Распространение колебаний в среде. Большая энциклопедия нефти и газа

Лекция № 9

Механические волны

6.1. Распространение колебаний в упругой среде .

6.2. Уравнение плоской волны .

6.3. Волновое уравнение .

6.4. Скорость распространения волн в различных средах .

Механические колебания, распространяющиеся в упругой среде (твердой, жидкой или газообразной), называются механическими или упругими волнами .

Процесс распространения колебаний в сплошной среде принято называть волновым процессом или волной. Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение. они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. По этой причине основным свойством всœех волн, независимо от их природы, является перенос энергии без переноса вещества .

Учитывая зависимость отнаправления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны.

продольной , если колебания частиц среды происходят в направлении распространения волны. Продольные волны связаны с объемной деформацией растяжения − сжатия среды, в связи с этим они могут распространяться как в твердых телах, так и в жидкостях и газообразных средах.

Упругая волна принято называть поперечной , если колебания частиц среды происходят в плоскостях, перпендикулярных к направлению распространения волны Поперечные волны могут возникать только в такой среде, которая обладает упругостью формы, т. е. способна сопротивляться деформации сдвига. Этим свойством обладают только твердые тела.

На рис. 6.1.1 представлена гармоническая поперечная волна, распространяющаяся вдоль оси 0х . График волны дает зависимость смещения всœех частиц среды от расстояния до источника колебаний в данный момент времени. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, принято называть длиной волны. Длина волны также равна тому расстоянию, на ĸᴏᴛᴏᴩᴏᴇ распространяется определœенная фаза колебания за период колебаний

Колеблются не только частицы, расположенные вдоль оси 0х , а совокупность частиц, заключенных в некотором объеме. Геометрическое место точек, до которых доходят колебания к моменту времени t , принято называть фронтом волны . Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, принято называть волновой поверхностью . Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Волновые поверхности бывают любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях принято называть плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, а в сферической − множество концентрических сфер.

§ 1 Распространение колебаний в среде. Продольные и поперечные волны

Рассмотрим, каким образом распространяются колебания в различных средах. Часто вы могли наблюдать, как от поплавка или от брошенного камня по воде расходятся круги. Колебания, создающие в пространстве деформацию среды, могут стать источником, например, волн землетрясений, морских волн или звука. Если рассматривать звук, то колебания производят как источник звука (струна или камертон), так и приемник звука, например, мембрана микрофона. Колебания совершает и собственно среда, через которую идет волна.

Процесс распространения колебаний в пространстве с течением времени называется волной. Волны - это возмущения, распространяющиеся в пространстве, удаляющиеся от места их возникновения.

Следует отметить, что распространение механических волн возможно только в газовой, жидкой и твердой средах. Механическая волна никак не может возникнуть в вакууме.

Твердые, жидкие, газообразные среды состоят из отдельных частиц, взаимодействующих между собой силами связи. Возбуждение колебаний частиц данной среды в одном месте вызывает вынужденные колебания соседних частиц, те, в свою очередь, возбуждают колебания следующих и т.д.

Существуют продольные и поперечные волны.

Волна называется продольной, если частицы среды совершают колебания в направлении распространения волны.

Продольную волну можно увидеть на примере с мягкой длинной пружиной: сжимая и отпуская один из ее концов (другой конец закреплен), мы вызовем последовательное движение сгущений и разрежений ее витков.

Иными словами, наблюдаем, как от одного ее конца к другому идет возмущение, вызванное изменением силы упругости, скорости движения или ускорения витков пружины, смещением витков от линии равновесия. На данном примере мы видим бегущую волну.

Бегущая волна - это волна, которая при перемещении в пространстве переносит энергию без переноса вещества.

а) исходное состояние; б) сжатие пружины; в) передача колебаний от одного витка к другому (сгущение и разряжение витков).

В механике изучают так называемые упругие волны.

Среда, частицы которой связаны между собой так, что изменение положения одной из них ведёт к изменению положения других частиц, называется упругой.

Волна называется поперечной, если частицы среды совершают колебания в направлении, перпендикулярном к направлению распространения волны.

Если натянуть горизонтально резиновый шнур, один его конец жестко закрепить, а другой привести в вертикальное колебательное движение, то сможем наблюдать поперечную волну.

Для эксперимента смоделируем цепочки из пружинок и шариков и на этой модели проанализируем движение продольных и поперечных волн.

