Чем отличается реакция поликонденсации реакции. Определение процессов полимеризации и поликонденсации

При реакции полимеризации на выходе получают только полимеры. В ходе поликонденсации продуктом реакций становится полимеры и низкомолекулярные вещества.

Определение

В процессе полимеризации последовательно соединяются как одинаковые, так и различные молекулы мономеров, выстраивая одну сложную молекулу полимера (высокомолекулярного вещества) без выделения и образования побочных продуктов – низкомолекулярных соединений. Поэтому на выходе получают полимер с точно таким же элементарным составом, что и мономер.

В процессе поликонденсации молекулы одного либо нескольких мономеров, соединяясь между собой, образуют макромолекулу полимера и побочно выделяют тот или иной низкомолекулярный продукт (воду, спирт, хлороводород или аммиак). Поликонденсация лежит в основе биосинтеза целлюлозы, нуклеиновых кислот и, конечно, белков.

Сравнение

Эти два процесса схожи тем, что в его начале в реакцию вступает исходный мономер. А дальше при полимеризации в реакционной системе на всех стадиях текущего процесса присутствуют увеличивающиеся активные цепи, исходный мономер и закончившие рост макромолекулы. А в процессе поликонденсации мономер, как правило, исчерпывается на начальных стадиях происходящей реакции, и в дальнейшем в системе остаются лишь полимеры (олигомеры), взаимодействующие один с другим.

Для полимеризации и поликонденсации одинаково важна реакционная способность нужных мономеров и, конечно, их строение. В ходе полимеризации реакции, возникающие между увеличивающимися молекулами, как правило заканчиваются обрывом цепей.

А при поликонденсации реакции, протекающие между увеличивающимися молекулами, – это основные реакции роста полимерных цепей. Длинные цепи формируются за счет взаимодействия олигомеров. Полимеризация протекает по трем стадиям: инициированию, росту цепи и обрыву цепи. При этом центрами роста полимерной цепи являются катионы, свободные радикалы или анионы. Функциональность (количество реакционных центров в молекуле) влияет на образование трехмерных, разветвленных или линейных макромолекул.

Выводы сайт

  1. Для поликонденсации характерно выделением побочных продуктов – низкомолекулярных веществ, таких как вода или спирт.
  2. При полимеризации продуктами реакции становятся только полимеры.
  3. Биосинтез целлюлозы, белков и нуклеиновых кислот возможен благодаря реакции поликонденсации.

Как уже указывалось, другой по природе категорией реакций получения полимеров являются ступенчатые процессы, к которым относятся поликонденсация и ступенчатая полимеризация. В этих реакциях растущие цепи полимеров после каждого акта присоединения являются устойчивыми частицами, процесс образования полимера протекает ступенями, молекулярная масса нарастает постепенно.

При ступенчатой полимеризации и поликонденсации и при цепной полимеризации затрачивается разное время для получения высокомолекулярного продукта, т. е. для завершения роста цепи макромолекулы. При поликонденсации, например, которая протекает по ступенчатой схеме, размер молекулы увеличивается с относительно низкой скоростью и сначала из мономеров образуется димер, тример, тетрамер и т. д. - до полимера. При цепной полимеризации почти сразу после начала реакции образуются молекулы с высокой молекулярной массой. В последнем случае на различных стадиях процесса в реакционной смеси всегда присутствуют только мономер и полимер и отсутствуют молекулы промежуточных размеров. С увеличением продолжительности реакции растет лишь число молекул полимера. Молекулярная масса полимера не зависит от степени завершенности реакции, которая влияет только на выход полимера. При поликонденсации же образование полимера происходит на стадии очень высокой степени завершенности реакции (более 98%), и выход, и молекулярная масса полимера зависят от продолжительности реакции.

Исходные и полученные в результате поликонденсации молекулы устойчивы и могут быть выделены. Однако они содержат на концах реакционноспособные группы и могут участвовать в дальнейших реакциях конденсации друг с другом или с другими мономерами. Это используется в промышленности для получения олигомеров и синтеза из них различных полимеров, в том числе имеющих структуру пространственно-сшитых.

