Примеры решений уравнения теплопроводности. Теплопроводность. математическое описание, частные задачи теплопроводности Уравнение теплопроводности фурье примеры решения

Уравнение теплопроводности для нестационарного случая

нестационарным , если температура тела зависит как от положения точки, так и от времени.

Обозначим через и = и (М , t ) температуру в точке М однородного тела, ограниченного поверхностью S , в момент времени t . Известно, что количество теплоты dQ , поглощаемой за время dt , выражается равенством

где dS − элемент поверхности, k − коэффициент внутренней теплопроводности, − производная функции и по направлению внешней нормали к поверхности S . Так как распространяется в направлении понижения температуры, то dQ > 0, если > 0, и dQ < 0, если < 0.

Из равенства (1) следует

Теперь найдем Q другим способом. Выделим элемент dV объема V , ограниченного поверхностью S . Количество теплоты dQ , получаемой элементом dV за время dt , пропорционально повышению температуры в этом элементе и массе самого элемента, т.е.

где плотность вещества, коэффициент пропорциональности, называемый теплоемкостью вещества.

Из равенства (2) следует

Таким образом,

где . Учитывая, что = , , получим

Заменяя правую часть равенства с помощью формулы Остроградского – Грина, получим

для любого объема V . Отсюда получаем дифференциальное уравнение

которое называют уравнением теплопроводности для нестационарного случая .

Если тело есть стержень, направленный по оси Ох , то уравнение теплопроводности имеет вид

Рассмотрим задачу Коши для следующих случаев.

1. Случай неограниченного стержня. Найти решение уравнения (3) (t > 0, ), удовлетворяющее начальному условию . Используя метод Фурье, получим решение в виде

− интеграл Пуассона.

2. Случай стержня , ограниченного с одной стороны. Решение уравнения (3), удовлетворяющее начальному условию и краевому условию , выражается формулой

3. Случай стержня , ограниченного с двух сторон. Задача Коши состоит, чтобы при х = 0 и х = l найти решение уравнения (3), удовлетворяющее начальному условию и двум краевым условиям, например, или .

В этом случае частное решение ищется в виде ряда

для краевых условий ,

и в виде ряда

для краевых условий .

Пример. Найти решение уравнения

удовлетворяющее начальным условиям

и краевым условиям .

□ Решение задачи Коши будем искать в виде

Таким образом,

Уравнение теплопроводности для стационарного случая

Распределение тепла в теле называют стационарным , если температура тела и зависит от положения точки М (х , у , z ), но не зависит от времени t , т.е.


и = и (М ) = и (х , у , z ).

В этом случае 0 и уравнение теплопроводности для стационарного случая обращается в уравнение Лапласа

которое часто записывают в виде .

Чтобы температура и в теле определялась однозначно из этого уравнения, нужно знать температуру на поверхности S тела. Таким образом, для уравнения (1) краевая задача формулируется следующим образом.

Найти функцию и , удовлетворяющую уравнению (1) внутри объема V и принимающую в каждой точке М поверхности S заданные значения

Эта задача называется задачей Дирихле или первой краевой задачей для уравнения (1).

Если на поверхности тела температура неизвестна, а известен тепловой поток в каждой точке поверхности, который пропорционален , то на поверхности S вместо краевого условия (2) будем иметь условие

Задача нахождения решения уравнения (1), удовлетворяющего краевому условию (3), называется задачей Неймана или второй краевой задачей .

Для плоских фигур уравнение Лапласа записывается в виде

Такой же вид имеет уравнение Лапласа и для пространства, если и не зависит от координаты z , т.е. и (М ) сохраняет постоянное значение при перемещении точки М по прямой, параллельной оси Oz .

Заменой , уравнение (4) можно преобразовать к полярным координатам

С уравнением Лапласа связано понятие гармонической функции. Функция называется гармонической в области D , если в этой области она непрерывна вместе со своими производными до второго порядка включительно и удовлетворяет уравнению Лапласа.

Пример. Найти стационарное распределение температуры в тонком стержне с теплоизолированной боковой поверхностью, если на концах стержня , .

□ Имеем одномерный случай. Требуется найти функцию и , удовлетворяющую уравнению и краевым условиям , . Общее уравнение указанного уравнения имеет вид . Учитывая краевые условия, получим

Таким образом, распределение температуры в тонком стержне с теплоизолированной боковой поверхностью линейно. ■

Задача Дирихле для круга

Пусть дан круг радиуса R с центром в полюсе О полярной системы координат. Надо найти функцию , гармоническую в круге и удовлетворяющую на его окружности условию , где − заданная функция, непрерывная на окружности. Искомая функция должна удовлетворять в круге уравнению Лапласа

Используя метод Фурье, можно получить

− интеграл Пуассона.

Пример. Найти стационарное распределение температуры на однородной тонкой круглой пластинке радиуса R , верхняя половина поддерживается при температуре , а нижняя – при температуре .

□ Если , то , а если , то . Распределение температуры выражается интегралом

Пусть точка расположеиа в верхнем полукруге, т.е. ; тогда изменяется от до , и этот интервал длины не содержит точек . Поэтому введем подстановку , откуда , . Тогда получим

Так правая часть отрицательна, то и при удовлетворяет неравенствам . Для этого случая получаем решение

Если же точка расположена в нижнем полукруге, т.е. , то интервал изменения содержит точку , но не содержит 0, и можно сделать подстановку , откуда , , Тогда для этих значений имеем

Проведя аналогичные преобразования, найдем

Так как правая часть теперь положительна , то . ■

Метод конечных разностей для решения уравнения теплопроводности

Пусть требуется найти решение уравнения

удовлетворяющее:

начальному условию

и краевым условиям

Итак, требуется найти решение уравнения (1), удовлетворяющее условиям (2), (3), (4), т.е. требуется найти решение в прямоугольнике, ограниченном прямыми , , , , если заданы значения искомой функции на трех его сторонах , , .

