Как найти кю в геометрической прогрессии. Геометрическая прогрессия на примерах. Примеры задач на вычисление суммы

В основании призмы может лежать любые многоугольник – треугольник, четырехугольник, и т.д. Оба основания абсолютно одинаковы, а соответственно, которыми углы параллельных граней соединяются между собой, всегда параллельны. В основании правильной призмы лежит правильный многоугольник, то есть такой, у которого все стороны равны. У прямой призмы ребра между боковыми гранями перпендикулярны основанию. При этом в основании прямой призмы может лежать многоугольник с любым количеством углов. Призма, основанием которой является параллелограмм, называется параллелепипедом. Прямоугольник – частный случай параллелограмма. Если в основании лежит именно эта фигура, а боковые грани расположены к основанию под прямым углом, параллелепипед называется прямоугольным. Второе название этого геометрического тела – прямоугольная .

Как она выглядит

Прямоугольных призм в окружении современного человека довольно много. Это, например, обычная картонная из-под обуви, компьютерных комплектующих и т.п. Оглядитесь по сторонам. Даже в комнате вы наверняка увидите множество прямоугольных призм. Это и компьютерный корпус, и книжная , и холодильник, и шкаф, и множество других предметов. Форма чрезвычайно популярна главным образом потому, что позволяет использовать место максимально эффективно, вне зависимости от того, оформляете вы интерьер или укладываете вещи в картонные перед переездом.

Свойства прямоугольной призмы

Прямоугольная призма обладает рядом специфических свойств. Любая пара граней может служить ее , поскольку все соседние грани расположены друг к другу под одним и тем же углом, и угол этот составляет 90°. Объем и площадь поверхности прямоугольной призмы вычислить проще, чем у любой другой. Возьмите любой предмет, имеющий форму прямоугольной призмы. Измерьте его длину, ширину и высоту. Чтобы найти объем , достаточно перемножить эти мерки. То есть формула выглядит так: V=a*b*h, где V – объем, a и b – стороны основания, h - высота, которая у этого геометрического тела совпадает с боковым ребром. Площадь основания вычисляется по формуле S1=a*b. Чтобы боковой поверхности, нужно сначала вычислить периметр основания по формуле P=2(a+b), а затем умножить его на высоту. Получается формула S2=P*h=2(a+b)*h. Для вычисления полной поверхности прямоугольной призмы сложите удвоенную площадь основания и площадь боковой поверхности. Получится формула S=2S1+S2=2*a*b+2*(a+b)*h=2

Стереометрия - раздел геометрии, изучающий фигуры, которые не лежат в одной плоскости. Одним из объектов изучения стереометрии являются призмы. В статье дадим определение призме с геометрической точки зрения, а также кратко перечислим свойства, которые для нее характерны.

Геометрическая фигура

Определение призмы в геометрии звучит следующим образом: это пространственная фигура, состоящая из двух одинаковых n-угольников, расположенных в параллельных плоскостях, соединенных друг с другом своими вершинами.

Получить призму не представляет никакого труда. Представим, что есть два одинаковых n-угольника, где n - это число сторон или вершин. Поместим их так, чтобы они были друг другу параллельны. После этого вершины одного многоугольника следует соединить с соответствующими вершинами другого. Образованная фигура будет состоять из двух n-угольных сторон, которые называются основаниями, и n четырехугольных сторон, представляющих собой в общем случае параллелограммы. Совокупность параллелограммов образует боковую поверхность фигуры.

Существует еще один способ геометрического получения рассматриваемой фигуры. Так, если взять n-угольник и совершить его перенос в другую плоскость при помощи параллельных отрезков равной длины, то в новой плоскости мы получим исходный многоугольник. Оба многоугольника и все параллельные отрезки, проведенные из их вершин, образуют призму.

Рисунок выше демонстрирует Так она называется потому, что ее основания представляют собой треугольники.

Элементы, из которых состоит фигура

Выше было дано определение призмы, из которого понятно, что главными элементами фигуры являются ее грани или стороны, ограничивающие все внутренние точки призмы от внешнего пространства. Любая грань рассматриваемой фигуры принадлежит к одному из двух типов:

  • боковая;
  • основания.

Боковых n штук, и они являются параллелограммами или их частными видами (прямоугольниками, квадратами). В общем случае боковые грани отличаются друг от друга. Граней основания всего две, они представляют собой n-угольники и друг другу равны. Таким образом, всякая призма имеет n+2 стороны.

Помимо сторон, фигура характеризуется своими вершинами. Они представляют собой точки, где соприкасаются одновременно три грани. Причем две из трех граней всегда принадлежат боковой поверхности, а одна - основанию. Таким образом, в призме нет специально выделенной одной вершины, как, например, в пирамиде, все они являются равноправными. Число вершин фигуры равно 2*n (по n штук для каждого основания).

Наконец, третьим важным элементом призмы являются ее ребра. Это отрезки определенной длины, которые образуются в результате пересечения сторон фигуры. Как и грани, ребра также имеют два разных типа:

  • либо образованы только боковыми сторонами;
  • либо возникают на стыке параллелограмма и стороны n-угольного основания.