В случае продольной волны (а) шарики смещаются вдоль, а пружинки или растягиваются, или сжимаются, то есть возникает деформация сжатия или растяжения. Необходимо помнить, что в жидкой и газовой среде подобной деформации сопутствует уплотнение среды или ее разрежение.

Если шарик сместить перпендикулярно цепочке (б), то возникнет так называемая деформация сдвига. В этом случае мы увидим движение поперечной волны. Следует запомнить, что в жидкости и газообразной среде невозможна деформации сдвига.

Поэтому имеет место следующее определение.

Продольные механические волны могут распространяться в любых средах: жидких, газообразных и твердых. Поперечные волны могут существовать только в твердых средах.

§ 2 Краткие итоги по теме урока

Распространение механических волн возможно только в газовой, жидкой и твердой средах. Механическая волна никаким образом не может возникнуть в вакууме.

Существуют продольные и поперечные волны. Продольные механические волны могут распространяться в любых средах: жидких, газообразных и твердых. Поперечные волны могут существовать только в твердых средах.

Список использованной литературы:

  1. Физика. Большой энциклопедический словарь / Гл. ред. А. М. Прохоров. - 4-е изд. - М.: Большая Российская энциклопедия, 1999. - С. 293-295.
  2. Иродов И. Е. Механика. Основные законы / И.Е. Иродов. – 5-е изд., испр.–М.: Лаборатория базовых знаний, 2000, С. 205–223.
  3. Иродов И. Е. Механика колебательных систем / И.Е. Иродов. – 3-е изд., испр.–М.: Лаборатория базовых знаний, 2000, С. 311–320.
  4. Перышкин А.В. Физика. 9 класс: учебник / А.В. Перышкин, Е.М. Гутник. – М.: Дрофа, 2014. – 319с. Сборник тестовых заданий по физике, 9 класс. /Е.А.Марон, А.Е.Марон. Издательство «Просвещение», Москва, 2007 год.

Использованные изображения:

Рассмотрим опыт, показанный на рисунке 69. Длинную пружину подвешивают на нитях. Ударяют рукой по её левому концу (рис. 69, а). От удара несколько витков пружины сближаются, возникает сила упругости, под действием которой эти витки начинают расходиться. Как маятник проходит в своём движении положение равновесия, так и витки, минуя положение равновесия, будут продолжать расходиться. В результате в этом же месте пружины образуется уже некоторое разрежение (рис. 69, б). При ритмичном воздействии витки на конце пружины будут периодически то сближаться, то отходить друг от друга, совершая колебания возле своего положения равновесия. Эти колебания постепенно передадутся от витка к витку вдоль всей пружины. По пружине распространятся сгущения и разрежения витков, как показано на рисунке 69, е.

Рис. 69. Возникновение волны в пружине

Другими словами, вдоль пружины от её левого конца к правому распространяется возмущение, т. е. изменение некоторых физических величин, характеризующих состояние среды. В данном случае это возмущение представляет собой изменение с течением времени силы упругости в пружине, ускорения и скорости движения колеблющихся витков, их смещения от положения равновесия.

  • Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называются волнами

В данном определении речь идёт о так называемых бегущих волнах. Основное свойство бегущих волн любой природы заключается в том, что они, распространяясь в пространстве, переносят энергию.

Так, например, колеблющиеся витки пружины обладают энергией. Взаимодействуя с соседними витками, они передают им часть своей энергии и вдоль пружины распространяется механическое возмущение (деформация), т. е. образуется бегущая волна.

Но при этом каждый виток пружины колеблется около своего положения равновесия, и вся пружина остаётся на первоначальном месте.

Таким образом, в бегущей волне происходит перенос энергии без переноса вещества .

В данной теме будем рассматривать только упругие бегущие волны, частным случаем которых является звук.

  • Упругие волны - это механические возмущения, распространяющиеся в упругой среде

Иначе говоря, образование упругих волн в среде обусловлено возникновением в ней упругих сил, вызванных деформацией. Например, если по какому-нибудь металлическому телу ударить молотком, то в нём возникнет упругая волна.

Помимо упругих существуют и другие виды волн, например электромагнитные волны (см. § 44). Волновые процессы встречаются почти во всех областях физических явлений, поэтому их изучение имеет большое значение.

При возникновении волн в пружине колебания её витков происходили вдоль направления распространения волны в ней (см. рис. 69).