Поликонденсация, в которой участвуют только бифункциональные молекулы, приводит к образованию линейных молекул полимера и называется линейной.
Например, образование полиамида:

При этом один и тот же принцип построения макромолекул может быть реализован как при реакции двух различных бифункциональных мономеров, каждый из которых содержит только один тип функциональных групп (а), так и из одного мономера, содержащего оба типа функциональных групп (б). Случай (а) отвечает сополиконденсации, случай (б) - гомополиконденсации.

Процесс поликонденсации, в котором участвуют молекулы с тремя или большим числом функциональных групп, приводит к образованию разветвленных или трехмерных (сетчатых, сшитых) структур и называется трехмерной
поликонденсацией. Например, образование фенолоформальдегидных смол:

Аналогичным процессом является поликонденсация глицерина и фталевой кислоты (глифталевые смолы), силантриолов и др.

Поликонденсация является равновесным процессом, т. е. продукты конденсации могут реагировать с побочными низкомолекулярными веществами с образованием исходных соединений.

Таким образом, равновесие реакции должно быть сдвинуто вправо в результате удаления низкомолекулярного продукта (ab) из зоны реакции (например, путем отгонки, вакуумирования). Благодаря стадийности реакции поликонденсации (мономер + мономер ® димер; димер + мономер ® тример; димер+димер ® тетрамер; тример + димер ® пентамер и т. д.) молекулярная масса продуктов непрерывно увеличивается и мономер исчезает задолго до образования полимера с молекулярной массой более 5000-10000. В большинстве реакций поликонденсации остается не более 1% исходного мономера к моменту образования полимера.

При линейной поликонденсации двух мономеров для получения максимально возможной высокой молекулярной массы полимера необходимо соблюдать равенство концентраций исходных компонентов. Увеличение концентрации одного из них резко снижает степень поликонденсации, поскольку функциональные группы избыточного мономера действуют как ингибиторы и останавливают реакцию на ранних стадиях, т. е. до образования полимера.

При проведении поликонденсации очень важно знать зависимость ее скорости от различных факторов, зависимость степени поликонденсации от глубины превращения мономера, соотношения мономеров в смеси и другие причины прекращения роста молекулярной массы полимера (она обычно значительно меньше, чем при полимеризации). Зависимость предельной степени поликонденсации от концентрации выделяющегося низкомолекулярного соединения и константы равновесия характеризуется уравнением поликонденсационного равновесия:

где P - степень поликонденсации; k - константа равновесия; na - молярная доля низкомолекулярного вещества, выделяющегося при реакции. Зависимость степени поликонденсации от глубины превращения мономеров выражается кривой, приведенной на pис. 10. Здесь видно, что полимер образуется лишь после израсходования основной массы мономера.

Трехмерная поликонденсация отличается от линейной большей константой скорости прямой реакции вследствие, главным образом, перехода системы в гель после начала реакции. Разветвленная структура полимера образуется при реакции бифункциональных и трифункциональных молекул друг с другом. Трифункциональная молекула дает начало разветвлению, цепи разветвляются одна за другой и в итоге образуется бесконечная сетка. Например, конденсация трехатомного спирта - глицерина и двухосновной фталевой кислоты. Чем выше функциональность мономеров, тем при меньшей степени завершенности реакции наступает гелеобразование. Вследствие образования малоподвижной разветвленной или сетчатой структуры требования соблюдения равенства концентраций функциональных групп и удаления низкомолекулярных продуктов поликонденсации не являются такими жесткими, как при линейной поликонденсации.

Ступенчатая (или миграционная) полимеризация по своим основным закономерностям и структуре образующегося полимера сходна с линейной поликонденсацией. Присоединение каждого последующего мономера к растущей цепи, которая тоже является устойчивой частицей, осуществляется путем перемещения (миграции) водорода. Такой процесс имеет место при синтезе полиуретанов из изоцианатов и гликолей:

и т. д. до образования полимера

Отличие ступенчатой полимеризации от поликонденсации заключается в том, что здесь не происходит выделения низкомолекулярного побочного продукта реакции. Если заменить гликоль многоатомным спиртом (глицерин, пентаэритрит и др.) или диизоцианат триизоцианатом, то получаются пространственные полимеры; реакция их образования аналогична трехмерной поликонденсации.

