Земная кора кратко. Земная кора. Положение, химический состав, термический режим. Процессы, формирующие земную кору

Температура внутри земли чаще всего является довольно субъективным показателем, поскольку точную температуру можно назвать только в доступных местах, например, в Кольской скважине (глубина 12 км). Но это место относится к наружной части земной коры.

Температуры разных глубин Земли

Как выяснили ученые, температура поднимается на 3 градуса каждые 100 метров вглубь Земли. Эта цифра является постоянной для всех континентов и частей земного шара. Такой рост температуры происходит в верхней части земной коры, примерно первые 20 километров, далее температурный рост замедляется.

Самый большой рост зафиксирован в США, где температура поднялась на 150 градусов за 1000 метров вглубь земли. Самый медленный рост зафиксирован в Южной Африке, столбик термометра поднялся всего лишь на 6 градусов по Цельсию.

На глубине около 35-40 километров температура колеблется в районе 1400 градусов. Граница мантии и внешнего ядра на глубине от 25 до 3000 км раскаляется от 2000 до 3000 градусов. Внутренние ядро нагрето до 4000 градусов. Температура же в самом центре Земли, по последним сведениям, полученным в результате сложных опытов, составляет около 6000 градусов. Такой же температурой может похвастаться и Солнце на своей поверхности.

Минимальные и максимальные температуры глубин Земли

При расчете минимальной и максимальной температуры внутри Земли в расчет не берут данные пояса постоянной температуры. В этом поясе температура является постоянной на протяжении всего года. Пояс располагается на глубине от 5 метров (тропики) и до 30 метров (высокие широты).

Максимальная температура была измерена и зафиксирована на глубине около 6000 метров и составила 274 градуса по Цельсию. Минимальная же температура внутри земли фиксируется в основном в северных районах нашей планеты, где даже на глубине более 100 метров термометр показывает минусовую температуру.

Откуда исходит тепло и как оно распределяется в недрах планеты

Тепло внутри земли исходит от нескольких источников:

1) Распад радиоактивных элементов ;

2) Разогретая в ядре Земли гравитационная дифференциация вещества ;

3) Приливное трение (воздействие Луны на Землю, сопровождающееся замедлением последней) .

Это некоторые варианты возникновения тепла в недрах земли, но вопрос о полном списке и корректности уже имеющегося открыт до сих пор.

Тепловой поток, исходящий из недр нашей планеты, изменяется в зависимости от структурных зон. Поэтому распределение тепла в месте, где находится океан, горы или равнины, имеет совершенно разные показатели.

Материки в свое время были сформированы из массивов земной коры, которая в той или иной степени выступает над уровнем воды в виде суши. Эти глыбы земной коры не один миллион лет раскалывались, сдвигались, части их сминались, чтобы предстать в том виде, которым известен нам сейчас.

Сегодня мы рассмотрим наибольшую и наименьшую мощность земной коры и особенности ее строения.

Немного о нашей планете

В начале формирования нашей планеты здесь действовали множественные вулканы, происходили постоянные столкновения с кометами. Лишь после того, как бомбардировки прекратились, раскаленная поверхность планеты застыла.
То есть ученые уверены, что изначально наша планета представляла собой бесплодную пустыню без воды и растительности. Откуда на ней взялось столько воды - до сих пор остается загадкой. Но не так давно под землей были обнаружены большие запасы воды, возможно, именно они и стали основой наших океанов.

Увы, все гипотезы о происхождении нашей планеты и ее составе являются скорее предположениями, чем фактами. Согласно утверждениям А. Вегенера, изначально Землю покрывал тонкий слой гранита, который в палеозойскую эру преобразовался в праматерик Пангею. В мезозойскую эру Пангея начала раскалываться на части, образовавшиеся материки постепенно отплывали друг от друга. Тихий океан, утверждает Вегенер, - это остаток первичного океана, а Атлантический и Индийский рассматриваются как вторичные.