  • Волны, в которых колебания происходят вдоль направления их распространения, называются продольными волнами

Кроме продольных волн существуют и поперечные волны. Рассмотрим такой опыт. На рисунке 70, а показан длинный резиновый шнур, один конец которого закреплён. Другой конец приводят в колебательное движение в вертикальной плоскости (перпендикулярно горизонтально расположенному шнуру). Благодаря силам упругости, возникающим в шнуре, колебания будут распространяться вдоль шнура. В нём возникают волны (рис. 70, б), причём колебания частиц шнура происходят перпендикулярно направлению распространения волн.

Рис. 70. Возникновение волн в шнуре

  • Волны, в которых колебания происходят перпендикулярно направлению их распространения, называются поперечными волнами

Движение частиц среды, в которой образуются как поперечные, так и продольные волны, можно наглядно продемонстрировать с помощью волновой машины (рис. 71). На рисунке 71, а показана поперечная волна, а на рисунке 71, б - продольная. Обе волны распространяются в горизонтальном направлении.

Рис. 71. Поперечная (а) и продольная (б) волны

На волновой машине представлен только один ряд шариков. Но, наблюдая за их движением, можно понять, как распространяются волны в сплошных средах, протяжённых во всех трёх направлениях (например, в некотором объёме твёрдого, жидкого или газообразного вещества).

Для этого представьте себе, что каждый шарик является частью вертикального слоя вещества, расположенного перпендикулярно к плоскости рисунка. Из рисунка 71, а видно, что при распространении поперечной волны эти слои, подобно шарикам, будут сдвигаться друг относительно друга, совершая колебания в вертикальном направлении. Поэтому поперечные механические волны являются волнами сдвига.

А продольные волны, как видно из рисунка 71, б, - это волны сжатия и разрежения. В этом случае деформация слоев среды состоит в изменении их плотности, так что продольные волны представляют собой чередующиеся уплотнения и разрежения.

Известно, что упругие силы при сдвиге слоев возникают только в твёрдых телах. В жидкостях и газах смежные слои свободно скользят друг по другу без появления противодействующих упругих сил. Раз нет упругих сил, то и образование упругих волн в жидкостях и газах невозможно. Поэтому поперечные волны могут распространяться только в твёрдых телах.

При сжатии и разрежении (т. е. при изменении объёма участков тела) упругие силы возникают как в твёрдых телах, так и в жидкостях и газах. Поэтому продольные волны могут распространяться в любой среде - твёрдой, жидкой и газообразной.

Вопросы

  1. Что называется волнами?
  2. В чём заключается основное свойство бегущих волн любой природы? Происходит ли в бегущей волне перенос вещества?
  3. Что такое упругие волны?
  4. Приведите пример волн, не относящихся к упругим.
  5. Какие волны называются продольными; поперечными? Приведите примеры.
  6. Какие волны - поперечные или продольные - являются волнами сдвига; волнами сжатия и разрежения?
  7. Почему поперечные волны не распространяются в жидких и газообразных средах?

Цели урока:

обучающая :

  • сформирование понятия «механическая волна»;
  • рассмотрение условий возникновения двух видов волн;
  • характеристики волн;

развивающая :

  • развитие умения применять знания в конкретных ситуациях;

воспитательная:

  • воспитание познавательного интереса;
  • положительной мотивации к обучению;
  • аккуратность при выполнении заданий.

Тип урока: урок формирования новых знаний.

Оборудование:

для демонстраций: резиновый шнур, стакан с водой, пипетка, макет «Волновая машина», компьютер, мультимедийный проектор, презентация «Волны».

Ход урока

1. Организационный момент.

Объявление темы и целей урока.

2. Актуализация опорных знаний

Тест

Вариант № 1

. Движение качелей.

Б. Движение падающего на Землю мяча,

2. Какие из перечисленных ниже колебаний являются свободными?

Б. Колебания диффузора громкоговорителя во время работы громкоговорителя.

3. Частота колебаний тела равна 2000 Гц. Чему равен период колебаний?

4. Дано уравнение x=0,4 cos 5nt. Определить амплитуду, период колебания.

5. Подвешенный на нити груз совершает малые колебания. Считая колебания незатухающими, укажите правильные ответы.

. Чем длиннее нить, тем больше частота колебаний.

Б. При прохождении грузом положения равновесия скорость груза максимальна.

В. Груз совершает периодическое движение.

Вариант № 2

1. Какие из перечисленных ниже движений являются механическими колебаниями?

. Движение веток деревьев.

Б. Движение капелек дождя на землю.

В. Движение звучащей струны гитары.

2. Какие из перечисленных ниже колебаний являются вынужденными?