Число ребер, таким образом, равно 3*n, причем 2*n из них относятся ко второму из названных типов.

Виды призм

Выделяют несколько способов классификации призм. Однако все они основаны на двух особенностях фигуры:

  • на типе n-угольного основания;
  • на типе боковой стороны.

Для начала обратимся ко второй особенности и дадим определение и прямой. Если хотя бы одна боковая сторона является параллелограммом общего типа, то фигура называется наклонной, или косоугольной. Если же все параллелограммы представляют собой прямоугольники или квадраты, то призма будет прямой.

Дать определение можно также несколько иначе: прямая фигура - это та призма, у которой боковые ребра и грани перпендикулярны ее основаниям. На рисунке показаны две четырехугольные фигуры. Левая является прямой, правая - наклонной.

Теперь перейдем к классификации согласно типу n-угольника, лежащего в основаниях. Он может иметь одинаковые стороны и углы или разные. В первом случае многоугольник называется правильным. Если рассматриваемая фигура содержит в основании многоугольник с равными сторонами и углами и является прямой, то она называется правильной. Согласно этому определению, правильная призма в основании может иметь равносторонний треугольник, квадрат, правильный пятиугольник или шестиугольник и так далее. Перечисленные правильные фигуры представлены на рисунке.

Линейные параметры призм

Для описания размеров рассматриваемых фигур используют следующие параметры:

  • высота;
  • стороны основания;
  • длины боковых ребер;
  • объемные диагонали;
  • диагонали боковых сторон и оснований.

Для правильных призм все названные величины связаны друг с другом. Например, длины боковых ребер одинаковы и равны высоте. Для конкретной n-угольной правильной фигуры существуют формулы, позволяющие по двум любым линейным параметрам определить все остальные.

Поверхность фигуры

Если обратиться к данному выше определению призмы, то понять, что представляет поверхность фигуры, будет несложно. Поверхность - это площадь всех граней. Для прямой призмы она вычисляется по формуле:

S = 2*S o + P o *h

где S o - площадь основания, P o - периметр n-угольника в основании, h - высота (расстояние между основаниями).

Объем фигуры

Наряду с поверхностью для практики важно знать объем призмы. Определить его можно по следующей формуле:

Это выражение справедливо для абсолютно любого вида призм, включая те, которые являются наклонными и образованы неправильными многоугольниками.

Для правильных является функцией длины стороны основания и высоты фигуры. Для соответствующей n-угольной призмы формула для V имеет конкретный вид.

Определение. Призма - это многогранник, все вершины которого расположены в двух параллельных плоскостях, причем в этих же двух плоскостях лежат две грани призмы, представляющие собой равные многоугольники с соответственно параллельными сторонами, а все ребра, не лежащие в этих плоскостях, параллельны.

Две равные грани называются основаниями призмы (ABCDE, A 1 B 1 C 1 D 1 E 1) .

Все остальные грани призмы называются боковыми гранями (AA 1 B 1 B, BB 1 C 1 C, CC 1 D 1 D, DD 1 E 1 E, EE 1 A 1 A).

Все боковые грани образуют боковую поверхность призмы .

Все боковые грани призмы являются параллелограммами.

Ребра, не лежащие в основаниях, называются боковыми ребрами призмы(AA 1 , BB 1 , CC 1 , DD 1 , EE 1 ).

Диагональю призмы называется отрезок, концами которого служат две вершины призмы, не лежащие на одной ее грани (АD 1).

Длина отрезка, соединяющего основания призмы и перпендикулярного одновременно обоим основаниям,называется высотой призмы .

Обозначение: ABCDE A 1 B 1 C 1 D 1 E 1 . (Сначала в порядке обхода указывают вершины одного основания, а затем в том же порядке - вершины другого; концы каждого бокового ребра обозначают одинаковыми буквами, только вершины, лежащие в одном основании, обозначаются буквами без индекса, а в другом - с индексом)

Название призмы связывают с числом углов в фигуре, лежащей в ее основании, например, на рисунке 1 в основании лежит пятиугольник, поэтому призму называют пятиугольной призмой . Но т.к. у такой призмы 7 граней, то она семигранник (2 грани - основания призмы, 5 граней - параллелограммы, - ее боковые грани)

Среди прямых призм выделяется частный вид: правильные призмы.

Прямая призма называется правильной, если ее основания-правильные многоугольники.

У правильной призмы все боковые грани равные прямоугольники. Частным случаем призмы является параллелепипед.

Параллелепипед

Параллелепипед - это четырехугольная призма, в основании которой лежит параллелограмм (наклонный параллелепипед).Прямой параллелепипед - параллелепипед, у которого боковые ребра перпендикулярны плоскостям основания.

Прямоугольный параллелепипед - прямой параллелепипед, основанием которого является прямоугольник.

Свойства и теоремы:


Некоторые свойства параллелепипеда аналогичны известным свойствам параллелограмма.Прямоугольный параллелепипед, имеющий равные измерения, называются кубом .У куба все грани равные квадраты.Квадрат диагонали, равен сумме квадратов трех его измерений

,

где d - диагональ квадрата;
a - сторона квадрата.