Земная кора

Состав земной коры практически аналогичен составу планет нашей Солнечной системы - Венеры, Марса и др. Ведь основой для всех планет Солнечной системы послужили одни и те же вещества. А с недавних пор ученые уверены, что столкновение Земли с еще одной планетой, названной Теей, вызвало слияние двух небесных тел, а от отколовшегося осколка образовалась Луна. Это объясняет то, что минеральный состав Луны схож с составом нашей планеты. Ниже мы рассмотрим строение земной коры - карту ее слоев на суше и океане.

Кора составляет всего 1% от массы Земли. Преимущественно она состоит из кремния, железа, алюминия, кислорода, водорода, магния, кальция и натрия и еще 78 элементов. Предполагается, что в сравнении с мантией и ядром кора Земли - оболочка тонкая и хрупкая, состоящая преимущественно из легких веществ. Тяжелые же вещества, как считают геологи, спускаются к центру планеты, а самые тяжелые сосредоточены в ядре.

Строение земной коры и карта его слоев представлены на рисунке ниже.

Материковая земная кора

Кора Земли имеет 3 слоя, каждый из которых неровными пластами покрывает предыдущий. Большая часть ее поверхности - это континентальные и океанические равнины. Континенты также окружает шельф, который после обрывчатого изгиба переходит в континентальный склон (область подводной окраины материка).
Земная материковая кора делится на слои:

1. Осадочный.
2. Гранитный.
3. Базальтовый.

Осадочный слой покрывают осадочные, метаморфические и магматические горные породы. Мощность материковой земной коры составляет наименьший процент.

Типы материковой земной коры

Осадочные горные породы представляют собой скопления, среди которых находятся глина, карбонат, вулканогенные горные породы и другие твердые вещества. Это своеобразный осадок, который сформировался в результате тех или иных природных условий, которые раньше существовали на Земле. Он позволяет исследователям делать выводы по поводу истории нашей планеты.

Гранитный слой состоит из магматических и метаморфических горных пород, схожих с гранитом по своим свойствам. То есть не только гранит составляет второй слой земной коры, но вещества эти по составу очень с ним схожи и имеют примерно аналогичную прочность. Скорость его продольных волн достигает 5,5-6,5 км/с. Состоит он из гранитов, кристаллических сланцев, гнейсов и т. д.

Базальтовый слой слагается из веществ, по составу схожих с базальтами. Является более плотным в сравнении с гранитным слоем. Под базальтовым слоем протекает тягучая мантия из твердых веществ. Условно мантию от коры отделяет так называемая граница Мохоровичича, которая, по сути, разделяет слои различного химического состава. Характеризуется резким нарастанием скорости сейсмических волн.
То есть относительно тонкий слой земной коры является хрупкой преградой, отделяющей нас от раскаленной мантии. Толщина самой мантии составляет в среднем 3 000 км. Вместе с мантией движутся и тектонические плиты, которые, как часть литосферы, являются участком земной коры.

Ниже рассмотрим мощность материковой земной коры. Составляет она до 35 км.

Мощность материковой коры

Толщина земной коры варьируется от 30 до 70 км. И если под равнинами слой ее составляет всего 30-40 км, то под горными системами достигает 70 км. Под Гималаями толщина слоя доходит до 75 км.

Мощность материковой земной коры составляет от 5 до 80 км и напрямую зависит от ее возраста. Так, холодные древние платформы (Восточно-Европейская, Сибирская, Западно-Сибирская) имеют достаточно высокую мощность - 40-45 км.

При этом каждый из слоев имеет свою мощность и толщину, которая в разных областях материка может изменяться.

Мощность материковой земной коры составляет:

1. Осадочный слой - 10-15 км.

2. Гранитный слой - 5-15 км.

3. Базальтовый слой - 10-35 км.