Полимеризация за счет раскрытия циклов мономерных молекул также часто протекает по механизму ступенчатых реакций (например, полимеризация e-капролактама). Активизируют этот процесс небольшие количества воды, кислоты, основания:

Как видно, активатор присоединяется только к первой молекуле мономера, а в процессе роста цепи происходит перемещение функциональных групп к концу цепи, т. е. идет миграционная полимеризация.

Циклические мономеры могут также полимеризоваться по ионному механизму (например, окись этилена, триоксан, e-капролактам с металлическим натрием, окись пропилена). При разрыве кольца происходит восстановление тех же типов связей за счет соединения двух, трех и т. д. разорванных колец в цепь.

Существуют различные варианты формирования цепи макро­мо­лекул из низ­комолекулярных реагентов. Число таких вариантовмож­но определить, пользу­ясь принципами комбинаторики. Так, к молекуле мономера можно присоединить еще одну молеку­лу мономера,затем к образовавшемуся димеру вновь присоединить одну молекулу мономера и т. д. Такой вариант составления макромолекулы измономеров показан на рис. 3 ломаной линией 1. Возможны и другие вари­анты получения макромолекулы, на­пример, образовавшиеся димеры и другиеn-меры могут взаимодей­ствовать друг с другом и с мономе­ром (линии 3 и 4). Предельно­му случаю этого пути процесса соответствует линия 2, отвечающая такой ситуации, при которой димеры взаимодействуют с димерами, тетрамеры с тетрамерами, получивши­еся далее октамеры взаимо­действуют с октамерами и т. д.,т. е. при каждом взаимодействии происходит удвоение длины молекулы реак­ционноспособногоn-мера (дублика­ция). Из множества вариантов образования макромолекулы из мономеров мож­но выделить две i основ­ные разновидности: полимеризацию и поликонденсацию.

Полимеризацией называется процесс образования макромолекул путем последовательного присоединения молекул мономера к реакционным реагентов системы. Общую схему полимеризации можнозаписать в виде:

[–M–] n + M[–M–] n+1

Этой схеме отвечает ломаная линия 1 на рис. 3. Можно ска­зать, что цепь макромолекулы при полимеризации образуется позвенно, пос­тепенно, как бы наращиванием, поэтому реакцию обра­зования макромолекул при полимеризации называютреакцией роста.

Рис. 3 а) Зависимость степени полимеризация или поликонденсации от числа единичных последовательных реакций образования макромолекулы наначальной стадии процесса; б) Зависимость степени полимеризацияилиполиконденсации отчисла последователь­ных реакций стадии образованнамакромолекулы: 1 – полимеризация; 2 –поликонденсация удвоением(дубликацией);3 –другие случаи поликонденсации;4 – поликонденсация, близкая к полимеризации.

Поликонденсацией называется процесс образования макромолекул путем взаимодействия друг с другом реакционных центроввсех реагентов системы. Схему поликонденсационной сборки макромолекул можно записать ввиде:

[–M–]n 1 + [–M–]n 2
[–M–]n 1 +n 2

Эта схема учитывает также и начало процесса с участием мономеров:

М + М
М 2 М 2 + М
М 3

Однако, как будет показано ниже, при получении высокомоле­ку­лярных продуктов поликонденсацией основную долю взаимодействий составляют реакции олигомеров (n> 1) между собой. Поликонденсации отвечают ломаные кривые 2, 3, 4 на рис. 3. Мож­но сказать, что цепь макромолекулы в этом случае собирается блоками. Для та­кого процесса не подходит термин «рост»; для него можно предложитьтермин «сборка» цепей. Приведенные выше оп­ределения достаточно общи, они могут быть отнесены ко всем про­­цессам синтеза полиме­ров. При этом не требуется введения каких - либо дополнительных терминов (по­липрисоединение, миграционная полимеризация ит. д.). Данные определения процессов синтеза полимеров не связаны с химиче­ским строением мономеров и реакционных центров, так каксин­­тез полимеров (поликонденсацией или полимеризацией) можноосуществить различ­ными химическими путями. Кроме того, в определениях ничего не сказано о выделении низкомолекулярных побочныхпродуктов, поскольку как полимеризация, так и поликон­денсациямогут протекать с выделением и без выделения низко­молекулярного продукта.