. Колебания груза на пружине после однократного отклонения его от положения равновесия.

Б. Движение поршня в цилиндре двигателя внутреннего сгорания.

В. Колебания груза на нити, один раз отведенного от положения равновесия и отпущенного.

3. Период колебаний тела 0,01 с. Чему равна частота колебаний?

4. Тело совершает гармоническое колебание по закону =20 sin nt. Определить амплитуду, период колебаний.

5. Подвешенный на пружине груз совершает малые колебания в вертикальном направлении. Считая колебания незатухающими, укажите правильные ответы.

. Чем больше жесткость пружины, тем больше период колебаний.

Б. Период колебаний зависит от амплитуды.

В. Скорость груза изменяется со временем периодически.

3. Формирование новых знаний.

Основной физической моделью вещества является совокупность движущихся и взаимодействующих между собой атомов и молекул. Использование этой модели позволяет объяснить с помощью молекулярно-кинетической теории свойства различных состояний вещества и физический механизм переноса энергии и импульса в этих средах. При этом под средой мы можем понимать газ, жидкость, твердое тело.

Рассмотрим способ переноса энергии без переноса вещества в результате последовательной передачи энергии и импульса по цепочке между соседними взаимодействующими друг с другом частицами среды.

Волновой процесс - это процесс переноса энергии без переноса вещества.

Демонстрация опыта:

Прикрепим к потолку резиновый шнур и резким движением руки заставим его свободный конец совершить колебание. В результате внешнего воздействия на среду в ней возникает возмущение – отклонение частиц среды от положения равновесия;

Проследить за распространением волн на поверхности воды в стакане, создавая их каплями воды, падающими их пипетки.

Механическая волна - это возмущение, распространяющееся в упругой среде от точки к точке (газ, жидкость, твердое тело).

Знакомство с механизмом образования волны на макете «Волновая машина». При этом учитывать колебательное движение частиц и распространение колебательного движения.

Различают волны продольные и поперечные.

Продольные – волны в которой частицы среды колеблются вдоль направления распространения волны. (Газы, жидкости, твердые тела). Наблюдается когда забивается гвоздь молотком, продольный импульс проносится вдоль гвоздя, загоняя его глубже.

Поперечные – волны, в которой частицы колеблются перпендикулярно направлению распространения волны (твердые тела). Наблюдается в веревке, один конец которой приходит в колебательное движение.

Бегущая волна, основное свойство которой в переносе энергии без переноса вещества: электромагнитное излучение Солнца обогревает Землю, волны океана размывают берега.

Характеристики волны.

Длина волны – расстояние, пройденное волной за один период колебания ее частиц. На расстоянии длины волны располагаются соседние гребни или впадины в поперечной волне или сгущения или разрежения в продольной.

λ - длина волны.

Скорость волны - скорость перемещения гребней и впадин в поперечной волне и сгущений и разрежений в продольной.

v – скорость волны

Знакомство с формулами для определения длины волны:

λ = v / v

v – частота

T – период

Формирование умений и навыков.

Решение задач.

1. Мальчик несет на коромысле ведра с водой, период свободных колебаний которых 1,6 с. При какой скорости движения мальчика вода начнет особенно сильно выплескиваться, если длина его шага 65 см?

2. По поверхности воды в озере распространяется волна со скоростью 8 м/с. Каковы период и частота колебаний бакена, если длина волны 3 м?

3. Длина волны в океанах может достигать 400 м, а период 14,5 с. Определите скорость распространения такой волны.

Итоги урока.

1. Что такое волна?

2. В чем заключается процесс возникновения волн?

3. Какие волны мы воспринимаем находясь в классе?

4. Происходит ли перенос вещества среды при образовании волн?

5. Перечислите характеристики волн.

6. Как связаны скорость, длина волны и частота?

Домашнее задание:

П.31-33 (учебник Физика-9)

№ 439,438 (Рымкевич А.П.)

Волны

Основными видами волн являются упругие (например, звуковые и сейсмические волны), волны на поверхности жидкости и электромагнитные волны (в том числе световые и радиоволны). Характерная особенность волн состоит в том, что при их распространении происходит перенос энергии без переноса вещества. Рассмотрим вначале распространение волн в упругой среде.

Распространение волн в упругой среде

Колеблющееся тело, помещённое в упругую среду, будет увлекать за собой, и приводить в колебательное движение прилегающие к нему частицы среды. Последние, в свою очередь, будут воздействовать на соседние частицы. Ясно, что увлекаемые частицы будут отставать по фазе от тех частиц, которые их увлекают, так как передача колебаний от точки к точке всегда осуществляется с конечной скоростью.