Построим прямоугольную сетку, образованную прямыми

− шаг вдоль оси Ох ;

− шаг вдоль оси Оt .

Введем обозначения:

Из понятия конечных разностей можно записать

аналогично

Учитывая формулы (6), (7) и введенные обозначения, запишем уравнение (1) в виде

Отсюда получим расчетную формулу

Из (8) следует, что если известны три значения к k -ом слое сетки: , , , то можно определить значение в (k + 1)-ом слое.

Начальное условие (2) позволяет найти все значения на прямой ; краевые условия (3), (4) позволяют найти значения на прямых и . По формуле (8) находим значения во всех внутренних точках следующего слоя, т.е. для k = 1. Значения искомой функции в крайных точках известны из граничных условий (3), (4). Переходя от одного слоя сетки к другому, определяем значения искомого решения во всех узлах сетки. ;

Механика сплошных сред
Сплошная среда
См. также: Портал:Физика

Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.

В смысле интерпретации при решении уравнения диффузии речь идет о нахождении зависимости концентрации вещества (или иных объектов) от пространственных координат и времени, причем задан коэффициент (в общем случае также зависящий от пространственных координат и времени), характеризующий проницаемость среды для диффузии. При решении уравнения теплопроводности речь идет о нахождении зависимости температуры среды от пространственных координат и времени, причем задана теплоёмкость и теплопроводность среды (также в общем случае неоднородной).

Физически в том и другом случае предполагается отсутствие или пренебрежимость макроскопических потоков вещества. Таковы физические рамки применимости этих уравнений. Также, представляя непрерывный предел указанных задач (то есть не более, чем некоторое приближение), уравнение диффузии и теплопроводности в общем не описывают статистических флуктуаций и процессов, близких по масштабу к длине и времени свободного пробега, также весьма сильно отклоняясь от предполагаемого точного решения задачи в том, что касается корреляций на расстояниях, сравнимых (и больших) с расстояниями, проходимыми звуком (или свободными от сопротивления среды частицами при их характерных скоростях) в данной среде за рассматриваемое время.

Это в подавляющей части случаев сразу же означает и то, что уравнения диффузии и теплопроводности по области применимости далеки от тех областей, где становятся существенными квантовые эффекты или конечность скорости света, то есть в подавляющей части случаев не только по своему выводу, но и принципиально, ограничиваются областью классической ньютоновской физики.

  • В задачах диффузии или теплопроводности в жидкостях и газах, находящихся в движении, вместо уравнения диффузии применяется уравнение переноса , расширяющее уравнение диффузии на тот случай, когда пренебрежением макроскопическим движением недопустимо.
  • Ближайшим формальным, а во многом и содержательным, аналогом уравнения диффузии является уравнение Шрёдингера , отличающееся от уравнения диффузии множителем мнимая единица перед производной по времени. Многие теоремы о решении уравнения Шрёдингера и даже некоторые виды формальной записи его решений прямо аналогичны соответствующим теоремам об уравнении диффузии и его решениях, однако качественно их решения различаются очень сильно.

Общий вид

Уравнение обычно записывается так:

∂ φ (r , t) ∂ t = ∇ ⋅ [ D (φ , r) ∇ φ (r , t) ] , {\displaystyle {\frac {\partial \varphi (\mathbf {r} ,t)}{\partial t}}=\nabla \cdot {\big [}D(\varphi ,\mathbf {r})\ \nabla \varphi (\mathbf {r} ,t){\big ]},}

где φ(r , t ) - плотность диффундирующего вещества в точке r и во время t и D (φ, r ) - обобщённый коэффициент диффузии для плотности φ в точке r ; ∇ - оператор набла . Если коэффициент диффузии зависит от плотности - уравнение нелинейно, в противном случае - линейно.

Если D - симметричный положительно определённый оператор , уравнение описывает анизотропную диффузию:

∂ φ (r , t) ∂ t = ∑ i = 1 3 ∑ j = 1 3 ∂ ∂ x i [ D i j (φ , r) ∂ φ (r , t) ∂ x j ] . {\displaystyle {\frac {\partial \varphi (\mathbf {r} ,t)}{\partial t}}=\sum _{i=1}^{3}\sum _{j=1}^{3}{\frac {\partial }{\partial x_{i}}}\left.}

Если D постоянное, то уравнение сводится к линейному дифференциальному уравнению:

∂ ϕ (r , t) ∂ t = D ∇ 2 ϕ (r , t) , {\displaystyle {\frac {\partial \phi (\mathbf {r} ,t)}{\partial t}}=D\nabla ^{2}\phi (\mathbf {r} ,t),}

История происхождения

Нестационарное уравнение

Нестационарное уравнение диффузии классифицируется как параболическое дифференциальное уравнение . Оно описывает распространение растворяемого вещества вследствие диффузии или перераспределение температуры тела в результате теплопроводности .

Одномерный случай

В случае одномерного диффузионного процесса с коэффициентом диффузии (теплопроводности) D {\displaystyle D} уравнение имеет вид:

∂ ∂ t c (x , t) = ∂ ∂ x D ∂ ∂ x c (x , t) + f (x , t) . {\displaystyle {\frac {\partial }{\partial t}}c(x,\;t)={\frac {\partial }{\partial x}}D{\frac {\partial }{\partial x}}{c(x,\;t)}+f(x,\;t).}

При постоянном D {\displaystyle D} приобретает вид:

∂ ∂ t c (x , t) = D ∂ 2 ∂ x 2 c (x , t) + f (x , t) , {\displaystyle {\frac {\partial }{\partial t}}c(x,\;t)=D{\frac {\partial ^{2}}{\partial x^{2}}}{c(x,\;t)}+f(x,\;t),}

где c (x , t) {\displaystyle c(x,\;t)} - концентрация диффундирующего вещества, a f (x , t) {\displaystyle f(x,\;t)} - функция, описывающая источники вещества (тепла).