При образовании высокомолекулярных соединений (n–вели­ко)ломаные линии на рис. 3а переходят в плавные и процессы образования макромолекул методами полимеризации и поликон­денсацииизображаются иначе (рис. 3б). Это следует учитывать при построениисхем стадийности процессов синтеза полимеров (рис. 1). Так, дляполимеризации, не осложненной побочными процессами линия АВ будет прямой, а для поликонденсации - кривой, аналогичной кривой 2 на рис. 3а. Кроме различий, проявляю­щихся при образовании единичной мак­ромолекулы, процессы полимеризации и поликонденсации раз­ли­чаются и по характеру изменений, происходящих во всей реак­ци­онной системе. Изменения в реакционной системе в ходе процесса синтеза полимера (особенно наран­них стадиях) удобно изобразить тройной диаграммой (треуго­ль­ником Гиббса, рис. 4). Эти диаграммы широко используются при физико-химическом анализе состояния тройных систем (плавкости, растворимости).

Такие диаграммы состава тройной системы (системы из трехком­понентов) можно применять к закрытым системам, т. е. систе­мам спостоянным числом частиц. Их можно также применить и к взаимнопревращающимся химическим системам, в которых со­блюдается материальный баланс между реагентами. В процессе синтеза полимеров участвует реакци­онные центры мономераМ и концевые реакци­онные цен­тры олиго­меров и n-меров К (рис. 4). При их взаимодействии образуется полимер­ная межзвенная связь Р . Каждая точка внутри тре­угольника обо­значает состав системы в опре­деленный момент времени; соединив этиточки, можно получить кривую, характеризующую изменение соотношения между компонентами системы (М, К, Р ) в ходе про­цесса синтеза полимеров. На рис. 4 представлены такие зависимости дляразличных процессов синтеза полимеров.

Прямая NL характеризует процесс образования полимера (уве­личение количества образовавшихся связей Р ) за счет уменьшениясодержания мономера в системе при постоянном содержании кон­цевых групп(т. е. при постоянном содержании растущих полимерныхцепей). Следовательно, прямые, параллельные основанию тре­уголь­ника МР , соответствуют процессу полимеризации. Сама линия МР от­вечает предельному случаю полимеризации – полимеризации с участием очень малого числа концевых групп, например рост од­ной макромолекулы в системе. Путь N " QL отражает процесс поликонденсации, причем на диа­грамме ясно видны две его стадии: образованиедимеров из мономеров (прямая N " Q ) и увеличение числа связей за счет уменьше­ния количества концевых групп олигомеров (отрезок QL ). Этот путь отвечает идеализированному процессу. В реальныхслучаях поликонденсации мономер не исчерпывается полностью после об­разования димеров, поэтомуточка Q в реальных процессах пере­мещается в точку Q " и, следовательно, реальный процесс поликонденсации описываетсяNQ"L.


Рис. 4 а) Тройная диаграмма, изображающая протекание процессов синтеза полимеров:MQP поликонденсация; МР– полимеризация (идеальные процессы); МQ"L – поликонденсация; NL полимеризация (реальные процес­сы).; б) Тройная диаграмма, изображающая последовательное протека­ние процессовполимеризации и поликонденсации в системе: МА– об­разова­ниереакционных центров; АВ–полимеризация; ВС–поликонденсация,

Тройные диаграммы более сложных процессов приведены нарис. 4б. Из рисунка видно, что в начале процесса (отрезокМА) образуются низкомолекулярные продукты с концевыми группами (этосоответствует, например, инициированию полимеризации). Далеепро­текает полимеризация мономера с участием этих концевых центров(отрезок АВ) и наконец процесс заканчивается поликонденсацией(отрезкиВС иСР).

Таким образом, можно сформулировать основные особенностипроцессов полимеризации и поликонденсации (таблица 1). Следует обратить особое внимание на характер участия моле­кул мономера вобразовании макромолекул полимера. Молекулы мономера участвуютв реакциях образования макромолекул в обо­их процессах, но имеются существенные различия в их протекании, обусловлен­ные особенностями последних. При полимеризации мономер является основнымре­агентом процесса на всем его протяжении; при этом молекулы мономера реагируют с концом растущей цепи в строгой последователь­ности–одна за одной. По сравнению с этими реакциями вероят­ность образования макромолекулы за счет взаимодействия олиго­меров иn-меров считается близкой к нулю.