Представление о призме дают:

  • различные архитектурные сооружения;
  • детские игрушки;
  • упаковочные коробки;
  • дизайнерские предметы и т.д.





Площадь полной и боковой поверхности призмы

Площадь полной поверхности призмы называется сумма площадей всех ее гранейПлощадь боковой поверхности называется сумма площадей ее боковых гранейТ.к. основания призмы - равные многоугольник, то их площади равны. Поэтому

S полн = S бок + 2S осн ,

где S полн - площадь полной поверхности,S бок -площадь боковой поверхности, S осн - площадь основания

Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы .

S бок = P осн * h,

где S бок -площадь боковой поверхности прямой призмы,

P осн - периметр основания прямой призмы,

h - высота прямой призмы, равная боковому ребру.

Объем призмы

Объем призмы равен произведению площади основания на высоту.

Многогранники

Основным объектом изучения стереометрии являются пространственные тела. Тело представляет собой часть пространства, ограниченную некоторой поверхностью.

Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности многогранника называется гранью . Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называется ребрами многогранника , а вершины – вершинами многогранника .

Например, куб состоит из шести квадратов, являющихся его гранями. Он содержит 12 ребер (стороны квадратов) и 8 вершин (вершины квадратов).

Простейшими многогранниками являются призмы и пирамиды, изучением которых и займемся далее.

Призма

Определение и свойства призмы

Призмой называется многогранник, состоящий из двух плоских многоугольников, лежащих в параллельных плоскостях совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников. Многоугольники называются основаниями призмы , а отрезки, соединяющие соответствующие вершины многоугольников, – боковыми ребрами призмы .

Высотой призмы называется расстояние между плоскостями ее оснований (). Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы (). Призма называется n-угольной , если в ее основании лежит n-угольник.

Любая призма обладает следующими свойствами, следующими из того факта, что основания призмы совмещаются параллельным переносом:

1. Основания призмы равны.

2. Боковые ребра призмы параллельны и равны.

Поверхность призмы состоит из оснований и боковой поверхности . Боковая поверхность призмы состоит из параллелограммов (это следует из свойств призмы). Площадью боковой поверхности призмы называется сумма площадей боковых граней.

Прямая призма

Призма называется прямой , если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной .

Гранями прямой призмы являются прямоугольники. Высота прямой призмы равна ее боковым граням.

Полной поверхностью призмы называется сумма площади боковой поверхности и площадей оснований.

Правильной призмой называется прямая призма с правильным многоугольником в основании.

Теорема 13.1 . Площадь боковой поверхности прямой призмы равна произведению периметра на высоту призмы (или, что то же самое, на боковое ребро).

Доказательство. Боковые грани прямой призмы есть прямоугольники, основания которых являются сторонами многоугольников в основаниях призмы, а высоты являются боковыми ребрами призмы. Тогда по определению площадь боковой поверхности:

,

где – периметр основания прямой призмы.

Параллелепипед

Если в основаниях призмы лежат параллелограммы, то она называется параллелепипедом . У параллелепипеда все грани – параллелограммы. При этом противолежащие грани параллелепипеда параллельны и равны.

Теорема 13.2 . Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам.

Доказательство. Рассмотрим две произвольные диагонали, например, и . Т.к. гранями параллелепипеда являются параллелограммы, то и , а значит по Т о двух прямых параллельных третьей . Кроме того это означает, что прямые и лежат в одной плоскости (плоскости ). Эта плоскость пересекает параллельные плоскости и по параллельным прямым и . Таким образом, четырехугольник – параллелограмм, а по свойству параллелограмма его диагонали и пересекаются и точкой пересечения делятся пополам, что и требовалось доказать.

Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом . У прямоугольного параллелепипеда все грани – прямоугольники. Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). Таких размеров три (ширина, высота, длина).

Теорема 13.3 . В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений (доказывается с помощью двукратного применения Т Пифагора).

Прямоугольный параллелепипед, у которого все ребра равны, называется кубом .

Задачи

13.1Сколько диагоналей имеет n -угольная призма

13.2В наклонной треугольной призме расстояния между боковыми ребрами равны 37, 13 и 40. Найти расстояние между большей боковой гранью и противолежащим боковым ребром.

13.3Через сторону нижнего основания правильной треугольной призмы проведена плоскость, пересекающая боковые грани по отрезкам, угол между которыми . Найти угол наклона этой плоскости к основанию призмы.

Формула n-го члена геометрической прогрессии – штука очень простая. Как по смыслу, так и по общему виду. Но задачки на формулу n-го члена встречаются всякие – от совсем примитивных до вполне себе серьёзных. И в процессе нашего знакомства мы обязательно рассмотрим и те и другие. Ну что, знакомимся?)

Итак, для начала собственно сама формула n

Вот она:

b n = b 1 · q n -1

Формула как формула, ничего сверхъестественного. Выглядит даже проще и компактнее, чем аналогичная формула для . Смысл формулы тоже прост, как валенок.

Эта формула позволяет находить ЛЮБОЙ член геометрической прогрессии ПО ЕГО НОМЕРУ " n ".