Итак, колеблющееся тело, помещённое в упругую среду, является источником колебаний, распространяющихся от него во все стороны.

Процесс распространения колебаний в среде называется волной . Или упругой волной называется процесс распространения возмущения в упругой среде .

Волны бывают поперечными (колебания происходят в плоскости перпендикулярной направлению распространения волны). К ним относятся электромагнитные волны. Волны бывают продольными , когда направление колебаний совпадает с направлением распространения волны. Например, распространение звука в воздухе. Сжатие и разряжение частиц среды происходят в направлении распространения волны.

Волны могут иметь различную форму, могут быть регулярными и нерегулярными. Особое значение в теории волн имеет гармоническая волна, т.е. бесконечная волна, в которой изменение состояния среды происходит по закону синуса или косинуса.

Рассмотрим упругие гармонические волны . Для описания волнового процесса используется ряд параметров. Запишем определения некоторых из них. Возмущение, происшедшее в некоторой точке среды в некоторый момент времени, распространяется в упругой среде с определенной скоростью. Распространяясь от источника колебаний, волновой процесс охватывает все новые и новые части пространства.

Геометрическое место точек, до которых доходят колебания к некоторому моменту времени , называется фронтом волны или волновым фронтом.

Фронт волны отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью.

Волновых поверхностей может быть множество, волновой фронт в каждый момент времени один.

Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этом случае называется плоской или сферической . В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне – множество концентрических сфер.

Пусть плоская гармоническая волна распространяется со скоростью вдоль оси . Графически такая волна изображается в виде функции (дзета) для фиксированного момента времени и представляет собой зависимость смещения точек с различными значениями от положения равновесия. – это расстояние от источника колебаний , на котором находится, например, частица . Рисунок дает мгновенную картину распределения возмущений вдоль направления распространения волны. Расстояние , на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны .

,

где – скорость распространения волны.

Групповая скорость

Строго монохроматическая волна представляет собой бесконечную во времени и пространстве последовательность "горбов" и "впадин".

Фазовая скорость этой волны или (2)

С помощью такой волны нельзя передать сигнал, т.к. в любой точке волны все "горбы" одинаковы. Сигнал должен отличаться. Быть знаком (меткой) на волне. Но тогда волна уже не будет гармонической, и не будет описываться уравнением (1). Сигнал (импульс) можно представить согласно теореме Фурье в виде суперпозиции гармонических волн с частотами, заключёнными в некотором интервале Dw . Суперпозиция волн, мало отличающихся друг от друга по частоте,


называется волновым пакетом или группой волн .

Выражение для группы волн может быть записано следующим образом.

(3)

Значок w подчеркивает, что эти величины зависят от частоты.

Этот волновой пакет может быть суммой волн с мало отличающимися частотами. Там, где фазы волн совпадают, наблюдается усиление амплитуды, а там, где фазы противоположны, наблюдается гашение амплитуды (результат интерференции). Такая картина представлена на рисунке. Чтобы суперпозицию волн можно было считать группой волн необходимо выполнение следующего условия Dw << w 0 .

В недиспергирующей среде все плоские волны, образующие волновой пакет, распространяются с одинаковой фазовой скоростью v . Дисперсия это зависимость фазовой скорости синусоидальной волны в среде от частоты. Явление дисперсии мы рассмотрим позже в разделе "Волновая оптика". В отсутствии дисперсии скорость перемещения волнового пакета совпадает с фазовой скорость v . В диспергирующей среде каждая волна диспергирует со своей скоростью. Поэтому волновой пакет с течением времени расплывается, его ширина увеличивается.

Если дисперсия невелика, то расплывание волнового пакета происходит не слишком быстро. Поэтому движению всего пакета можно приписать некоторую скорость U .

Скорость, с которой перемещается центр волнового пакета (точка с максимальным значением амплитуды) называется групповой скоростью .

В диспергирующей среде v¹ U . Вместе с движением самого волнового пакета происходит движение "горбов" внутри самого пакета. "Горбы" перемещаются в пространстве со скоростью v , а пакет в целом со скоростью U .

Рассмотрим подробнее движение волнового пакета на примере суперпозиции двух волн с одинаковой амплитудой и разными частотами w (разными длинами волн l ).