При поликонденсации молекулы мономера участвуют в реак­циях составления цепи макромолекулы с той же вероятностью, что и моле­кулы других реагентов (олигомеров, n-меров). Поэтомуприполиконденсации после присоединения молекулы мономера, напри­мер, к тримеру могут последовать реакции взаимодействия обра­зовавшегосятетрамера сn 1 ,n 2 ,n 3 -мерами, итолькопослеэтого может вновь произойти взаимодействие образовавшегося олигомера с мономером.При поликонденсации мономер исчезает из реакционной систе­мы практи­чески на ранних стадиях (настадиях образования олигомеров), и по­этому основными реагентами в этих процессах (особенно на глубоких стадиях) становятся реакционноспособные олигомеры, взаимодей­с­твующие за счет концевых реакционных центров.

Таблица 1

Основные особенности простейших процессов полимеризации и поликонденсации

Особенность процесса

Полимеризация

Полико нденсация

Характер образования цепи макромолекулы

Зависимость степени полиме­ри­зации (поликонденсации) от чис­ла реакций, составля­ющих стадию образования макромолекулы

Число реакционноспособных макромолекул в ходе процесса

Концевые реакционные цент­ры на стадии образования макромолекулы

Исчезновение молекул моно­мера

Строение концевых реакцион­ных центров реакционноспо­собных макромолекул

Наличие катализатора, ини­циа­тора

Позвенный

Арифметическая прогрес­сия

Постоянно

Регенерируются

В конце процесса

Отличается от строения функцио­нальных групп мономера

Обязательно

Поблочный

Геометрическая прогрес­сия

Уменьшается

На более ранних стадиях процесса

Аналогично строению реакционных центров мо­номера

Не обязательно

Не следует забывать, что приведенные в таблице 1 и отмечен­ные нарис.3 особенности процессов поликонденсации и полиме­ри­зации относятся к простейшим (не осложненным процес­сам). Присинтезе полимеров в реальных условиях могут наблю­даться отклоненияот этихидеализированныхсхем. Так,кривая4 рис. 3б соответствует процессу поликонденсации, очень похоже­му на полимеризацию. Возможно протекание и таких сложных процессов, при которых олигомеры образуются путем полимериза­ции, а далее они взаимодействуют между собой по поликонденса­ционному механизму (рис.4б). Примером такого процесса яв­ляется получение поли--капроамида, когда сам лактам полимеризуется по схеме:

а образующиеся концевые NH 2 - и СООН– группы подвергаются поликонденсации:

Выше отмечались особенности лишь стадии образования мак­ро­мо­лекулы при различных процессах синтеза полимеров. Однако этиособенности накладывают отпечаток и на некоторые другие стадии.В таблице 2 перечислены реакции, составляющие различные стадиипроцессов синтеза полимеров.

Таблица 2

Основные реакции процессов синтеза полимеров

Стадия процесса

Поликонденсация

Полимеризация

Создание реакционных центров

Образование макромоле­кулы

Прекращение образова­ния макромолекулы

Реакции предварительного синтеза функциональных групп мономера

Реакции образования реак­ционных центров олигомеров

Реакции составления (сборки) макромолекулы

Реакции дезактивации реак­ционных центров олигомеров Процессы прекращения обра­зования макромолекул

Реакции инициирования

Реакции зарождения активных центров

Реакции роста макромолекулы

Реакции обрыва

Реакции диспропорционирования

Реакции передачи кинетической цепи

Более глубоко стадии процессов поликонденсации рассматриваются в лекционном курсе. Далее будут рассмотрены вопросы реакционной спо­собности и синтеза мономеров для поликонденсации.

Полимеры – это высокомолекулярные соединения (вмс). Мономеры – это низкомолекулярные вещества, из которых получают полимеры. Степенью полимеризации (поликонденсации) называют среднее число структурных звеньев в молекуле полимера.