Трёхмерный случай

В трёхмерном случае уравнение приобретает вид:

∂ ∂ t c (r → , t) = (∇ , D ∇ c (r → , t)) + f (r → , t) , {\displaystyle {\frac {\partial }{\partial t}}c({\vec {r}},\;t)=(\nabla ,\;D\nabla c({\vec {r}},\;t))+f({\vec {r}},\;t),}

где ∇ = (∂ x , ∂ y , ∂ z) {\displaystyle \nabla =(\partial _{x},\;\partial _{y},\;\partial _{z})} - оператор набла , а (,) {\displaystyle (\;,\;)} - скалярное произведение. Оно также может быть записано как

∂ t c = d i v (D g r a d c) + f , {\displaystyle \partial _{t}c=\mathbf {div} \,(D\,\mathbf {grad} \,c)+f,}

а при постоянном D {\displaystyle D} приобретает вид:

∂ ∂ t c (r → , t) = D Δ c (r → , t) + f (r → , t) , {\displaystyle {\frac {\partial }{\partial t}}c({\vec {r}},\;t)=D\Delta c({\vec {r}},\;t)+f({\vec {r}},\;t),}

где Δ = ∇ 2 = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 {\displaystyle \Delta =\nabla ^{2}={\frac {\partial ^{2}}{\partial x^{2}}}+{\frac {\partial ^{2}}{\partial y^{2}}}+{\frac {\partial ^{2}}{\partial z^{2}}}} - оператор Лапласа .

n -мерный случай

N {\displaystyle n} -мерный случай - прямое обобщение приведенного выше, только под оператором набла, градиентом и дивергенцией, а также под оператором Лапласа надо понимать n {\displaystyle n} -мерные версии соответствующих операторов:

∇ = (∂ 1 , ∂ 2 , … , ∂ n) , {\displaystyle \nabla =(\partial _{1},\;\partial _{2},\;\ldots ,\;\partial _{n}),} Δ = ∇ 2 = ∂ 1 2 + ∂ 2 2 + … + ∂ n 2 . {\displaystyle \Delta =\nabla ^{2}=\partial _{1}^{2}+\partial _{2}^{2}+\ldots +\partial _{n}^{2}.}

Это касается и двумерного случая n = 2 {\displaystyle n=2} .

Мотивация

A.

Обычно уравнение диффузии возникает из эмпирического (или как-то теоретически полученного) уравнения, утверждающего пропорциональность потока вещества (или тепловой энергии) разности концентраций (температур) областей, разделённых тонким слоем вещества заданной проницаемости, характеризуемой коэффициентом диффузии (или теплопроводности):

Φ = − ϰ ∂ c ∂ x {\displaystyle \Phi =-\varkappa {\frac {\partial c}{\partial x}}} (одномерный случай), j = − ϰ ∇ c {\displaystyle \mathbf {j} =-\varkappa \nabla c} (для любой размерности),

в сочетании с уравнением непрерывности, выражающим сохранение вещества (или энергии):

∂ c ∂ t + ∂ Φ ∂ x = 0 {\displaystyle {\frac {\partial c}{\partial t}}+{\frac {\partial \Phi }{\partial x}}=0} (одномерный случай), ∂ c ∂ t + d i v j = 0 {\displaystyle {\frac {\partial c}{\partial t}}+\mathrm {div} \,\mathbf {j} =0} (для любой размерности),

с учетом в случае уравнения теплопроводности ещё теплоёмкости (температура = плотность энергия / удельная теплоемкость).

  • Здесь источник вещества (энергии) в правой части опущен, но он, конечно же, может быть легко туда помещён, если в задаче есть приток (отток) вещества (энергии).
  • Также предполагается, что на поток диффундирующего вещества (примеси) не действуют никакие внешние силы, в том числе сила тяжести (пассивная примесь).

B.

Кроме того, оно естественно возникает как непрерывный предел аналогичного разностного уравнения, возникающего в свою очередь при рассмотрении задачи о случайном блуждании на дискретной решётке (одномерной или n {\displaystyle n} -мерной). (Это простейшая модель; в более сложных моделях случайных блужданий уравнение диффузии также возникает в непрерывном пределе). Простейшей интерпретацией функции c {\displaystyle c} в этом случае служит количество (или концентрация) частиц в данной точке (или вблизи неё), причём каждая частица движется независимо от остальных без памяти (инерции) своего прошлого (в несколько более сложном случае - с ограниченной по времени памятью).

Решение

c (x , t) = ∫ − ∞ + ∞ c (x ′ , 0) c f (x − x ′ , t) d x ′ = ∫ − ∞ + ∞ c (x ′ , 0) 1 4 π D t exp ⁡ (− (x − x ′) 2 4 D t) d x ′ . {\displaystyle c(x,\;t)=\int \limits _{-\infty }^{+\infty }c(x",\;0)c_{f}(x-x",\;t)\,dx"=\int \limits _{-\infty }^{+\infty }c(x",\;0){\frac {1}{\sqrt {4\pi Dt}}}\exp \left(-{\frac {(x-x")^{2}}{4Dt}}\right)\,dx".}

Физические замечания

Так как приближение, реализуемое уравнениями диффузии и теплопроводности, принципиально ограничивается областью низких скоростей и макроскопических масштабов (см. выше), то неудивительно, что их фундаментальное решение на больших расстояниях ведёт себя не слишком реалистично, формально допуская бесконечное распространение воздействия в пространстве за конечное время; надо при этом заметить, что величина этого воздействия так быстро убывает с расстоянием, что этот эффект как правило в принципе ненаблюдаем (например, речь идёт о концентрациях много меньше единицы).