Температура коры Земли

Температура повышается по мере углубления в нее. Считается, что температура ядра составляет до 5 000 С, однако эти цифры остаются условными, так как вид и состав его до сих пор не ясен ученым. По мере углубления в земную кору температура ее повышается каждые 100 м, однако ее цифры варьируются в зависимости от состава элементов и глубины. Океаническая земная кора имеет более высокую температуру.

Океаническая земная кора

Изначально, по предположениям ученых, Земля покрылась именно океаническим слоем коры, который несколько отличается по толщине и составу от материкового слоя. вероятно, возникла из верхнего дифференцированного слоя мантии, то есть по составу она очень близка к ней. Мощность земной коры океанического типа в 5 раз меньше, чем мощность материкового типа. При этом ее состав в глубоких и неглубоких районах морей и океанов друг от друга отличается несущественно.

Слои материковой коры

Мощность океанической земной коры составляют:

1. Слой океанической воды, толщина которого составляет 4 км.

2. Слой неплотных осадков. Мощность составляет 0,7 км.

3. Слой, сложенный из базальтов с карбонатными и кременистыми породами. Средняя мощность - 1,7 км. Он не выделяется резко и характеризуется уплотнением осадочного слоя. Этот вариант его строения называют субокеаническим.

4. Базальтовый слой, не отличающийся от континентальной коры. Мощность океанической земной коры составляет в этом слое 4,2 км.

Базальтовый слой океанической коры в зонах субдукции (зона, в которых один слой коры поглощает другой) превращается в эклогиты. Их плотность настолько высока, что они погружаются вглубь коры на глубину более 600 км, а затем опускаются в нижнюю мантию.

Учитывая, что наименьшая мощность земной коры наблюдается под океанами и составляет всего 5-10 км, ученые давно вынашивают идею начать бурение коры на глубине океанов, что позволило бы более подробно изучить внутреннее строение Земли. Однако слой океанической земной коры очень прочен, а исследования на глубине океана делают эту задачу еще более сложной.

Заключение

Земная кора, пожалуй, единственный слой, подробно изученный человечеством. А вот то, что находится под ней, до сих пор волнует геологов. Остается лишь надеяться, что однажды неизведанные глубины нашей Земли будут изучены.

Кирилл Дегтярев, научный сотрудник, Московский государственный университет им. М. В. Ломоносова.

В нашей стране, богатой углеводородами, геотермальная энергия - некий экзотический ресурс, который при сегодняшнем положении дел вряд ли составит конкуренцию нефти и газу. Тем не менее этот альтернативный вид энергии может использоваться практически всюду и довольно эффективно.

Фото Игоря Константинова.

Изменение температуры грунта с глубиной.

Рост температуры термальных вод и вмещающих их сухих пород с глубиной.

Изменение температуры с глубиной в разных регионах.

Извержение исландского вулкана Эйяфьятлайокудль -иллюстрация бурных вулканических процессов, протекающих в активных тектонических и вулканических зонах с мощным тепловым потоком из земных недр.

Установленные мощности геотермальных электростанций по странам мира, МВт.

Распределение геотермальных ресурсов по территории России. Запасы геотермальной энергии, по оценкам экспертов, в несколько раз превышают запасы энергии органического ископаемого топлива. По данным ассоциации «Геотермальное энергетическое общество».

Геотермальная энергия - это тепло земных недр. Вырабатывается оно в глубинах и поступает к поверхности Земли в разных формах и с различной интенсивностью.

Температура верхних слоёв грунта зависит в основном от внешних (экзогенных) факторов - солнечного освещения и температуры воздуха. Летом и днём грунт до определённых глубин прогревается, а зимой и ночью охлаждается вслед за изменением температуры воздуха и с некоторым запаздыванием, нарастающим с глубиной. Влияние суточных колебаний температуры воздуха заканчивается на глубинах от единиц до нескольких десятков сантиметров. Сезонные колебания захватывают более глубокие пласты грунта - до десятков метров.

На некоторой глубине - от десятков до сотен метров - температура грунта держится постоянной, равной среднегодовой температуре воздуха у поверхности Земли. В этом легко убедиться, спустившись в достаточно глубокую пещеру.