Запишем уравнения двух волн. Примем для простоты начальные фазы j 0 = 0.

Здесь

Пусть Dw << w , соответственно Dk << k .

Сложим колебания и проведём преобразования с помощью тригонометрической формулой для суммы косинусов:

В первом косинусе пренебрежём Dwt и Dkx , которые много меньше других величин. Учтём, что cos(–a) = cosa . Окончательно запишем.

(4)

Множитель в квадратных скобках изменяется от времени и координаты значительно медленнее, чем второй множитель. Следовательно, выражение (4) можно рассматривать как уравнение плоской волны с амплитудой, описываемой первым сомножителем. Графически волна, описываемая выражением (4) представлена на рисунке, изображённом выше.

Результирующая амплитуда получается в результате сложения волн, следовательно, будут наблюдаться максимумы и минимумы амплитуды.

Максимум амплитуды будет определяться следующим условием.

(5)

m = 0, 1, 2…

x max – координата максимальной амплитуды.

Косинус принимает максимальное значение по модулю через p .

Каждый из этих максимумов можно рассматривать как центр соответствующей группы волн.

Разрешив (5) относительно x max получим.

Так как фазовая скорость , то называется групповой скоростью. С такой скоростью перемещается максимум амплитуды волнового пакета. В пределе, выражение для групповой скорости будет иметь следующий вид.

(6)

Это выражение справедливо для центра группы произвольного числа волн.

Следует отметить, что при точном учёте всех членов разложения (для произвольного числа волн), выражение для амплитуды получается таким, что из него следует, что волновой пакет со временем расплывается.
Выражению для групповой скорости можно придать другой вид.

Следовательно, выражение для групповой скорости можно записать следующим образом.

(7)

– неявное выражение, так как и v , и k зависят от длины волны l .

Тогда (8)

Подставим в (7) и получим.

(9)

Это так называемая формула Рэлея. Дж. У. Рэлей (1842 – 1919) английский физик, нобелевский лауреат 1904 года, за открытие аргона.

Из этой формулы следует, что в зависимости от знака производной групповая скорость может быть больше или меньше фазовой.

В отсутствии дисперсии

Максимум интенсивности приходится на центр группы волн. Поэтому скорость переноса энергии равна групповой скорости.

Понятие групповой скорости применимо только при условии, что поглощение волны в среде невелико. При значительном затухании волн понятие групповой скорости утрачивает смысл. Этот случай наблюдается в области аномальной дисперсии. Это мы будем рассматривать в разделе "Волновая оптика".

Колебания струны

В закреплённой с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны, причём в местах закрепления струны располагаются узлы. Поэтому в струне возбуждаются с заметной интенсивностью только такие колебания, половина длины волны которых укладывается на длине струны целое число раз.

Отсюда вытекает следующее условие.

Или

(n = 1, 2, 3, …),

l – длина струны. Длины волн соответствуют следующим частотам.

(n = 1, 2, 3, …).

Фазовая скорость волны определяется силой натяжения струны и массой единицы длины, т.е. линейной плотностью струны.

F – сила натяжения струны, ρ" – линейная плотность материала струны. Частоты ν n называются собственными частотами струны. Собственные частоты являются кратными частоте основного тона.

Эта частота называется основной частотой .

Гармонические колебания с такими частотами называются собственными или нормальными колебаниями. Их также называют гармониками . В общем случае колебание струны представляет собой наложение различных гармоник.

Колебания струны примечательны в том отношении, что для них по классическим представлениям получаются дискретные значения одной из характеризующих колебания величин (частоты). Для классической физики такая дискретность является исключением. Для квантовых процессов дискретность является скорее правилом, чем исключением.

Энергия упругой волны

Пусть в некоторой точке среды в направлении x распространяется плоская волна.

(1)

Выделим в среде элементарный объём ΔV , чтобы в пределах этого объёма скорость смещения частиц среды и деформация среды были постоянны.

Объём ΔV обладает кинетической энергией.

(2)

(ρ·ΔV – масса этого объёма).

Этот объём обладает также и потенциальной энергией.

Для понимания вспомним.

Относительное смещение , α – коэффициент пропорциональности.

Модуль Юнга E = 1/α . Нормальное напряжение T = F/S . Отсюда.

В нашем случае .

В нашем случае имеем.

(3)

Вспомним также.

Тогда . Подставим в (3).

(4)

Для полной энергии получим.

Поделим на элементарный объём ΔV и получим объёмную плотность энергии волны.