Впрочем, если речь идёт о ситуациях, когда могут быть экспериментально измерены столь маленькие концентрации, и это для нас существенно, нужно пользоваться по меньшей мере не дифференциальным, а разностным уравнением диффузии, а лучше - и более подробными микроскопической физической и статистической моделями, чтобы получить более адекватное представление о реальности в этих случаях.

Стационарное уравнение

В случае, когда ставится задача по нахождению установившегося распределения плотности или температуры (например, в случае, когда распределение источников не зависит от времени), из нестационарного уравнения выбрасывают члены уравнения, связанные со временем. Тогда получается стационарное уравнение теплопроводности , относящееся к классу эллиптических уравнений . Его общий вид:

− (∇ , D ∇ c (r →)) = f (r →) . {\displaystyle -(\nabla ,\;D\nabla c({\vec {r}}))=f({\vec {r}}).} Δ c (r →) = − f (r →) D , {\displaystyle \Delta c({\vec {r}})=-{\frac {f({\vec {r}})}{D}},} Δ c (r →) = 0. {\displaystyle \Delta c({\vec {r}})=0.}

Постановка краевых задач

  • Задача с начальными условиями (задача Коши) о распределении температуры на бесконечной прямой

Если рассматривать процесс теплопроводности в очень длинном стержне, то в течение небольшого промежутка времени влияние температур на границах практически отсутствует, и температура на рассматриваемом участке зависит лишь от начального распределения температур.

и , удовлетворяющее условию u (x , t 0) = φ (x) (− ∞ < x < + ∞) {\displaystyle u(x,\;t_{0})=\varphi (x)\quad (-\infty , где - заданная функция.

  • Первая краевая задача для полубесконечного стержня

Если интересующий нас участок стержня находится вблизи одного конца и значительно удалён от другого, то мы приходим к краевой задаче, в которой учитывается влияние лишь одного из краевых условий.

Найти решение уравнения теплопроводности в области − ∞ ⩽ x ⩽ + ∞ {\displaystyle -\infty \leqslant x\leqslant +\infty } и t ⩾ t 0 {\displaystyle t\geqslant t_{0}} , удовлетворяющее условиям

{ u (x , t 0) = φ (x) , (0 < x < ∞) u (0 , t) = μ (t) , (t ⩾ t 0) {\displaystyle \left\{{\begin{array}{l}u(x,\;t_{0})=\varphi (x),\quad (0

где φ (x) {\displaystyle \varphi (x)} и μ (t) {\displaystyle \mu (t)} - заданные функции.

  • Краевая задача без начальных условий

Если момент времени который нас интересует достаточно удалён от начального, то имеет смысл пренебречь начальными условиями, поскольку их влияние на процесс с течением времени ослабевает. Таким образом, мы приходим к задаче, в которой заданы краевые условия и отсутствуют начальные.

Найти решение уравнения теплопроводности в области 0 ⩽ x ⩽ l {\displaystyle 0\leqslant x\leqslant l} и − ∞ < t {\displaystyle -\infty , удовлетворяющее условиям

{ u (0 , t) = μ 1 (t) , u (l , t) = μ 2 (t) , {\displaystyle \left\{{\begin{array}{l}u(0,\;t)=\mu _{1}(t),\\u(l,\;t)=\mu _{2}(t),\end{array}}\right.}

где и - заданные функции.

  • Краевые задачи для ограниченного стержня

Рассмотрим следующую краевую задачу:

u t = a 2 u x x + f (x , t) , 0 < x < l , 0 < t ⩽ T {\displaystyle u_{t}=a^{2}u_{xx}+f(x,\;t),\quad 0 - уравнение теплопроводности.

Если f (x , t) = 0 {\displaystyle f(x,\;t)=0} , то такое уравнение называют однородным , в противном случае - неоднородным .

u (x , 0) = φ (x) , 0 ⩽ x ⩽ l {\displaystyle u(x,\;0)=\varphi (x),\quad 0\leqslant x\leqslant l} - начальное условие в момент времени t = 0 {\displaystyle t=0} , температура в точке x {\displaystyle x} задается функцией φ (x) {\displaystyle \varphi (x)} . u (0 , t) = μ 1 (t) , u (l , t) = μ 2 (t) , } 0 ⩽ t ⩽ T {\displaystyle \left.{\begin{array}{l}u(0,\;t)=\mu _{1}(t),\\u(l,\;t)=\mu _{2}(t),\end{array}}\right\}\quad 0\leqslant t\leqslant T} - краевые условия. Функции μ 1 (t) {\displaystyle \mu _{1}(t)} и μ 2 (t) {\displaystyle \mu _{2}(t)} задают значение температуры в граничных точках 0 и l {\displaystyle l} в любой момент времени t {\displaystyle t} .

В зависимости от рода краевых условий, задачи для уравнения теплопроводности можно разбить на три типа. Рассмотрим общий случай ( α i 2 + β i 2 ≠ 0 , (i = 1 , 2) {\displaystyle \alpha _{i}^{2}+\beta _{i}^{2}\neq 0,\;(i=1,\;2)} ).

α 1 u x (0 , t) + β 1 u (0 , t) = μ 1 (t) , α 2 u x (l , t) + β 2 u (l , t) = μ 2 (t) . {\displaystyle {\begin{array}{l}\alpha _{1}u_{x}(0,\;t)+\beta _{1}u(0,\;t)=\mu _{1}(t),\\\alpha _{2}u_{x}(l,\;t)+\beta _{2}u(l,\;t)=\mu _{2}(t).\end{array}}}

Если α i = 0 , (i = 1 , 2) {\displaystyle \alpha _{i}=0,\;(i=1,\;2)} , то такое условие называют условием первого рода , если β i = 0 , (i = 1 , 2) {\displaystyle \beta _{i}=0,\;(i=1,\;2)} - второго рода , а если α i {\displaystyle \alpha _{i}} и β i {\displaystyle \beta _{i}} отличны от нуля, то условием третьего рода . Отсюда получаем задачи для уравнения теплопроводности - первую, вторую и третью краевую.