Когда среднегодовая температура воздуха в данной местности ниже нуля, это проявляется как вечная (точнее, многолетняя) мерзлота. В Восточной Сибири мощность, то есть толщина, круглогодично мёрзлых грунтов достигает местами 200-300 м.

С некоторой глубины (своей для каждой точки на карте) действие Солнца и атмосферы ослабевает настолько, что на первое место выходят эндогенные (внутренние) факторы и происходит разогрев земных недр изнутри, так что температура с глубиной начинает расти.

Разогрев глубинных слоёв Земли связывают, главным образом, с распадом находящихся там радиоактивных элементов, хотя называют и другие источники тепла, например физико-химические, тектонические процессы в глубоких слоях земной коры и мантии. Но чем бы это ни было обусловлено, температура горных пород и связанных с ними жидких и газообразных субстанций с глубиной растёт. С этим явлением сталкиваются горняки - в глубоких шахтах всегда жарко. На глубине 1 км тридцатиградусная жара - нормальное явление, а глубже температура ещё выше.

Тепловой поток земных недр, достигающий поверхности Земли, невелик - в среднем его мощность составляет 0,03-0,05 Вт/м 2 ,
или примерно 350 Вт·ч/м 2 в год. На фоне теплового потока от Солнца и нагретого им воздуха это незаметная величина: Солнце даёт каждому квадратному метру земной поверхности около 4000 кВт·ч ежегодно, то есть в 10 000 раз больше (разумеется, это в среднем, при огромном разбросе между полярными и экваториальными широтами и в зависимости от других климатических и погодных факторов).

Незначительность теплового потока из недр к поверхности на большей части планеты связана с низкой теплопроводностью горных пород и особенностями геологического строения. Но есть исключения - места, где тепловой поток велик. Это, прежде всего, зоны тектонических разломов, повышенной сейсмической активности и вулканизма, где энергия земных недр находит выход. Для таких зон характерны термические аномалии литосферы, здесь тепловой поток, достигающий поверхности Земли, может быть в разы и даже на порядки мощнее «обычного». Огромное количество тепла на поверхность в этих зонах выносят извержения вулканов и горячие источники воды.

Именно такие районы наиболее благоприятны для развития геотермальной энергетики. На территории России это, прежде всего, Камчатка, Курильские острова и Кавказ.

В то же время развитие геотермальной энергетики возможно практически везде, поскольку рост температуры с глубиной - явление повсеместное, и задача заключается в «добыче» тепла из недр, подобно тому, как оттуда добывается минеральное сырьё.

В среднем температура с глубиной растёт на 2,5-3 о С на каждые 100 м. Отношение разности температур между двумя точками, лежащими на разной глубине, к разности глубин между ними называют геотермическим градиентом.

Обратная величина - геотермическая ступень, или интервал глубин, на котором температура повышается на 1 о С.

Чем выше градиент и соответственно ниже ступень, тем ближе тепло глубин Земли подходит к поверхности и тем более перспективен данный район для развития геотермальной энергетики.

В разных районах, в зависимости от геологического строения и других региональных и местных условий, скорость роста температуры с глубиной может резко различаться. В масштабах Земли колебания величин геотермических градиентов и ступеней достигают 25 крат. Например, в штате Орегон (США) градиент составляет 150 о С на 1 км, а в Южной Африке - 6 о С на 1 км.

Вопрос, какова температура на больших глубинах - 5, 10 км и более? При сохранении тенденции температура на глубине 10 км должна составлять в среднем примерно 250-300 о С. Это более или менее подтверждается прямыми наблюдениями в сверхглубоких скважинах, хотя картина существенно сложнее линейного повышения температуры.

