гексуроновые кислоты), серной и уксусной кислот.

Для выделения сывороточных белков необходимо изменить нативную структуру белка. При этом изменении (денатурации) нарушается его структура. Белковая глобула в процессе денатурации развертывается. Процесс сопровождается изменением конфигурации, гидратации и агрегатного состояния частиц. Белковая глобула в процессе денатурации становится менее устойчивой.

Устойчивость глобул белков молочной сыворотки обусловлена конформацией частиц, зарядом и наличием гидратной оболочки (сольватного слоя). Для выделения белков необходимо нарушить равновесие трёх или хотя бы двух указанных факторов устойчивости .

В свежей молочной сыворотке белковые частицы находятся в нативном состоянии. При изменении нативного состояния белка (денатурации) прежде всего нарушается его структура. Белковая глобула в процессе денатурации развёртывается, для чего необходимо нарушить от 10 до 20% связей, участвующих в ее образовании. Процесс денатурации сопровождается изменением конфигурации, гидратации и агрегатного состояния частиц. Белковая глобула в результате денатурации становится менее устойчивой.

Для преодоления потенциальных барьеров устойчивости белковых частиц можно применять различные способы денатурации: нагревание, облучение, механическое воздействие, введение десольватирующих веществ, окислителей и детергентов, изменение реакции среды. Введение в растворы некоторых веществ способствует тепловой денатурации .

Классификация методов коагулирования сывороточных, рассматриваемых в данной работе, представлена на схеме (рис. 3).

Рис. 3.

В конечном счете, к выделению белков приводят вторичные явления после денатурации, такие как ассоциация развернувшихся глобул и химическое изменение их. Здесь на первый план выступает образование межмолекулярных связей и агрегация в противоположность внутримолекулярным процессам, происходящим при денатурации.

В целом процесс выделения белков молочной сыворотки можно охарактеризовать как коагуляцию.

С учетом целесообразности извлечения и использования белков коагуляцию сывороточных белков необходимо закрепить во избежание процесса ренатурации (восстановления нативной структуры белков), а также максимально возможного ограничения распада образующихся агрегатов.

Однако следует учитывать, что в результате тепловой денатурации кроме разрыва водородных связей белковой частицы происходит их дегидратация, что облегчает последующую агрегацию белковые частиц. Ионы-коагулянты (кальций, цинк, и др.), активно сорбируясь на поверхности белковой частицы, обеспечивают коагуляцию, а при значительных дозах могут привести к высаливанию белков.