Принцип максимума

Пусть функция в пространстве D × [ 0 , T ] , D ∈ R n {\displaystyle D\times ,\;D\in \mathbb {R} ^{n}} , удовлетворяет однородному уравнению теплопроводности ∂ u ∂ t − a 2 Δ u = 0 {\displaystyle {\frac {\partial u}{\partial t}}-a^{2}\Delta u=0} , причем D {\displaystyle D} - ограниченная область. Принцип максимума утверждает, что функция u (x , t) {\displaystyle u(x,\;t)} может принимать экстремальные значения либо в начальный момент времени, либо на границе области D {\displaystyle D} .

Примечания


Ниже будут рассмотрены несколько задач на определение температурных полей для относительно простых геометрических и физических условий, которые допускают несложные по форме аналитические решения и вместе с тем дают полезную иллюстрацию характерных физических процессов, связанных с теплопередачей в твердом теле.

Рассмотрим стержень с термоизолированной боковой поверхностью (рис. 38). В этом случае теплопередача может осуществляться вдоль стержня. Если совместить стержень с осью декартовой системы координат, то стационарное уравнение теплопроводности будет иметь вид

При постоянных значениях коэффициента теплопроводности объемной мощности тепловыделения последнее уравнение можно дважды проинтегрировать

(75)

Постоянные интегрирования можно найти из граничных условий. Например, если на концах стержня задана температура , . Тогда из (75) имеем

Отсюда найдем постоянные интегрирования и . Решение при указанных граничных условиях получит вид

Из последней формулы видно, что при отсутствии источников тепловыделения . Температура в стержне меняется по линейному закону от одного граничного значения до другого

Рассмотрим теперь другое сочетание граничных условий. Пусть на левом конце стержня внешний источник создает тепловой поток . На правом конце стержня сохраним прежнее условие, таким образом, имеем

Выражая эти условия с помощью общего интеграла (75), получим систему относительно постоянных интегрирования

Найдя из полученной системы неизвестные постоянные, получим решение в виде

Как и в предыдущем примере при отсутствии внутренних источников тепловыделения распределение температуры вдоль стержня будет линейным

При этом температура на левом конце стержня, где расположен внешний источник тепла, будет равна .

В качестве следующего примера найдем стационарное распределение температуры по радиусу в сплошном длинном круговом цилиндре (рис. 39). Существенно упростит задачу в этом случае применение цилиндрической системы координат. В случае цилиндра с большим отношением длины к радиусу и постоянным распределени

ем внутреннего источника тепловыделения, температуру вдали от концов цилиндра можно считать независящей от осевой координаты цилиндрической системы . Тогда стационарное уравнение теплопроводности (71) получит вид

Двукратное интегрирование последнего уравнения (при постоянной ) дает

Условие симметрии распределения температуры на оси цилиндра () дает

Откуда имеем

Последнее условие будет выполнено при . Пусть на поверхности цилиндра () задана температура . Тогда можно найти вторую постоянную интегрирования из уравнения

Отсюда найдем и запишем решение в окончательном виде

В качестве численного примера применения полученного результата рассмотрим распределение температуры в плазме цилиндрического дугового разряда радиусом мм. Граница разрядного канала формируется как область, где прекращаются ионизационные процессы. Выше мы видели, что заметная ионизация газа при нагреве прекращается при K. Поэтому приведенное значение можно принять в качестве граничного K. Объемную плотность мощности тепловыделения в плазме разряда найдем из закона Джоуля–Ленца , где σ - электропроводность плазмы, E - напряженность электрического поля в канале разряда. Характерные для дугового разряда значения составляют 1/Ом м, В/м. Теплопроводность дуговой плазмы выше, чем в нейтральном газе, при температурах порядка 10000 К ее значение может принято равным . Таким образом, параметр . Распределение температуры по радиусу показано на рис. 39. При этом температура на оси разряда () составит 8000 K.

В следующем примере мы рассмотрим тепловое поле, обладающее сферической симметрией. Такие условия возникают, в частности, если источник тепловыделения малого размера размещен в крупном массиве, например межвитковое дуговое замыкание в обмотке крупной электрической машины. В этом случае совмещая центр сферической системы координат с источником тепловыделения мы можем привести стационарное уравнение теплопроводности (64) к виду:

Дважды интегрируя это уравнение, найдем

Возвращаясь к нашему примеру, предположим, что дуговое замыкание имеет место внутри сферической полости радиуса (рис. 40). Примем сопротивление дугового разряда равным Ом, ток разряда А. Тогда мощность, выделяемая в полости составит . Рассмотрим решение вне области действия источника тепловыделения .

Тогда интеграл уравнения теплопроводности упростится

Для вычисления постоянных интегрирования воспользуемся во-первых условием в бесконечно удаленных от места разряда точках , где C - температура окружающей среды. Из последнего выражения находим . Для определения постоянной примем, что выделяющаяся в разряде тепловая энергия равномерно распределяется по поверхности сферической полости радиуса . Поэтому тепловой поток на границе полости составит

Поскольку , то из двух последних уравнений имеем

а решение в окончательном виде

При этом температура на границе полости ( мм) при Вт/мК составит K (рис. 40).