Например, в Кольской сверхглубокой скважине, пробурённой в Балтийском кристаллическом щите, температура до глубины 3 км меняется со скоростью 10 о С/1 км, а далее геотермический градиент становится в 2-2,5 раза больше. На глубине 7 км зафиксирована уже температура 120 о С, на 10 км - 180 o С, а на 12 км - 220 o С.

Другой пример - скважина, заложенная в Северном Прикаспии, где на глубине 500 м зарегистрирована температура 42 o С, на 1,5 км - 70 o С, на 2 км - 80 o С, на 3 км - 108 o С.

Предполагается, что геотермический градиент уменьшается начиная с глубины 20-30 км: на глубине 100 км предположительные температуры около 1300-1500 o С, на глубине 400 км - 1600 o С, в ядре Земли (глубины более 6000 км) - 4000-5000 o С.

На глубинах до 10-12 км температуру измеряют через пробурённые скважины; там же, где их нет, её определяют по косвенным признакам так же, как и на бóльших глубинах. Такими косвенными признаками могут быть характер прохождения сей-смических волн или температура изливающейся лавы.

Впрочем, для целей геотермальной энергетики данные о температурах на глубинах более 10 км пока не представляют практического интереса.

На глубинах в несколько километров много тепла, но как его поднять? Иногда эту задачу решает за нас сама природа с помощью естественного теплоносителя - нагретых термальных вод, выходящих на поверхность или же залегающих на доступной для нас глубине. В ряде случаев вода в глубинах разогрета до состояния пара.

Строгого определения понятия «термальные воды» нет. Как правило, под ними подразумевают горячие подземные воды в жидком состоянии или в виде пара, в том числе выходящие на поверхность Земли с температурой выше 20 о С, то есть, как правило, более высокой, чем температура воздуха.

Тепло подземных вод, пара, пароводяных смесей - это гидротермальная энергия. Соответственно энергетика, основанная на её использовании, называется гидротермальной.

Сложнее обстоит дело с добычей тепла непосредственно сухих горных пород - петротермальной энергии, тем более что достаточно высокие температуры, как правило, начинаются с глубин в несколько километров.

На территории России потенциал петротермальной энергии в сто раз выше, чем у гидротермальной, - соответственно 3500 и 35 трлн тонн условного топлива. Это вполне естественно - тепло глубин Земли имеется везде, а термальные воды обнаруживаются локально. Однако из-за очевидных технических трудностей для получения тепла и электроэнергии в настоящее время используются большей частью термальные воды.

Воды температурой от 20-30 до 100 о С пригодны для отопления, температурой от 150 о С и выше - и для выработки электроэнергии на геотермальных электростанциях.

В целом же геотермальные ресурсы на территории России в пересчёте на тонны условного топлива или любую другую единицу измерения энергии примерно в 10 раз выше запасов органического топлива.

Теоретически только за счёт геотермальной энергии можно было бы полностью удовлетворить энергетические потребности страны. Практически же на данный момент на большей части её территории это неосуществимо по технико-экономическим соображениям.

В мире использование геотермальной энергии ассоциируется чаще всего с Исландией - страной, расположенной на северном окончании Срединно-Атлантического хребта, в исключительно активной тектонической и вулканической зоне. Наверное, все помнят мощное извержение вулкана Эйяфьятлайокудль (Eyjafjallajökull) в 2010 году.

Именно благодаря такой геологической специфике Исландия обладает огромными запасами геотермальной энергии, в том числе горячих источников, выходящих на поверхность Земли и даже фонтанирующих в виде гейзеров.

В Исландии в настоящее время более 60% всей потребляемой энергии берут из Земли. В том числе за счёт геотермальных источников обеспечивается 90% отопления и 30% выработки электроэнергии. Добавим, что остальная часть электроэнергии в стране производится на ГЭС, то есть также с использованием возобновляемого источника энергии, благодаря чему Исландия выглядит неким мировым экологическим эталоном.