Полимеризация – реакция соединения молекул мономера т, не сопровождающаяся выделением побочных продуктов. Поэтому элементарный состав мономеров и получаемого полимера одинаков. Полимеризация может осуществляться путем раскрытия двойных и тройных связей ненасыщенных соединений, а также за счет размыкания различных гетероциклов. В зависимости от характера активных центров, инициирующих цепной процесс различают радикальную и ионную полимеризацию. Процесс идет по цепному механизму.

nCH2=CH2→(-СН-СН-)n, где n - это степень полимеризации молекул, показывающая, сколько мономерных звеньев входит в ее состав.

Классификация полимеров :

Если брать за основу качественный состав молекул, то все рассматриваемые вещества можно определить в три группы.

    Органические – это те, в состав которых входят атомы углерода, водорода, серы, кислорода, фосфора, азота. То есть те элементы, которые являются биогенными. Примеров можно привести массу: полиэтилен, поливинилхлорид, полипропилен, вискоза, нейлон, природный полимер – белок, нуклеиновые кислоты и так далее.

    Элементорганические – такие, в состав которых входит какой-то посторонний неорганический и не биогенный элемент. Чаще всего это кремний, алюминий или титан. Примеры подобных макромолекул: органическое стекло, стеклополимеры, композиционные материалы.

    Неорганические – в основе цепи лежат атомы кремния, а не углерода. Радикалы же могут быть частью боковых ответвлений. Они открыты совсем недавно, в середине XX века. Используются в медицине, строительстве, технике и прочих отраслях. Примеры: силикон, киноварь.

Если разделять полимеры по происхождению, то можно выделить три их группы.

    Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие.

    Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный каучук, резина.

    Синтетические – это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, ацетатное волокно и прочее.

Поликонденсация – реакция образования высокомолекулярных соединений, протекающая по механизму замещения и сопровождающаяся обычно, выделением низкомолекулярных продуктов, вследствие чего элементарный состав полимера отличается от элементарного состава исходных продуктов.

В реакцию поликонденсации могут вступать мономерсодержащие двух или более функциональные группы. При взаимодействии этих групп происходит разложение молекулы низкомолекулярного соединения, с образованием новой группы, которая связывает остатки реагирующих молекул.

Поликонденсация - ступенчатая реакция, рост цепи происходит в результате взаимодействия молекул мономера друг с другом, а также промежуточными продуктами: олигомерными или полимерными молекулами или при взаимодействии олигомерных и полимерных молекул между собой. В результате образуются соединения с функциональностью исходного вещества.

Полимеры.

22-29-1. Основное отличие реакций поликонденсации от реакций полимеризации

1) последовательное присоединение молекул к растущей цепи

2) в реакцию вступают два разных соединения

3) образование высокомолекулярного соединения

4)выделение побочного низкомолекулярного продукта

22-29-3. Реакции полимеризации характерны для

1) стирола, пропена, этилена 2) пропилена, метаналя, этана

3) стирола, этина, метановой кислоты 4) пропена, бутадиена, гексана

22-29-2. Синтетические каучуки получают

1)полимеризацией алкадиенов 3)полимеризацией алкенов

2)полимеризацией алкинов 4)поликонденсацией аминокислот

22-29-4. Природным полимером является

22-29-14. Формула продукта полимеризации пропилена

1) СН 3 -СН 2 -СН 3 2) (-СН 2 -СН(CH 3)-CH 2 -CH 2 -) n 3) (-СН 2 -СН 2 -) n 4) (-СН 2 -СН 2 -СН 2 -) n

22-29-10. Мономером для получения поливинилхлорида является

1) хлорэтан 2) хлорпропан 3) хлорэтен 4) 1,2-дихлорэтан

22-29-7. Мономер для производства полистирола (полифенилэтилена) получают по реакции дегидрирования углеводорода

1) метилбензол 2) зтилбензол 3) 1,2-диметилбензол 4) пропилбензол

22-29-11. Мономером для получения полистирола является

1) этилбензол 2) винилбензол 3) этилацетат 4) нитробензол

22-29-9.Мономером для получения искусственного каучука по способу Лебедева служит

1) бутен-2 2) этан 3) этилен 4) бутадиен-1,3

22-29-12. Для промышленного производства фенолформальдегидной смолы следует взять

1) C 6 Н 6 НСНO 2) C 6 Н 6 , СН 3 СНO 3) С 2 Н 5 ОН, СН 3 СНO 4) С 6 Н 5 ОН, HCHO

22-29-20. Из полимеров наиболее стойкий химически

1) политетрафторэтилен 2) полистирол 3) полибутадиен 4) целлюлоза

22-29-16. Какой вулканизирующий агент взаимодействует с каучуком с образованием резины? 1) Фосфор; 2) сера; 3) углерод; 4) фтор.