В качестве первого примера этой группы рассмотрим тепловое поле в сечении провода круглого сечения, имеющего канал охлаждения (рис. 41, а ). Провода с каналами охлаждения применяют в обмотках мощных электрических машин и катушек для получения сильных магнитных полей. Для данных устройств характерно длительное протекание токов с амплитудой в сотни и даже тысячи Ампер. Например, прокачивается жидкость, например вода, или газ (водород, воздух), что обеспечивает отбор тепловой энергии с внутренней поверхности канала и охлаждение провода в целом. В данном случае мы имеем дело с принудительным конвективным охлаждением поверхности канала, для которой можно использовать обоснованное выше граничное условие третьего рода (67). Если совместить ось цилиндрической системы координат с осью провода, то температура будет зависеть только от радиальной координаты. Общий интеграл стационарного уравнения теплопроводности для этого случая был получен нами ранее

Объемная плотность мощности тепловыделения находится из закона Джоуля-Ленца: , j - плотность тока, σ - электропроводность,

где R - радиус сечения провода, a - радиус охлаждающего канала. Провод снаружи окружен слоями изоляции, обладающей, по сравнению с проводником, относительно низкой теплопроводностью. Поэтому в первом приближении примем внешнюю поверхность провода теплоизолированной, т. е. тепловой поток на ней

На поверхности охлаждающего канала тепловой поток определяется условием третьего рода

где - коэффициент теплоотдачи, - температура охлаждающего потока. Знак минус в правой части взят вследствие того, что нормаль к внутренней поверхности канала направлена в противоположном к оси направлении.

Подставляя в первое из выписанных граничных условий выражение для температуры (76), получим

откуда . Второе граничное условие дает

откуда находим

Вместе с тем из (76)

Сравнивая последние два выражения, найдем

После подстановки найденных постоянных в общее решение (76) и преобразований получим

Температура на границах сечения провода из полученного решения будет рассчитываться по формулам

Распределение температуры по радиусу сечения для провода с каналом охлаждения с параметрами: A, Вт/мК, 1/Ом м, о С, мм, см показано на рис. 41, б .

Из рис. 41, б следует, что в пределах сечения провода изменение температуры относительно мало по сравнению с ее средней величиной, что объясняется высокой теплопроводностью λ и относительно малыми размерами сечения провода.

Иная ситуация возникает в распределении температуры вдоль провода, состоящего из отдельных участков, контактирующих друг с другом. Ухудшение качества контактов между соединяемыми проводниками приводит к повышению тепловыделения в месте соединения двух проводов по сравнению с самим проводом. Дистанционное измерение температуры провода с помощью тепловизоров или пирометров позволяет диагностировать качество контактных соединений.

Рассчитаем распределение температуры вдоль провода при наличии дефектного контакта. Предыдущий пример показал, что даже в самых жестких условиях изменение температуры в пределах сечения провода весьма мало. Поэтому для нашего расчета можно в первом приближении принять распределение температуры в пределах сечения провода однородным. Распределение тепловыделения вдоль провода зависит от распределения электрического сопротивления вдоль провода, которое однородно вдали от контакта и возрастает при приближении к нему. Совместим ось декартовой системы координат с осью провода, а начало координат - с центром контактной области (рис. 42). В качестве модели распределения сопротивления вдоль провода возьмем следующее распределение погонного сопротивления

где , - параметр, характеризующий линейный размер контактной области . Мощность тепловыделения на единицу длины провода составляет . В расчете на единицу объема мощность тепловыделения равна

где S - сечение провода. Охлаждение провода осуществляется естественной конвекцией с его поверхности. Конвективный тепловой поток с единицы длины провода есть

где α - коэффициент теплоотдачи, - температура окружающего воздуха, p - периметр сечения провода. Теплоотдача в окружающую среду в расчете на единицу объема проводника составит

Стационарное распределение температуры вдоль провода будет подчиняться уравнению теплопроводности

Для дальнейших преобразований полученного уравнения примем постоянным вдоль провода коэффициент теплопроводности , подставим полученные выше выражения для и , а также в качестве искомой функции вместо T возьмем :

придем к линейному неоднородному дифференциальному уравнению

Решение полученного уравнения будем искать в виде суммы общего решения однородного уравнения

и частного решения в форме правой части

.

Изучение любого физического явления сводится к установлению зависимости между величинами, характеризующими это явление. Для сложных физических процессов, в которых определяющие величины могут существенно изменяться в пространстве и времени, установить зависимость между этими величинами достаточно сложно. В таких случаях используют методы математической физики, которые заключаются в том, что ограничивается промежуток времени и из всего пространства рассматривается некоторый элементарный объем. Это позволяет в пределах выбранного объема и данного промежутка времени пренебречь изменениями величин, характеризующих процесс, и существенно упростить зависимость.

Выбранные таким образом элементарный объем dV и элементарный промежуток времени , в пределах которых рассматривается процесс, с математической точки зрения являются величинами бесконечно малыми, а с физической точки зрения – величинами еще достаточно большими, чтобы в их пределах можно было считать среду как сплошную, пренебрегая ее дискретным строением. Полученная таким образом зависимость является общим дифференциальным уравнением процесса. Интегрируя дифференциальные уравнения, можно получить аналитическую зависимость между величинами для всей области интегрирования и всего рассматриваемого промежутка времени.

Для решения задач, связанных с нахождением температурного поля, необходимо иметь дифференциальное уравнение теплопроводности.

Примем следующие допущения:

    тело однородно и изотропно;

    физические параметры постоянны;

    деформация рассматриваемого объема, связанная с изменением температуры, очень мала по сравнению с самим объемом;

    внутренние источники теплоты в теле, распределены равномерно.

В основу вывода дифференциального уравнения теплопроводности положим закон сохранения энергии, который сформулируем так:

Количество теплоты dQ , введенное в элементарный объем dV извне за время вследствие теплопроводности, а также от внутренних источников, равно изменению внутренней энергии или энтальпии вещества, содержащегося в элементарном объеме.

где dQ 1 – количество теплоты, введенное в элементарный объем dV путем теплопроводности за время ;

dQ 2 – количество теплоты, которое за время выделилось в элементарном объеме dV за счет внутренних источников;

dQ – изменение внутренней энергии (изохорный процесс) или энтальпии вещества (изобарный процесс), содержащегося в элементарном объеме dV за время .

Для получения уравнения рассмотрим элементарный объем в виде кубика со сторонами dx , dy , dz (см. рис.1.2.). Кубик расположен так, чтобы его грани были параллельны соответствующим координатным плоскостям. Количество теплоты, которое подводится к граням элементарного объема за время в направлении осей x , y , z обозначим соответственно dQ x , dQ y , dQ z .

Количество теплоты, которое будет отводиться через противоположные грани в тех же направлениях, обозначим соответственно dQ x + dx , dQ y + dy , dQ z + dz .

Количество теплоты, подведенное к грани dxdy в направлении оси x за время , составляет:

где q x – проекция плотности теплового потока на направление нормали к указанной грани. Соответственно количество теплоты, отведенное через противоположную грань будет:

Разница между количеством теплоты, подведенном к элементарному объему, и количеством теплоты, отведенного от него, представляет собой теплоту:

Функция q является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора:

Если ограничиться двумя первыми слагаемыми ряда, то уравнение запишется в виде:

Аналогичным образом можно найти количество теплоты, подводимое к объему в направлении двух других координатных осей y и z .

Количество теплоты dQ , подведенное в результате теплопроводности к рассматриваемому объему, будет равно:

Второе слагаемое определим, обозначив количество теплоты, выделяемое внутренними источниками в единице объема среды в единицу времени q v и назовем его мощностью внутренних источников теплоты [Вт/м 3 ], тогда:

Третья составляющая в нашем уравнении найдется в зависимости от характера ТД процесса изменения системы.

При рассмотрении изохорного процесса вся теплота, подведенная к элементарному объему, уйдет на изменение внутренней энергии вещества, заключенного в этом объеме, т.е. dQ = dU .

Если рассматривать внутреннюю энергию единицы объема u = f (t , v ) , то можно записать:

, Дж/м 3

, Дж/кг

где c v изохорная теплоемкость или единицы объема или единицы массы, [Дж/м 3 ];

ρ – плотность, [кг/м 3 ].

Соберем полученные выражения:

Полученное выражение является дифференциальным уравнением энергии для изохорного процесса переноса теплоты .

Аналогично выводится уравнение для изобарного процесса. Вся теплота, подведенная к объему уйдет на изменение энтальпии вещества, заключенного в объеме.

Полученное соотношение является дифференциальным уравнением энергии для изобарного процесса.

В твердых телах перенос теплоты осуществляется по закону Фурье
, значение теплоемкости можно принять
. Напомним, что проекция вектора плотности теплового потока на координатные оси определяются выражениями:



Последнее выражение называют дифференциальным уравнением теплопроводности. Оно устанавливает связь между временным и пространственным изменениями температуры в любой точке тела, в котором происходит процесс теплопроводности.

Наиболее общее дифференциальное уравнение теплопроводности в частных производных имеет такую же форму, но в нем величины ρ , , с являются функциями времени и пространства. Это уравнение описывает большое количество задач теплопроводности, представляющих практический интерес. Если принять теплофизические параметры постоянными, то уравнение будет проще:

Обозначим
, тогда:

Коэффициент пропорциональности а [м 2 /с] называется коэффициентом температуропроводности и является физическим параметром вещества. Он существенен для нестационарных тепловых процессов характеризует скорость изменения температуры. Если коэффициент теплопроводности характеризует способность тел проводить теплоту, то коэффициент температуропроводности является мерой теплоинерционных свойств тела. Например, жидкости и газы обладают большей тепловой инерционностью и, следовательно, малым коэффициентом температуропроводности, а металлы наоборот имеют малую тепловую инерционность.

Если имеются внутренние источники теплоты, а температурное поле является стационарным, то мы получаем уравнение Пуассона:

Наконец, при стационарной теплопроводности и отсутствии внутренних источников теплоты мы получаем уравнение Лапласа:

Условия однозначности для теплопроводности.

Так как дифференциальное уравнение теплопроводности выведено из общих законов физики, то оно описывает целый класс явлений. Для его решения необходимо задать граничные условия или условия однозначности.

Условия однозначности включают:

    геометрические условия – характеризуют форму и размеры тела;

    физические условия – характеризуют физические свойства среды и тела;

    начальные (временные) условия – характеризуют распределение температур в теле в начальный момент времени, задаются при исследовании нестационарных процессов;

    граничные условия – характеризуют взаимодействие рассматриваемого тела с окружающей средой.

Граничные условия могут быть заданы несколькими способами.

Граничные условия первого рода. Задается распределение температуры на поверхности тела для каждого момента времени:

t c = f (x , y , z , τ )

где t c – температура на поверхности тела;

x , y , z – координаты поверхности тела.

В частном случае, когда температура на поверхности является постоянной на протяжении всего времени протекания процессов теплообмена, уравнение упрощается:

t c = const

Граничные условия второго рода. Задаются значения теплового потока для каждой точки поверхности тела и любого момента времени. Аналитически выглядит так:

q c = f (x , y , z , τ )

В простейшем случае плотность теплового потока по поверхности тела остается постоянной. Такой случай имеет место при нагревании металлических изделий в высокотемпературных печах.

Граничные условия третьего рода. При этом задаются температура окружающей среды t ср и закон теплообмена между поверхностью тела и средой. Для описания процесса теплообмена используется закон Ньютона-Рихмана. Согласно этому закону количество теплоты, отдаваемое или принимаемое единицей поверхности тела в единицу времени, пропорционально разности температур поверхности тела и среды:

где α коэффициент пропорциональности, называется коэффициентом теплоотдачи [Вт/(м 2 ·К)], характеризует интенсивность теплообмена. Численно он равен количеству теплоты, отдаваемому единицей поверхности тела в единицу времени при разности температур равной одному градусу. Согласно закону сохранения энергии количество теплоты, которое отводится окружающей среде, должно равняться теплу, подводимому вследствие теплопроводности из внутренних частей тела, то есть:

Последнее уравнение является граничным условием третьего рода.