Как вы видите, по смыслу полная аналогия с арифметической прогрессией. Знаем номер n – можем посчитать и член, стоящий под этим номером. Какой хотим. Не умножая последовательно на "q" много-много раз. Вот и весь смысл.)

Я понимаю, что на данном уровне работы с прогрессиями все входящие в формулу величины вам уже должны быть понятны, но считаю своим долгом всё-таки расшифровать каждую. На всякий случай.

Итак, поехали:

b 1 первый член геометрической прогрессии;

q – ;

n – номер члена;

b n энный (n -й) член геометрической прогрессии.

Эта формулка связывает четыре главных параметра любой геометрической прогрессии – b n , b 1 , q и n . И вокруг этих четырёх ключевых фигур и вертятся все-все задачки по прогрессии.

"А как она выводится?" – слышу любопытный вопрос… Элементарно! Смотрите!

Чему равен второй член прогрессии? Не вопрос! Прямо по пишем:

b 2 = b 1 ·q

А третий член? Тоже не проблема! Второй член помножаем ещё раз на q .

Вот так:

B 3 = b 2 ·q

Вспомним теперь, что второй член, в свою очередь, у нас равен b 1 ·q и подставим это выражение в наше равенство:

B 3 = b 2 ·q = (b 1 ·q)·q = b 1 ·q·q = b 1 ·q 2

Получаем:

B 3 = b 1 ·q 2

А теперь прочитаем нашу запись по-русски: третий член равен первому члену, умноженному на q во второй степени. Улавливаете? Пока нет? Хорошо, ещё один шаг.

Чему равен четвёртый член? Всё то же самое! Умножаем предыдущий (т.е. третий член) на q:

B 4 = b 3 ·q = (b 1 ·q 2)·q = b 1 ·q 2 ·q = b 1 ·q 3

Итого:

B 4 = b 1 ·q 3

И снова переводим на русский язык: четвёртый член равен первому члену, умноженному на q в третьей степени.

И так далее. Ну и как? Уловили закономерность? Да! Для любого члена с любым номером количество одинаковых множителей q (т.е. степень знаменателя) всегда будет на единичку меньше, чем номер искомого члена n .

Стало быть, наша формула будет, без вариантов:

b n = b 1 · q n -1

Вот и все дела.)

Ну что, порешаем задачки, наверное?)

Решение задач на формулу n -го члена геометрической прогрессии.

Начнём, как обычно, с прямого применения формулы. Вот типичная задачка:

В геометрической прогрессии известно, что b 1 = 512 и q = -1/2. Найдите десятый член прогрессии.

Конечно, эту задачку можно вообще безо всяких формул решить. Прямо по смыслу геометрической прогрессии. Но нам ведь с формулой n-го члена размяться нужно, правда? Вот и разминаемся.

Наши данные для применения формулы следующие.

Известен первый член. Это 512.

b 1 = 512.

Известен также знаменатель прогрессии: q = -1/2.

Остаётся только сообразить, чему равен номер члена n. Не вопрос! Нас интересует десятый член? Вот и подставляем в общую формулу десятку вместо n.

И аккуратно считаем арифметику:

Ответ: -1

Как видим, десятый член прогрессии оказался с минусом. Ничего удивительного: знаменатель прогрессии у нас -1/2, т.е. отрицательное число. А это говорит нам о том, что знаки у нашей прогрессии чередуются, да.)

Здесь всё просто. А вот похожая задачка, но немного посложнее в плане вычислений.

В геометрической прогрессии известно, что:

b 1 = 3

Найдите тринадцатый член прогрессии.

Всё то же самое, только в этот раз знаменатель прогрессии – иррациональный . Корень из двух. Ну и ничего страшного. Формула – штука универсальная, с любыми числами справляется.

Работаем прямо по формуле:

Формула, конечно, сработала как надо, но… вот тут некоторые и зависнут. Что дальше делать с корнем? Как возвести корень в двенадцатую степень?

Как-как… Надо понимать, что любая формула, конечно, дело хорошее, но знание всей предыдущей математики при этом не отменяется! Как возвести? Да свойства степеней вспомнить! Превратим корень в степень с дробным показателем и – по формуле возведения степени в степень.

Вот так:

Ответ: 192

И все дела.)

В чём состоит основная трудность при прямом применении формулы n-го члена? Да! Основная трудность – это работа со степенями! А именно – возведение в степень отрицательных чисел, дробей, корней и тому подобных конструкций. Так что те, у кого с этим проблемы, настоятельная просьба повторить степени и их свойства! Иначе и в этой теме будете тормозить, да…)

А теперь порешаем типовые задачки на поиск одного из элементов формулы , если даны все остальные. Для успешного решения таких задач рецепт един и прост до ужаса – пишем формулу n -го члена в общем виде! Прямо в тетрадке рядышком с условием. А затем из условия соображаем, что нам дано, а чего не хватает. И выражаем из формулы искомую величину. Всё!

Например, такая безобидная задачка.

Пятый член геометрической прогрессии со знаменателем 3 равен 567. Найдите первый член этой прогрессии.

Ничего сложного. Работаем прямо по заклинанию.

Пишем формулу n-го члена!

b n = b 1 · q n -1

Что нам дано? Во-первых, дан знаменатель прогрессии: q = 3.