(5)

Получим из (1) и .

(6)

Подставим (6) в (5) и учтём, что . Получим.

Из (7) следует, что объёмная плотность энергии в каждый момент времени в разных точках пространства различна. В одной точке пространства W 0 изменяется по закону квадрата синуса. А среднее значение этой величины от периодической функции . Следовательно, средняя величина объёмной плотности энергии определится выражением.

(8)

Выражение (8) очень похоже на выражение для полной энергии колеблющегося тела . Следовательно, среда, в которой распространяется волна, обладает запасом энергии. Эта энергия передаётся от источника колебаний в разные точки среды.

Количество энергии, переносимое волной через некоторую поверхность в единицу времени, называется потоком энергии .

Если через данную поверхность за время dt переносится энергия dW , то поток энергии Ф будет равен.

(9)

– измеряется в ваттах.

Для характеристики течения энергии в разных точках пространства вводится векторная величина, которая называется плотностью потока энергии . Она численно равна потоку энергии через единичную площадку, размещённую в данной точке пространства перпендикулярно направлению переноса энергии. Направление вектора плотности потока энергии совпадает с направлением переноса энергии.

(10)

Эта характеристика энергии, переносимой волной, была введена русским физиком Н.А. Умовым (1846 – 1915) в 1874 году.

Рассмотрим поток энергии волны.

Поток энергии волны

Энергия волны

W 0 – это объёмная плотность энергии.

Тогда получим.

(11)

Так как волна распространяется в определённом направлении, то можно записать.

(12)

Это вектор плотности потока энергии или поток энергии через единичную площадку, перпендикулярную направлению распространения волны в единицу времени. Этот вектор называется вектором Умова.

~ sin 2 ωt .

Тогда среднее значение вектора Умова будет равно.

(13)

Интенсивность волны среднее по времени значение плотности потока энергии, переносимой волной .

Очевидно.

(14)

Соответственно.

(15)

Звук

Звук – есть колебание упругой среды, воспринимаемые ухом человека.

Учение о звуке называется акустикой .

Физиологическое восприятие звука: громкий, тихий, высокий, низкий, приятный, противный – является отражением его физических характеристик. Гармоническое колебание определённой частоты воспринимается как музыкальный тон.

Частота звука соответствует высоте тона.

Ухо воспринимает диапазон частот от 16 Гц до 20000 Гц. При частотах меньше 16 Гц – инфразвук, а при частотах больше 20 кГц – ультразвук.

Несколько одновременных звуковых колебаний есть созвучие. Приятное - консонанс, неприятное – диссонанс. Большое число одновременно звучащих колебаний с разными частотами – шум.

Как мы уже знаем, под интенсивностью звука понимают среднее по времени значение плотности потока энергии, которую несёт с собой звуковая волна. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, которая называется порогом слышимости (кривая 1 на рисунке). Порог слышимости несколько различен для разных людей и сильно зависит от частоты звука. Наиболее чувствительно человеческое ухо к частотам от 1 кГц до 4 кГц. В этой области порог слышимости составляет в среднем 10 -12 Вт/м 2 . При других частотах порог слышимости лежит выше.

При интенсивностях порядка 1 ÷ 10 Вт/м 2 волна перестаёт восприниматься как звук, вызывая в ухе лишь ощущение боли и давления. Значение интенсивности, при котором это происходит, называется порогом болевого ощущения (кривая 2 на рисунке). Порог болевого ощущения, так же как и порог слышимости, зависит от частоты.

Таким образом, лежит почти 13 порядков. Поэтому ухо человека не чувствительно к малым изменениям силы звука. Для ощущения изменения громкости интенсивность звуковой волны должна изменяться не менее чем на 10 ÷ 20%. Поэтому в качестве характеристики интенсивности выбирают не саму силу звука, а следующую величину, которая называется уровнем силы звука (или уровнем громкости) и измеряется в белах. В честь американского электротехника А.Г. Белла (1847 – 1922), одного из изобретателей телефона.

I 0 = 10 -12 Вт/м 2 – нулевой уровень (порог слышимости).

Т.е. 1 Б = 10·I 0 .

Пользуются и в 10 раз более мелкой единицей – децибел (дБ).

С помощью этой формулы может быть выражено в децибелах уменьшение интенсивности (затухания) волны на некотором пути. Например, затухание в 20 дБ означает, что интенсивность волны уменьшается в 100 раз.