22-29-17. Вулканизированная резина набухает, но не растворяется в бензине, потому что

1) молекулы полимера не содержат полярные группы

2) это эластичный полимер

3) молекулы полимера химически связаны сульфидными мостиками

4) молекулы полимера содержат двойные связи

22-29-18. Реагирует с бромной водой

1) полистирол 2) полиэтилен 3) полибутадиен 4) поливинилхлорид

22-29-19. Полибутадиеновый каучук может реагировать с хлором в темноте, потому что

1) это эластичный полимер 2) в молекулах полимера много двойных связей

3) С-С связи способны к разрыву 4) содержит в главной цепи атомы углерода

Промышленные процессы.

Нефть и продукты её переработки.

22-29-23. Способом переработки нефти и нефтепродуктов, при ко­тором не происходят химические реакции, является 1) перегонка 2) крекинг 3) риформинг 4) пиролиз

22-29-25. Аппаратом для разделения жидких продуктов производства является

1) поглотительная башня 2) ректификационная колонна

3) теплообменник 4) осушительная башня

22-29-30. В основе первичной переработки нефти лежит

1)крекинг нефти 2) перегонка нефти

3) дегидроциклизация углеводородов 4) риформинг углеводородов

22-29-26. Выберите синоним термину "ректификация" :

1) риформинг; 2)фракционная перегонка; 3)ароматизация; 4)изомеризация.

22-29-29. Процесс разложения углеводородов нефти на более летучие вещества называется

1) крекингом 2) дегидрированием 3) гидрированием 4) дегидратацией

22-29-22. Крекинг нефтепродуктов - это способ

1) получения низших углеводородов из высших 2) разделения нефти на фракции

3) получения высших углеводородов из низших 4) ароматизации углеводородов

22-29-27. Процесс, приводящий к увеличению доли ароматических углеводородов в составе бензинов, называется 1)крекингом 2)риформингом 3)гидроочисткой 4)ректификацией

При риформинге метилциклопентан в результате реакций изомеризации и дегидрирования превращается в 1) этилциклопентан 2) гексан 3) бензол 4) пентен

Непредельные углеводороды получаются при

1)ректификации 2)гидрогенизации 3)крекинге 4)полимеризации

22-29-28. Бензин прямой перегонки и крекинг-бензин можно различить с помощью

1)раствора щелочи 2)известковой воды 3)бромной воды 4)жавелевой воды

22-29-31. В состав мазута - тяжелой фракции перегонки нефти - не входит (не входят)

1) гудрон 2) керосин 3) парафин 4) масла

Метанол.

22-29-39. Сырье для промышленного производства метанола

1)угарный газ и водород 2)метиловый эфир уксусной кислоты

3)ацетилен 4)каменный уголь

22-29-38. Процесс получения «водяного газа» (смесь СО + Н 2) - сырья в произ­водстве метанола - называется

1) пиролиз природного газа 2) сухая перегонка древесины

3) газификация каменного угля 4) крекинг нефтепродуктов

22-29-34. В промышленности из оксида углерода и водорода под давлением, при повышенной температуре, в присутствии катализатора получают:

1) метанол; 2) этанол; 3) пропанол; 4) бутанол.

22-29-36. Высокое давление в процессе синтеза метанола создают с целью

1)повышения надежности промышленной установки 2)уменьшения тепловых потерь

3)увеличения селективности реакции 4)смещения равновесия

22-29-37. Для промышленного получения метанола из синтез-га­за не является характерным

1) циркуляция 2) теплообмен

3) использование селективных катализаторов 4) использование низких давлений

Применение. Биологическое действие, опасность.

22-29-43. Установите соответствие между формулой вещества и областью его применения:



22-29-44. Установите соответствие между формулой вещества и областью его применения:

ФОРМУЛА ОБЛАСТЬ ПРИМЕНЕНИЯ



22-29-46. Экологически чистым топливом является

1) водород 2) нефть 3) каменный уголь 4) природный газ