Кроме того, нам дан пятый член : b 5 = 567 .

Всё? Нет! Ещё нам дан номер n! Это – пятёрка: n = 5.

Надеюсь, вы уже понимаете, что в записи b 5 = 567 скрыты сразу два параметра – это сам пятый член (567) и его номер (5). В аналогичном уроке по я об этом уже говорил, но и здесь считаю не лишним напомнить.)

Вот теперь подставляем наши данные в формулу:

567 = b 1 ·3 5-1

Считаем арифметику, упрощаем и получаем простенькое линейное уравнение:

81 b 1 = 567

Решаем и получаем:

b 1 = 7

Как вы видите, с поиском первого члена проблем никаких. А вот при поиске знаменателя q и номера n могут встречаться и сюрпризы. И к ним (к сюрпризам) тоже надо быть готовым, да.)

Например, такая задачка:

Пятый член геометрической прогрессии с положительным знаменателем равен 162, а первый член этой прогрессии равен 2. Найдите знаменатель прогрессии.

В этот раз нам даны первый и пятый члены, а найти просят знаменатель прогрессии. Вот и приступаем.

Пишем формулу n -го члена!

b n = b 1 · q n -1

Наши исходные данные будут следующими:

b 5 = 162

b 1 = 2

n = 5

Не хватает значения q . Не вопрос! Сейчас найдём.) Подставляем в формулу всё что нам известно.

Получаем:

162 = 2· q 5-1

2 q 4 = 162

q 4 = 81

Простенькое уравнение четвёртой степени. А вот сейчас – аккуратно! На данном этапе решения многие ученики сразу же радостно извлекают корень (четвёртой степени) и получают ответ q =3 .

Вот так:

q 4 = 81

q = 3

Но вообще-то, это недоделанный ответ. Точнее, неполный. Почему? Дело в том, что ответ q = -3 тоже подходит: (-3) 4 тоже будет 81!

Всё из-за того, что степенное уравнение x n = a всегда имеет два противоположных корня при чётном n . С плюсом и с минусом:

Оба подходят.

Например, решая (т.е. второй степени)

x 2 = 9

Вы же почему-то не удивляетесь появлению двух корней x=±3? Вот и тут то же самое. И с любой другой чётной степенью (четвёртой, шестой, десятой и т.д.) будет так же. Подробности – в теме про

Поэтому правильное решение будет таким:

q 4 = 81

q = ±3

Хорошо, со знаками разобрались. Какой же из них правильный – плюс или минус? Что ж, читаем ещё раз условие задачи в поисках дополнительной информации. Её, конечно, может и не быть, но в данной задаче такая информация имеется. У нас в условии прямым текстом сказано, что дана прогрессия с положительным знаменателем.

Поэтому ответ очевиден:

q = 3

Здесь-то всё просто. А как вы думаете, что было бы, если бы формулировка задачи была бы вот такой:

Пятый член геометрической прогрессии равен 162, а первый член этой прогрессии равен 2. Найдите знаменатель прогрессии.

В чём отличие? Да! В условии ничего не сказано про знак знаменателя. Ни прямо, ни косвенно. И вот тут задачка уже имела бы два решения!

q = 3 и q = -3

Да-да! И с плюсом и с минусом.) Математически сей факт означал бы, что существуют две прогрессии , которые подходят под условие задачи. И для каждой – свой знаменатель. Ради интереса, потренируйтесь и выпишите первые пять членов каждой из них.)

А теперь потренируемся номер члена находить. Эта задачка самая сложная, да. Но зато и более творческая.)

Дана геометрическая прогрессия:

3; 6; 12; 24; …

Под каким номером в этой прогрессии стоит число 768?

Первый шаг всё тот же: пишем формулу n -го члена!

b n = b 1 · q n -1

А теперь, как обычно, подставляем в неё известные нам данные. Гм… не подставляется! Где первый член, где знаменатель, где всё остальное?!

Где-где… А глазки нам зачем? Ресницами хлопать? В этот раз прогрессия задана нам напрямую в виде последовательности. Первый член видим? Видим! Это – тройка (b 1 = 3). А знаменатель? Пока не видим, но он очень легко считается. Если, конечно, понимать, .

Вот и считаем. Прямо по смыслу геометрической прогрессии: берём любой её член (кроме первого) и делим на предыдущий.

Хотя бы вот так:

q = 24/12 = 2

Что ещё нам известно? Нам ещё известен некоторый член этой прогрессии, равный 768. Под каким-то номером n:

b n = 768

Номер его нам неизвестен, но наша задача как раз и состоит в том, чтобы его отыскать.) Вот и ищем. Все необходимые данные для подстановки в формулу мы уже скачали. Незаметно для себя.)

Вот и подставляем:

768 = 3·2 n -1

Делаем элементарные – делим обе части на тройку и переписываем уравнение в привычном виде: неизвестное слева, известное - справа.

Получаем:

2 n -1 = 256

Вот такое интересное уравнение. Надо найти "n". Что, непривычно? Да, я не спорю. Вообще-то, это простейшее . Оно так называется из-за того, что неизвестное (в данном случае это – номер n ) стоит в показателе степени.

На этапе знакомства с геометрической прогрессией (это девятый класс) показательные уравнения решать не учат, да… Это тема старших классов. Но страшного ничего нет. Даже если вы не в курсе, как решаются такие уравнения, попробуем найти наше n , руководствуясь простой логикой и здравым смыслом.

Начинаем рассуждать. Слева у нас стоит двойка в какой-то степени . Мы пока не знаем, что это конкретно за степень, но это и не страшно. Но зато мы твёрдо знаем, что эта степень равна 256! Вот и вспоминаем, в какой же степени двойка даёт нам 256. Вспомнили? Да! В восьмой степени!

256 = 2 8

Если не вспомнили или с распознаванием степеней проблемы, то тоже ничего страшного: просто последовательно возводим двойку в квадрат, в куб, в четвёртую степень, пятую и так далее. Подбор, фактически, но на данном уровне – вполне прокатит.

Так или иначе, мы получим:

2 n -1 = 2 8

n -1 = 8

n = 9

Итак, 768 – это девятый член нашей прогрессии. Всё, задача решена.)

Ответ: 9

Что? Скучно? Надоела элементарщина? Согласен. И мне тоже. Шагаем на следующий уровень.)

Более сложные задачи.

А теперь решаем задачки покруче. Не то чтобы совсем уж сверхкрутые, но над которыми предстоит немного поработать, чтобы добраться до ответа.

Например, такая.

Найдите второй член геометрической прогрессии, если четвёртый её член равен -24, а седьмой член равен 192.

Это классика жанра. Известны какие-то два разных члена прогрессии, а найти надо ещё какой-то член. Причём все члены НЕ соседние. Что и смущает поначалу, да…

Как и в , для решения таких задач рассмотрим два способа. Первый способ – универсальный. Алгебраический. Работает безотказно и с любыми исходными данными. Поэтому именно с него и начнём.)

Расписываем каждый член по формуле n -го члена!

Всё точь-в-точь как с арифметической прогрессией. Только в этот раз работаем с другой общей формулой. Вот и всё.) Но суть та же самая: берём и поочерёдно подставляем в формулу n-го члена наши исходные данные. Для каждого члена – свои.

Для четвёртого члена записываем:

b 4 = b 1 · q 3

-24 = b 1 · q 3

Есть. Одно уравнение готово.

Для седьмого члена пишем:

b 7 = b 1 · q 6

192 = b 1 · q 6

Итого получили два уравнения для одной и той же прогрессии .

Собираем из них систему:

Несмотря на её грозный вид, системка совсем простая. Самый очевидный способ решения – обычная подстановка. Выражаем b 1 из верхнего уравнения и подставляем в нижнее:

Немного повозившись с нижним уравнением (сократив степени и поделив на -24), получим:

q 3 = -8

К этому же уравнению, между прочим, можно прийти и более простым путём! Каким? Сейчас я вам продемонстрирую ещё один секретный, но оч-чень красивый, мощный и полезный способ решения подобных систем. Таких систем, в уравнениях которых сидят только произведения. Хотя бы в одном. Называется метод почленного деления одного уравнения на другое.

Итак, перед нами система:

В обоих уравнениях слева – произведение , а справа – просто число. Это очень хороший знак.) Давайте возьмём и… поделим, скажем, нижнее уравнение на верхнее! Что значит, поделим одно уравнение на другое? Очень просто. Берём левую часть одного уравнения (нижнего) и делим её на левую часть другого уравнения (верхнего). С правой частью аналогично: правую часть одного уравнения делим на правую часть другого.

Весь процесс деления выглядит так:

Теперь, сократив всё, что сокращается, получим:

q 3 = -8

Чем хорош этот способ? Да тем, что в процессе такого деления всё нехорошее и неудобное может благополучно сократиться и остаться вполне безобидное уравнение! Именно поэтому так важно наличие только умножения хотя бы в одном из уравнений системы. Нету умножения – нечего и сокращать, да…

А вообще, этот способ (как и многие другие нетривиальные способы решения систем) даже заслуживает отдельного урока. Обязательно его разберу поподробнее. Когда-нибудь…

Впрочем, неважно, как именно вы решаете систему, в любом случае теперь нам надо решить получившееся уравнение:

q 3 = -8

Никаких проблем: извлекаем корень (кубический) и – готово!

Прошу заметить, что здесь при извлечении ставить плюс/минус не нужно. Нечётной (третьей) степени у нас корень. И ответ – тоже один, да.)

Итак, знаменатель прогрессии найден. Минус два. Отлично! Процесс идёт.)

Для первого члена (скажем, из верхнего уравнения) мы получим:

Отлично! Знаем первый член, знаем знаменатель. И теперь у нас появилась возможность найти любой член прогрессии. В том числе и второй.)

Для второго члена всё совсем просто:

b 2 = b 1 · q = 3·(-2) = -6

Ответ: -6

Итак, алгебраический способ решения задачи мы с вами разложили по полочкам. Сложно? Не очень, согласен. Долго и нудно? Да, безусловно. Но иногда можно существенно сократить объём работы. Для этого есть графический способ. Старый добрый и знакомый нам по .)

Рисуем задачу!

Да! Именно так. Снова изображаем нашу прогрессию на числовой оси. Не обязательно по линеечке, не обязательно выдерживать равные интервалы между членами (которые, кстати, и не будут одинаковыми, т.к. прогрессия - геометрическая!), а просто схематично рисуем нашу последовательность.

У меня получилось вот так:


А теперь смотрим на картинку и соображаем. Сколько одинаковых множителей "q" разделяют четвёртый и седьмой члены? Верно, три!

Стало быть, имеем полное право записать:

-24· q 3 = 192

Отсюда теперь легко ищется q:

q 3 = -8

q = -2

Вот и отлично, знаменатель у нас уже в кармане. А теперь снова смотрим на картинку: сколько таких знаменателей сидит между вторым и четвёртым членами? Два! Стало быть, для записи связи между этими членами знаменатель будем возводить в квадрат .

Вот и пишем:

b 2 · q 2 = -24 , откуда b 2 = -24/ q 2

Подставляем наш найденный знаменатель в выражение для b 2 , считаем и получаем:

Ответ: -6

Как видим, всё гораздо проще и быстрее, чем через систему. Более того, здесь нам вообще даже не понадобилось считать первый член! Совсем.)

Вот такой простой и наглядный способ-лайт. Но есть у него и серьёзный недостаток. Догадались? Да! Он годится только для очень коротких кусочков прогрессии. Таких, где расстояния между интересующими нас членами не очень большие. А вот во всех остальных случаях картинку рисовать уже затруднительно, да… Тогда решаем задачу аналитически, через систему.) А системы – штука универсальная. С любыми числами справляются.

Ещё одна эпичная задачка:

Второй член геометрической прогрессии на 10 больше первого, а третий член на 30 больше второго. Найдите знаменатель прогрессии.

Что, круто? Вовсе нет! Всё то же самое. Снова переводим условие задачи в чистую алгебру.

1) Расписываем каждый член по формуле n -го члена!

Второй член: b 2 = b 1 ·q

Третий член: b 3 = b 1 ·q 2

2) Записываем связь между членами из условия задачи.

Читаем условие: "Второй член геометрической прогрессии на 10 больше первого". Стоп, это ценно!

Так и пишем:

b 2 = b 1 +10

И эту фразу переводим в чистую математику:

b 3 = b 2 +30

Получили два уравнения. Объединяем их в систему:

Система на вид простенькая. Но что-то уж много различных индексов у буковок. Подставим-ка вместо второго и третьего членов их выражения через первый член и знаменатель! Зря, что ли, мы их расписывали?

Получим:

А вот такая система – уже не подарок, да… Как такое решать? К сожалению, универсального секретного заклинания на решение сложных нелинейных систем в математике нет и быть не может. Это фантастика! Но первое что должно приходить вам в голову при попытке разгрызть подобный крепкий орешек – это прикинуть, а не сводится ли одно из уравнений системы к красивому виду, позволяющему, например, легко выразить одну из переменных через другую?

Вот и прикинем. Первое уравнение системы явно проще второго. Его и подвергнем пыткам.) А не попробовать ли из первого уравнения что-то выразить через что-то? Раз уж мы хотим найти знаменатель q , то выгоднее всего нам было бы выразить b 1 через q .

Вот и попробуем проделать эту процедуру с первым уравнением, применяя старые добрые :

b 1 q = b 1 +10

b 1 q – b 1 = 10

b 1 (q-1) = 10

Всё! Вот мы и выразили ненужную нам переменную (b 1) через нужную (q). Да, не самое простое выражение получили. Дробь какую-то… Но и система у нас приличного уровня, да.)

Типичное . Что делать – знаем.

Пишем ОДЗ (обязательно!) :

q ≠ 1

Умножаем всё на знаменатель (q-1) и сокращаем все дроби:

10 q 2 = 10 q + 30(q -1)

Делим всё на десятку, раскрываем скобки, собираем всё слева:

q 2 – 4 q + 3 = 0

Решаем получившееся и получаем два корня:

q 1 = 1

q 2 = 3

Окончательный ответ один: q = 3 .

Ответ: 3

Как вы видите, путь решения большинства задач на формулу n-го члена геометрической прогрессии всегда един: читаем внимательно условие задачи и с помощью формулы n-го члена переводим всю полезную информацию в чистую алгебру.

А именно:

1) Расписываем отдельно каждый данный в задаче член по формуле n -го члена.

2) Из условия задачи переводим связь между членами в математическую форму. Составляем уравнение или систему уравнений.

3) Решаем полученное уравнение или систему уравнений, находим неизвестные параметры прогрессии.

4) В случае неоднозначного ответа читаем внимательно условие задачи в поисках дополнительной информации (если таковая присутствует). Также сверяем полученный ответ с условиями ОДЗ (если таковые имеются).

А теперь перечислим основные проблемы, наиболее часто приводящие к ошибкам в процессе решения задач на геометрическую прогрессию.

1. Элементарная арифметика. Действия с дробями и отрицательными числами.

2. Если хотя бы с одним из этих трёх пунктов проблемы, то неизбежно будете ошибаться и в этой теме. К сожалению… Так что не ленитесь и повторите то о чём упомянуто выше. И по ссылочкам – сходите. Иногда помогает.)

Видоизменённые и рекуррентные формулы.

А теперь рассмотрим парочку типичных экзаменационных задачек с менее привычной подачей условия. Да-да, вы угадали! Это видоизменённые и рекуррентные формулы n-го члена. С такими формулами мы уже с вами сталкивались и работали в по арифметической прогрессии. Здесь всё аналогично. Суть та же.

Например, такая задачка из ОГЭ:

Геометрическая прогрессия задана формулой b n = 3·2 n . Найдите сумму первого и четвёртого её членов.

В этот раз прогрессия нам задана не совсем привычно. В виде какой-то формулы. Ну и что? Эта формула – тоже формула n -го члена! Мы же с вами знаем, что формулу n-го члена можно записать как в общем виде, через буквы, так и для конкретной прогрессии . С конкретными первым членом и знаменателем.

В нашем случае нам, на самом деле, задана формула общего члена для геометрической прогрессии вот с такими параметрами:

b 1 = 6

q = 2

Проверим?) Запишем формулу n-го члена в общем виде и подставим в неё b 1 и q . Получим:

b n = b 1 · q n -1

b n = 6·2 n -1

Упрощаем, используя разложение на множители и свойства степеней, и получаем:

b n = 6·2 n -1 = 3·2·2 n -1 = 3·2 n -1+1 = 3·2 n

Как видите, всё честно. Но наша с вами цель – не продемонстрировать вывод конкретной формулы. Это так, лирическое отступление. Чисто для понимания.) Наша цель - решить задачу по той формуле, что дана нам в условии. Улавливаете?) Вот и работаем с видоизменённой формулой напрямую.

Считаем первый член. Подставляем n =1 в общую формулу:

b 1 = 3·2 1 = 3·2 = 6

Вот так. Кстати, не поленюсь и ещё раз обращу ваше внимание на типовой ляп с подсчётом первого члена. НЕ НАДО, глядя на формулу b n = 3·2 n , сразу бросаться писать, что первый член – тройка! Это – грубейшая ошибка, да…)

Продолжаем. Подставляем n =4 и считаем четвёртый член:

b 4 = 3·2 4 = 3·16 = 48

Ну и наконец, считаем требуемую сумму:

b 1 + b 4 = 6+48 = 54

Ответ: 54

Ещё задачка.

Геометрическая прогрессия задана условиями:

b 1 = -7;

b n +1 = 3 b n

Найдите четвёртый член прогрессии.

Здесь прогрессия задана рекуррентной формулой. Ну и ладно.) Как работать с такой формулой – тоже знаем.

Вот и действуем. По шагам.

1) Считаем два последовательных члена прогрессии.

Первый член нам уже задан. Минус семь. А вот следующий, второй член, легко можно посчитать по рекуррентной формуле. Если понимать принцип её работы, конечно.)

Вот и считаем второй член по известному первому:

b 2 = 3 b 1 = 3·(-7) = -21

2) Считаем знаменатель прогрессии

Тоже никаких проблем. Прямо , делим второй член на первый.

Получаем:

q = -21/(-7) = 3

3) Пишем формулу n -го члена в привычном виде и считаем нужный член.

Итак, первый член знаем, знаменатель – тоже. Вот и пишем:

b n = -7·3 n -1

b 4 = -7·3 3 = -7·27 = -189

Ответ: -189

Как вы видите, работа с такими формулами для геометрической прогрессии ничем по своей сути не отличается от таковой для прогрессии арифметической. Важно лишь понимать общую суть и смысл этих формул. Ну и смысл геометрической прогрессии тоже надо понимать, да.) И тогда глупых ошибок не будет.

Ну что, порешаем самостоятельно?)

Совсем элементарные задачки, для разминки:

1. Дана геометрическая прогрессия, в которой b 1 = 243, а q = -2/3. Найдите шестой член прогрессии.

2. Общий член геометрической прогрессии задан формулой b n = 5∙2 n +1 . Найдите номер последнего трёхзначного члена этой прогрессии.

3. Геометрическая прогрессия задана условиями:

b 1 = -3;

b n +1 = 6 b n

Найдите пятый член прогрессии.

Чуть посложнее:

4. Дана геометрическая прогрессия:

b 1 =2048; q =-0,5

Чему равен шестой отрицательный её член?

Что, кажется суперсложно? Вовсе нет. Спасёт логика и понимание смысла геометрической прогрессии. Ну и формула n-го члена, само собой.

5. Третий член геометрической прогрессии равен -14, а восьмой член равен 112. Найдите знаменатель прогрессии.

6. Сумма первого и второго членов геометрической прогрессии равна 75, а сумма второго и третьего членов равна 150. Найдите шестой член прогрессии.

Ответы (в беспорядке): 6; -3888; -1; 800; -32; 448.

Вот почти и всё. Осталось лишь научиться нам считать сумму n первых членов геометрической прогрессии да открыть для себя бесконечно убывающую геометрическую прогрессию и её сумму. Очень интересную и необычную штуку, между прочим! Об этом - в следующих уроках.)