Встречаются более сложные технические задачи, когда ни одно из перечисленных условий задать невозможно, и тогда приходится решать задачу методом сопряжения. При решении такой задачи должны выполняться условия равенства температур и тепловых потоков по обе стороны от границы раздела. В общем случае условия сопряженности можно записать:

Решение сопряженной задачи связано с нахождением температурных полей по обе стороны границы раздела.

Займемся решением первой смешанной задачи для уравнения теплопроводности: найти решение и(х, t) уравнения удовлетворяющее начальному условию и граничным условиям Начнем с простейшей задачи: найти решение u(x,t) однородного уравнения удовлетворяющее начальному условию и нулевым (однородным) граничным условиям Метод Фурье для уравнения теплопроводности Будем искать нетривиальные решения уравнения (4), удовлетворяющие граничным условиям (6), в виде Псдстаапя в форме (7) в уравнение (4), получим или откуда имеем два обыжювенных дифференциальных уравнения Чтобы получить нетривиальные решения и(х, *) вида (7), удовлетворяющие граничным условиям (6), необходимо найти нетривиальные решения уравнения (10), удовлетворяющие граничным условиям Таким образом, для определения фунмдои Х(х) мы приходим к задаче на собственные значения: найти те значения параметра А, при которых существуют нетривиальные решения задачи Эта задача была рассмотрена в предыдущей главе. Там было показано, что только при существуют нетривиальные решения При А = А„ общее решение уравнения (9) имеет вид удовлетворяют уравнению (4) и граничным условиям (6). Образуем формальный ряд Потребовав, чтобы функция и(х} t), определяемая формулой (12), удовлетворяла начальному условию, получим Ряд (13) представляет собой разложение заданной функции в ряд Фурье по синусам в интервале (О, I). Коэффициенты а„ разложения определяются по известным формулам Метод Фурье для уравнения теплопроводности Предположим, что Тогдаряд (13) с коэффициентами, определяемыми по формулам (14), будет сходиться к функции абсолютно и равномерно. Так как при то ряд при также сходится абсолютно и равномерно. Поэтому функция и(х, t) - сумма ряда (12) - непрерывна в области и удовлетворяет начальному и граничному условиям. Остается показать, что функция и(х, t) удовлетворяет уравнению (4) в области 0. Для этого достаточно показать, что ряды, полученные из (12) почленным дифференцированием по t один раз и почленным дифференцированием по х два раза, также абсолютно и равномерно сходятся при. Но это следует из того, что при любом t > 0 если п достаточно велико. Единственность решения задачи (4)-(6) и непрерывная зависимость решения от начальной функции были уже установлены ранее. Таким образом, для t > 0 задача (4)-(6) поставлена корректно; напротив, для отрицательных t зада ча эта некорректна. Замечание. В отличие отдомового уравнения уравнение неомметрично огноситн о времени t: если заменить t на -t, то получаем уравнение другого вида описывает необратимые процессы: Мы можем предсказать, каким станет данное и через промежуток времени данной t, но мы не можем с уверенностью сказать, какн м было это и за время t до рассматриваемого момента. Это раолич иемежду предсказание м и предысторией типично для параболического ура внения и не имеет места, например, для волнового уравн сния; в случае последнего заглянуть в прошлое так же легко, как и в будущее. Пример. Найти распределение температуры в однородном стерве длины ж, если начальная температура стержня и на концах стержня поддерживается нулевая температура. 4 Задача сводится к решению уравнения при начальном условии и граничных условиях Применяя метод Фурье, ищем нетривиальные решения уравнения (15), удовлетворяющие граничным условиям (17), в виде Подставляя u(x,t) в форме (18) в уравнение (15) и разделяя переменные, получим откуда Собственные значения задачи. собственные функции Хп(х) = мп пх. При А = А„ общее решение уравнения (19) имеет вид Tn(t) = апе а п\ так что Решение задачи (15)-(17) ищем в виде ряда Потребовав выполнения начального условия (16), получим откуда. Поэтому решением исходной задачи будет фунхция 2. Рассмотрим теперь следующую задачу: найти решение гх(ж, t) неоднородного уравнения _ удовДстворя ющее начальному условию и однородным граничным услови м Предположим, что функци / непрерывна, имеет непрерывную производ-ную и при всех t > 0 выполняется условие. Решение задачи (1)-(3) будем искать в виде где определим как решение задачи а функци - как решение задачи Задача (8)-(10) рассмотрена в п. 1. Будем искать решение v(x, t) задачи (5)-(7) в виде ряда по собстве нным функциям { краевой задачи. Подсгааяяя t) в виде в уравнение (5), получим Разложим функцию /ОМ) в ряд Фурье по синусам, где Сравнивая два разложения (12) и (13) функции /(х, t) в ряд Фурье, получаем! Пользуясь начальным условием для v(x, t), Метод Фурье для уравнения теплопроводности находим, что Решения уравнений (15) при начальных условиях (16) имеют вид: Подставляя найденные выражения для Tn(t) в ряд (11), получим решение Функция будет решением исходной задачи (1)-(3). 3. Рассмотрим задачу: найти в области решение уравнения при начальном условии и неоднородных граничных условиях Непосредственно метод Фурье неприменим из-за неоднородности условий (20). Введем новую неизвестную функцию v(x, t), положив где Тогда решение задачи (18)-(20) сведется к решению задачи (1)-(3), рассмотренной в п. 2, для функции v(x, J). Упражнения 1. Задан бесконечный однородный стержень. Покажи те, что если начальная температура то влобой момент температура стержня 2. Ко|рцы стержня длиной ж поддерживаются при температуре, равной нулю. Начальная температура определяется формулой Определите температуру стержня для любого момента времени t > 0. 3. Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальная температура стержня определяется формулой Определите температуру стержня для любого момента времени t > 0. 4. Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальное распределение температуры Определите температуру стержня для любого момента времени t > 0. Ответы