Весь диапазон интенсивностей, при которых волна вызывает в человеческом ухе звуковое ощущение (от 10 -12 до 10 Вт/м 2), соответствует значениям громкости от 0 до 130 дБ.

Энергия, которую несут с собой звуковые волны, крайне мала. Например, чтобы нагреть стакан с водой от комнатной температуры до кипения звуковой волной с уровнем громкости 70 дБ (в этом случае в секунду водой будет поглощаться примерно 2·10 -7 Вт) потребуется время порядка десяти тысяч лет.

Ультразвуковые волны могут быть получены в виде направленных пучков, подобно пучкам света. Направленные ультразвуковые пучки нашли широкое применение в гидролокации. Идея была выдвинута французским физиком П. Ланжевеном (1872 – 1946) во время первой мировой войны (в 1916 году). Кстати, метод ультразвуковой локации позволяет летучей мыши хорошо ориентироваться при полёте в темноте.

Волновое уравнение

В области волновых процессов существуют уравнения, называемые волновыми , которые описывают все возможные волны, независимо от их конкретного вида. По смыслу волновое уравнение подобно основному уравнению динамики, которое описывает все возможные движения материальной точки. Уравнение любой конкретной волны является решением волнового уравнения. Получим его. Для этого продифференцируем дважды по t и по всем координатам уравнение плоской волны .

(1)

Отсюда получим.

(*)

Сложим уравнения (2).

Заменим x в (3) из уравнения (*). Получим.

Учтём, что и получим.

, или . (4)

Это и есть волновое уравнение. В этом уравнении – фазовая скорость, – оператор набла или оператор Лапласа.

Всякая функция, удовлетворяющая уравнению (4), описывает некоторую волну, причём корень квадратный из величины, обратной коэффициенту при второй производной смещения от времени, даёт фазовую скорость волны.

Легко убедиться, что волновому уравнению удовлетворяют уравнения плоской и сферической волн, а также любое уравнение вида

Для плоской волны, распространяющейся в направлении , волновое уравнение имеет вид:

.

Это одномерное волновое уравнение второго порядка в частных производных, справедливое для однородных изотропных сред с пренебрежимо малым затуханием.

Электромагнитные волны

Рассматривая уравнения Максвелла, мы записали важный вывод о том, что переменное электрическое поле порождает магнитное, которое тоже оказывается переменным. В свою очередь переменное магнитное поле порождает переменное электрическое поле и т.д. Электромагнитное поле способно существовать самостоятельно – без электрических зарядов и токов. Изменение состояния этого поля имеет волновой характер. Поля такого рода называют электромагнитными волнами . Существование электромагнитных волн вытекает из уравнений Максвелла.

Рассмотрим однородную нейтральную () непроводящую () среду, например, для простоты, вакуум. Для этой среды можно записать:

, .

Если рассматривается любая иная однородная нейтральная непроводящая среда, то в записанные выше уравнения нужно добавить и .

Запишем дифференциальные уравнения Максвелла в общем виде.

, , , .

Для рассматриваемой среды эти уравнения имеют вид:

, , ,

Запишем эти уравнения следующим образом:

, , , .

Любые волновые процессы должны описываться волновым уравнением, которое связывает вторые производные по времени и координатам. Из записанных выше уравнений путем несложных преобразований можно получить следующую пару уравнений:

,

Эти соотношения представляют собой идентичные волновые уравнения для полей и .

Вспомним, что в волновом уравнении () множитель перед второй производной в правой части – это величина, обратная квадрату фазовой скорости волны. Следовательно, . Оказалось, что в вакууме эта скорость для электромагнитной волны равна скорости света.

Тогда волновые уравнения для полей и можно записать как

и .

Эти уравнения указывают на то, что электромагнитные поля могут существовать в виде электромагнитных волн, фазовая скорость которых в вакууме равна скорости света.

Математический анализ уравнений Максвелла позволяет сделать вывод о структуре электромагнитной волны, распространяющейся в однородной нейтральной непроводящей среде при отсутствии токов и свободных зарядов. В частности, можно сделать вывод о векторной структуре волны. Электромагнитная волна является строго поперечной волной в том смысле, что характеризующие ее векторы и перпендикулярны к вектору скорости волны , т.е. к направлению ее распространения. Векторы , и , в том порядке, в котором они записаны, образуют правовинтовую ортогональную тройку векторов . В природе существуют только правовинтовые электромагнитные волны, и не существует левовинтовых волн. В этом состоит одно из проявлений законов взаимного создания переменных магнитных и электрических полей.