«Приручение» геотермальной энергии в XX веке заметно помогло Исландии в экономическом отношении. До середины прошлого столетия она была очень бедной страной, сейчас занимает первое место в мире по установленной мощности и производству геотермальной энергии на душу населения и находится в первой десятке по абсолютной величине установленной мощности геотермальных электростанций. Однако её население составляет всего 300 тысяч человек, что упрощает задачу перехода на экологически чистые источники энергии: потребности в ней в целом невелики.

Помимо Исландии высокая доля геотермальной энергетики в общем балансе производства электроэнергии обеспечивается в Новой Зеландии и островных государствах Юго-Восточной Азии (Филиппины и Индонезия), странах Центральной Америки и Восточной Африки, территория которых также характеризуется высокой сейсмической и вулканической активностью. Для этих стран при их нынешнем уровне развития и потребностях геотермальная энергетика вносит весомый вклад в социально-экономическое развитие.

(Окончание следует.)

Верхняя твердая геосфера именуется земной корой. Это понятие связано с именем югославского геофизика А.Мохоровичича, который установил, что в верхней толще Земли сейсмические распространяются медленнее, нежели на больших глубинах. Впоследствии этот верхний низкоскоростной слой был назван земной корой, а граница, отделяющая земную кору от мантии Земли, — границей Мохоровичича, или, сокращенно, — Моха. Мощность земной коры изменчива. Под водами океанов она не превышает 10-12 км, а на континентах составляет 40-60 км, (что составляет не более 1% земного радиуса), редко увеличиваясь в горных районах до 75 км. Средняя мощность коры принимается равной 33 км, средняя масса — 3·10 25 г.

По геологическим и данным до глубины 16 км подсчитан усредненный химический состав земной коры. Эти данные постоянно уточняются и на сегодня выглядят следующим образом: кислород — 47%, кремний — 27,5, алюминий — 8,6, железо — 5, кальций, натрий, магний и калий — 10,5, на все остальные элементы приходится около 1,5%, в том числе на титан — 0,6%, углерод — 0,1, — 0,01, свинец — 0,0016, золото — 0,0000005%. Очевидно, что первые восемь элементов составляют почти 99% земной коры и только 1% падает на остальные (более сотни!) элементы таблицы Д.И. Менделеева. Вопрос о составе более глубоких зон Земли остается спорным. Плотность пород, слагающих земную кору, с глубиной возрастает. Средняя плотность пород в верхних горизонтах коры 2,6-2,7 г/см 3 , ускорение силы тяжести на ее поверхности 982 см/с 2 . Зная распределение плотности и ускорения силы тяжести, можно рассчитать для любой точки радиуса Земли. На глубине 50 км, т.е. примерно у подошвы земной коры, давление составляет 13000 атм.

Температурный режим в пределах земной коры довольно своеобразен. На некоторую глубину в недра проникает тепловая энергия Солнца. Суточные колебания наблюдаются на глубинах от нескольких сантиметров до 1-2 м. Годовые колебания в умеренных широтах достигают глубины 20-30 м. На этих глубинах залегает слой пород с постоянной температурой — изотермический . Его температура равна средней годовой в данном регионе. В полярных и , где амплитуда колебания годовых температур мала, изотермический горизонт залегает близко к земной поверхности. Верхний слой земной коры, в котором температура меняется по сезонам года, называется активным. В Москве, например, активный слой достигает глубины 20 м.

Ниже изотермического горизонта температура повышается. Повышение температуры с глубиной ниже изотермического горизонта обусловлено внутренним теплом Земли. В среднем прибавка температуры на 1°С осуществляется при заглублении в земную кору на 33 м. Эта величина называется геотермической ступенью. Геотермическая ступень в разных регионах Земли различна: полагают, что в зонах она может быть около 5 м, а в спокойных платформенных областях — возрастать до 100 м.

Вместе с верхним твердым слоем мантии объединяется понятием , совокупность же коры и верхней мантии принято именовать тектоносферой.

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов - кислород, алюминий, железо, кальций, натрий, калий и магний - приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал - это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. - образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков