Клеточная мембрана состав строение функции. Строение и функции биологических мембран

Основная структурная единица живого организма - клетка, являющаяся дифференцированным участком цитоплазмы, окруженным клеточной мембраной. Ввиду того что клетка выполняет множество важнейших функций, таких, как размножение, питание, движение, оболочка должна быть пластичной и плотной.

История открытия и исследования клеточной мембраны

В 1925 году Гренделем и Гордером был поставлен успешный эксперимент по выявлению «теней» эритроцитов, или пустых оболочек. Несмотря на несколько допущенных грубых ошибок, учеными было произведено открытие липидного бислоя. Их труды продолжили Даниэлли, Доусон в 1935 году, Робертсон в 1960 году. В результате многолетней работы и накопления аргументов в 1972 году Сингер и Николсон создали жидкостно-мозаичную модель строения мембраны. Дальнейшие опыты и исследования подтвердили труды ученых.

Значение

Что же представляет собой клеточная мембрана? Это слово стало использоваться более ста лет назад, в переводе с латинского оно означает «пленка», «кожица». Так обозначают границу клетки, являющуюся естественным барьером между внутренним содержимым и внешней средой. Строение клеточной мембраны предполагает полупроницаемость, благодаря которой влага и питательные вещества и продукты распада свободно могут проходить сквозь нее. Эту оболочку можно назвать основной структурной составляющей организации клетки.

Рассмотрим основные функции клеточной мембраны

1. Разделяет внутреннее содержимое клетки и компоненты внешней среды.

2. Способствует поддержанию постоянного химического состава клетки.

3. Регулирует правильный обмен веществ.

4. Обеспечивает взаимосвязь между клетками.

5. Распознает сигналы.

6. Функция защиты.

"Плазменная оболочка"

Наружная клеточная мембрана, называемая также плазменной, представляет собой ультрамикроскопическую пленку, толщина которой составляет от пяти до семи наномиллиметров. Она состоит преимущественно из белковых соединений, фосфолидов, воды. Пленка является эластичной, легко впитывает воду, а также стремительно восстанавливает свою целостность после повреждений.

Отличается универсальным строением. Эта мембрана занимает пограничное положение, участвует в процессе избирательной проницаемости, выведении продуктов распада, синтезирует их. Взаимосвязь с «соседями» и надежная защита внутреннего содержимого от повреждения делает ее важной составляющей в таком вопросе, как строение клетки. Клеточная мембрана животных организмов иногда оказывается покрытой тончайшим слоем - гликокаликсом, в состав которого входят белки и полисахариды. Растительные клетки снаружи от мембраны защищены клеточной стенкой, выполняющей функции опоры и поддержания формы. Основной компонент ее состава - это клетчатка (целлюлоза) - полисахарид, не растворимый в воде.

Таким образом, наружная клеточная мембрана выполняет функцию восстановления, защиты и взаимодействия с другими клетками.

Строение клеточной мембраны

Толщина этой подвижной оболочки варьируется в пределах от шести до десяти наномиллиметров. Клеточная мембрана клетки имеет особый состав, основой которого служит липидный бислой. Гидрофобные хвосты, инертные к воде, размещены с внутренней стороны, в то время как гидрофильные головки, взаимодействующие с водой, обращены наружу. Каждый липид представляет фосфолипид, который является результатом взаимодействия таких веществ, как глицерин и сфингозин. Липидный каркас тесно окружают белки, которые расположены несплошным слоем. Некоторые из них погружены в липидный слой, остальные проходят сквозь него. В результате этого образуются проницаемые для воды участки. Выполняемые этими белками функции различны. Некоторые из них являются ферментами, остальные - транспортными белками, которые переносят различные вещества из внешней среды на цитоплазму и обратно.

Клеточная мембрана насквозь пронизана и тесно связана интегральными белками, а с переферическими связь менее прочная. Эти белки выполняют важную функцию, которая заключается в поддержании структуры мембраны, получении и преобразовании сигналов из окружающей среды, транспорте веществ, катализации реакций, которые происходят на мембранах.

Состав

Основу клеточной мембраны представляет бимолекулярный слой. Благодаря его непрерывности клетка имеет барьерное и механическое свойства. На разных этапах жизнедеятельности данный бислой может нарушиться. Вследствие этого образуются структурные дефекты сквозных гидрофильных пор. В таком случае могут изменяться абсолютно все функции такой составляющей, как клеточная мембрана. Ядро при этом может пострадать от внешних воздействий.

Свойства

Клеточная мембрана клетки имеет интересные особенности. Благодаря текучести эта оболочка не является жесткой структурой, а основная часть белков и липидов, которые входят в ее состав, свободно перемещается на плоскости мембраны.

В целом клеточная мембрана асимметрична, поэтому состав белковых и липидных слоев различается. Плазматические мамбраны в животных клетках со своей наружной стороны имеют гликопротеиновый слой, который выполняет рецепторные и сигнальные функции, а также играет большую роль в процессе объединения клеток в ткань. Клеточная мембрана является полярной, то есть на внешней стороне заряд положителен, а с внутренней стороны - отрицателен. Помимо всего перечисленного, оболочка клетки обладает избирательной проницательностью.

Это означает, что кроме воды в клетку пропускается только определенная группа молекул и ионов растворившихся веществ. Концентрация такого вещества, как натрий, в большинстве клеток значительно ниже, чем во внешней среде. Для ионов калия характерно другое соотношение: их количество в клетке намного выше, чем в окружающей среде. В связи с этим ионам натрия присуще стремление проникнуть в клеточную оболочку, а ионы калия стремятся освободиться наружу. При данных обстоятельствах мембрана активизирует особую систему, выполняющую «насосную» роль, выравнивая концентрацию веществ: ионы натрия откачиваются на поверхность клетки, а ионы калия накачиваются внутрь. Данная особенность входит в важнейшие функции клеточной мембраны.

Подобное стремление ионов натрия и калия переместиться внутрь с поверхности играет большую роль в вопросе транспортировки сахара и аминокислот в клетку. В процессе активного удаления ионов натрия из клетки мембрана создает условия для новых поступлений глюкозы и аминокислот внутрь. Напротив, в процессе переноса ионов калия внутрь клетки пополняется число "транспортировщиков" продуктов распада изнутри клетки во внешнюю среду.

Как происходит питание клетки через клеточную мембрану?

Многие клетки поглощают вещества посредством таких процессов, как фагоцитоз и пиноцитоз. При первом варианте гибкой наружной мембраной создается маленькое углубление, в котором оказывается захватываемая частица. Затем диаметр углубления становится больше, пока окруженная частица не попадет в клеточную цитоплазму. Посредством фагоцитоза подпитываются некоторые простейшие, например амебы, а также кровяные тельца - лейкоциты и фагоциты. Аналогичным образом клетки поглощают жидкость, которая содержит необходимые полезные вещества. Такое являние носит название пиноцитоз.

Наружная мембрана тесно соединена с эндоплазматической сетью клетки.

У многих типов основных составляющих ткани на поверхности мембраны расположены выступы, складки, микроворсинки. Растительные клетки снаружи этой оболочки покрыты еще одной, толстой и отчетливо различимой в микроскоп. Клетчатка, из которой они состоят, помогает формировать опору тканям растительного происхождения, например, древесину. Клетки животных также обладают рядом внешних структур, которые находятся поверх клеточной мембраны. Они носят исключительно защитный характер, пример тому - хитин, содержащийся в покровных клетках насекомых.

Помимо клеточной, существует внутриклеточная мембрана. Ее функция заключается в разделении клетки на несколько специализированных замкнутых отсеков - компартментов или органелл, где должна поддерживаться определенная среда.

Таким образом, невозможно переоценить роль такой составляющей основной единицы живого организма, как клеточная мембрана. Строение и функции предполагают значительное расширение общей площади поверхности клетки, улучшение обменных процессов. В состав этой молекулярной структуры входят белки и липиды. Отделяя клетку от внешней среды, мембрана обеспечивает ее целостность. С ее помощью межклеточные связи поддерживаются на достаточно крепком уровне, образовывая ткани. В связи с этим можно сделать вывод, что одну из важнейших ролей в клетке играет клеточная мембрана. Строение и функции, выполняемые ею, радикально отличаются в различных клетках, в зависимости от их предназначения. Посредством этих особенностей достигается разнообразие физиологической активности клеточных оболочек и их ролей в существовании клеток и тканей.

Строение клетки

Клеточная теория.

План

Клетка– элементарная структурная единица живого организма

1.Клеточная теория.

2.Строение клетки.

3.Эволюция клетки.

В 1665г. Р.Гук впервые обнаружил растительные клетки. В 1674г. А.Левенгук открыл животную клетку. В 1839г. Т.Шванн и М.Шлейден сформулировали клеточную теорию. Основным положением клеточной теории было то, что клетка является структурной и функциональной основой живых систем. Но они ошибочно считали, что клетки образуются из бесструктурного вещества. В 1859г. Р.Вирхов доказал, что новые клетки образуются лишь путем деления предшествующих.

Основные положения клеточной теории:

1)Клетка является структурной и функциональной единицей всего живого. Все живые организмы состоят из клеток.

2)Все клетки в основном сходны по химическому составу и обменным процессам.

3)Новые клетки образуются путем деления уже существующих.

4)Все клетки одинаковым образом хранят и реализуют наследственную информацию.

5)Жизнедеятельность многоклеточного организма в целом обусловлена взаимодействием составляющих его клеток.

По строению выделяют 2 типа клеток:

Прокариоты

Эукариоты

К прокариотам относятся бактерии и сине-зеленые водоросли. Прокариоты от эукариот отличаются следующим: у них нет мембранных органелл, имеющихся в эукариотической клетке (митохондрий, эндоплазматической сети, лизосом, комплекса Гольджи, хлоропластов).

Самое же важное отличие заключается в том, что у них нет окруженного мембраной ядра. ДНК прокариот представлена одной свернутой кольцевой молекулой. У прокариот отсутствуют и центриоли клеточного центра, поэтому они никогда не делятся митозом. Для них характерен амитоз – прямое быстрое деление.

Эукариотические клетки – это клетки одноклеточных и многоклеточных организмов. Они состоят из трех главных составных частей:

Клеточной мембраны, окружающей клетку и отделяющей ее от внешней среды;

Цитоплазмы, содержащей воду, минеральные соли, органические соединения, органеллы и включения;

Ядра, в котором находится генетический материал клетки.

1 – полярная головка молекулы фосфолипида

2 – жирнокислотный хвост молекулы фосфолипида

3 – интегральный белок

4 – периферический белок

5 – полуинтегральный белок

6 – гликопротеин

7 - гликолипид

Наружная клеточная мембрана присуща всем клеткам (животным и растительным), имеет толщину около 7,5 (до 10) нм и состоит из молекул липидов и белка.

В настоящее время распространена жидкостно-мозаичная модель построения клеточной мембраны. Согласно этой модели молекулы липидов расположены в два слоя, причем своими водоотталкивающими концами (гидрофобными – жирорастворимыми) они обращены друг к другу, а водорастворимыми (гидрофильными) – к периферии. В липидный слой встроены белковые молекулы. Некоторые из них находятся на внешней или внутренней поверхности липидной части, другие – частично погружены или пронизывают мембрану насквозь.


Функции мембран:

Защитная, пограничная, барьерная;

Транспортная;

Рецепторная – осуществляется за счет белков – рецепторов, которые обладают избирательной способностью к определенным веществам (гормонам, антигенам и др.), вступают с ними в химические взаимодействия, проводят сигналы внутрь клетки;

Участвуют в образовании межклеточных контактов;

Обеспечивают движение некоторых клеток (амебовидное движение).

У животных клеток сверху наружной клеточной мембраны имеется тонкий слой гликокаликса. Это комплекс углеводов с липидами и углеводов с белками. Гликокаликс участвует в межклеточных взаимодействиях. Точно такое же строение имеют цитоплазматические мембраны большинства органелл клетки.

У растительных клеток снаружи от цитоплазматической мембраны. расположена клеточная стенка, состоящая из целлюлозы.

Транспорт веществ через цитоплазматическую мембрану.

Существуют два основных механизма для поступления веществ в клетку или выхода из клетки наружу:

1.Пассивный транспорт.

2.Активный транспорт.

Пассивный транспорт веществ происходит без затраты энергии. Примером такого транспорта является диффузия и осмос, при которых движение молекул или ионов осуществляется из области с высокой концентрацией в область с меньшей концентрацией, например, молекул воды.

Активный транспорт – при этом виде транспорта молекулы или ионы проникают через мембрану против градиента концентрации, для чего необходима энергия. Примером активного транспорта служит натрий-калиевый насос, который активно выкачивает натрий из клетки и поглощает ионы калия из внешней среды, перенося их в клетку. Насос – это особый белок мембраны, приводит его в движение АТФ.

Активный транспорт обеспечивает поддержание постоянства объема клетки и мембранного потенциала.

Транспорт веществ может осуществляться путем эндоцитоза и экзоцитоза.

Эндоцитоз – проникновение веществ в клетку, экзоцитоз – из клетки.

При эндоцитозе плазматическая мембрана образует впячивание или выросты, которые затем обволакивают вещество и отшнуровываясь, превращаются в пузырьки.

Различают два типа эндоцитоза:

1)фагоцитоз- поглощение твердых частиц (клетки фагоциты),

2)пиноцитоз – поглощение жидкого материала. Пиноцитоз характерен для амебоидных простейших.

Путем экзоцитоза различные вещества выводятся из клеток: из пищеварительных вакуолей удаляются непереваренные остатки пищи, из секреторных клеток выводится их жидкий секрет.

Цитоплазма – (цитоплазма + ядро образуют протоплазму). Цитоплазма состоит из водянистого основного вещества (цитоплазматический матрикс, гиалоплазма, цитозоль) и находящихся в нем разнообразных органелл и включений.

Включения– продукты жизнедеятельности клеток. Выделяют 3 группы включений – трофического, секреторного (клетки желез) и специального (пигмент) значения.

Органеллы – это постоянные структуры цитоплазмы, выполняющие в клетке определенные функции.

Выделяют органеллы общего значения и специальные. Специальные встречаются в большинстве клеток, но в значительном количестве присутствуют только в клетках, выполняющих определенную функцию. К ним относятся микроворсинки эпителиальных клеток кишечника, реснички эпителия трахеи и бронхов, жгутики, миофибриллы (обеспечивающие сокращение мышц и др.).

К органеллам общего значения относят ЭПС, комплекс Гольджи, митохондрии, рибосомы, лизосомы, центриоли клеточного центра, пероксисомы, микротрубочки, микрофиламенты. В растительных клетках – пластиды, вакуоли. Органеллы общего значения можно подразделить на органеллы, имеющие мембранное и немембранное строение.

Органеллы, имеющие мембранное строение бывают двумембранные и одномембранные. К двумембранным относят митохондрии и пластиды. К одномембранным – эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, вакуоли.

Органеллы, не имеющие мембран: рибосомы, клеточный центр, микротрубочки, микрофиламенты.

Митохондрии это органеллы округлой или овальной формы. Они состоят из двух мембран: внутренней и наружной. Внутренняя мембрана имеет выросты – кристы, которые разделяют митохондрию на отсеки. Отсеки заполнены веществом – матриксом. В матриксе содержатся ДНК, иРНК, тРНК, рибосомы, соли кальция и магния. Здесь происходит автономный биосинтез белка. Основной же функцией митохондрий является синтез энергии и накопления ее в молекулах АТФ. Новые митохондрии образуются в клетке в результате деления старых.

Пластиды органеллы, встречающиеся преимущественно в растительных клетках. Они бывают трех типов: хлоропласты, содержащие пигмент зеленого цвета; хромопласты (пигменты красного, желтого, оранжевого цвета); лейкопласты (бесцветные).

Хлоропласты благодаря зеленому пигменту хлорофиллу, способны синтезировать органические вещества из неорганических, используя энергию солнца.

Хромопласты придают яркую окраску цветам и плодам.

Лейкопласты способны накапливать запасные питательные вещества: крахмал, липиды, белки и др.

Эндоплазматическая сеть(ЭПС) представляет собой сложную систему вакуолей и каналов, которые ограничены мембранами. Различают гладкую (агранулярную) и шероховатую (гранулярную) ЭПС. Гладкая не имеет на своей мембране рибосом. В ней происходит синтез липидов, липопротеидов, накопление и выведение из клетки ядовитых веществ. Гранулярная ЭПС имеет рибосомы на мембранах, в которых синтезируются белки. Затем белки поступают в комплекс Гольджи, а оттуда наружу.

Комплекс Гольджи (аппарат Гольджи) представляет собой стопку уплощенных мембранных мешочков – цистерн и связанную с ними систему пузырьков. Стопка цистерн называется диктиосома.

Функции комплекса Гольджи: модификация белков, синтез полисахаридов, транспорт веществ, формирование клеточной мембраны, образование лизосом.

Лизосомы представляют собой окруженные мембраной пузырьки, содержащие ферменты. Они осуществляют внутриклеточное расщепление веществ и подразделяются на первичные и вторичные. Первичные лизосомы содержат ферменты в неактивной форме. После попадания в органеллы различных веществ происходит активация ферментов и начинается процесс переваривания – это вторичные лизосомы.

Пероксисомы имеют вид пузырьков, ограниченных одной мембраной. Они содержат ферменты, которые расщепляют токсичную для клеток перекись водорода.

Вакуоли это органеллы клеток растений, содержащие клеточный сок. В клеточном соке могут находиться запасные питательные вещества, пигменты, отходы жизнедеятельности. Вакуоли участвуют в создании тургорного давления, в регуляции водно – солевого обмена.

Рибосомы органеллы, состоящие из большой и малой субъединиц. Могут находиться или на ЭПС или же располагаться свободно в клетке, образуя полисомы. Они состоят из рРНК и белка и образуются в ядрышке. В рибосомах происходит биосинтез белка.

Клеточный центр встречается в клетках животных, грибов, низших растений и отсутствует у высших растений. Он состоит из двух центриолей и лучистой сферы. Центриоль имеет вид полого цилиндра, стенка которого состоит из 9 триплетов микротрубочек. При делении клетки образуют нити митотического веретена, обеспечивающие расхождение хроматид в анафазе митоза и гомологичных хромосом при мейозе.

Микротрубочки трубчатые образования различной длины. Входят в состав центриолей, митотического веретена, жгутиков, ресничек, выполняют опорную функцию, способствуют перемещению внутриклеточных структур.

Микрофиламенты нитчатые тонкие образования, расположенные по всей цитоплазме, но особенно много их под клеточной оболочкой. Вместе с микротрубочками образуют цитоскелет клетки, обусловливают ток цитоплазмы, внутриклеточные перемещения пузырьков, хлоропластов и др. органелл.

9.5.1. Одна из главных функций мембран - участие в переносе веществ. Этот процесс обеспечивается при помощи трёх основных механизмов: простой диффузией, облегчённой диффузией и активным транспортом (рисунок 9.10). Запомните важнейшие особенности этих механизмов и примеры транспортируемых веществ в каждом случае.

Рисунок 9.10. Механизмы транспорта молекул через мембрану

Простая диффузия - перенос веществ через мембрану без участия специальных механизмов. Транспорт происходит по градиенту концентрации без затраты энергии. Путём простой диффузии транспортируются малые биомолекулы - Н2 О, СО2 , О2 , мочевина, гидрофобные низкомолекулярные вещества. Скорость простой диффузии пропорциональна градиенту концентрации.

Облегчённая диффузия - перенос веществ через мембрану при помощи белковых каналов или специальных белков-переносчиков. Осуществляется по градиенту концентрации без затраты энергии. Транспортируются моносахариды, аминокислоты, нуклеотиды, глицерол, некоторые ионы. Характерна кинетика насыщения - при определённой (насыщающей) концентрации переносимого вещества в переносе принимают участие все молекулы переносчика и скорость транспорта достигает предельной величины.

Активный транспорт - также требует участия специальных белков-переносчиков, но перенос происходит против градиента концентрации и поэтому требует затраты энергии. При помощи этого механизма через клеточную мембрану транспортируются ионы Na+ , K+ , Ca2+ , Mg2+ , через митохондриальную - протоны. Для активного транспорта веществ характерна кинетика насыщения.

9.5.2. Примером транспортной системы, осуществляющей активный транспорт ионов, является Na+ ,K+ -аденозинтрифосфатаза (Na+ ,K+ -АТФаза или Na+ ,K+ -насос). Этот белок находится в толще плазматической мембраны и способен катализировать реакцию гидролиза АТФ. Энергия, выделяемая при гидролизе 1 молекулы АТФ, используется для переноса 3 ионов Na+ из клетки во внеклеточное пространство и 2 ионов К+ в обратном направлении (рисунок 9.11). В результате действия Na+ ,K+ -АТФазы создаётся разность концентраций между цитозолем клетки и внеклеточной жидкостью. Поскольку перенос ионов неэквивалентен, то возникает разность электрических потенциалов. Таким образом, возникает электрохимический потенциал, который складывается из энергии разности электрических потенциалов Δφ и энергии разности концентраций веществ ΔС по обе стороны мембраны.

Рисунок 9.11. Схема Na+ , K+ -насоса.

9.5.3. Перенос через мембраны частиц и высокомолекулярных соединений

Наряду с транспортом органических веществ и ионов, осуществляемым переносчиками, в клетке существует совершенно особый механизм, предназначенный для поглощения клеткой и выведения из неё высокомолекулярных соединений при помощи изменения формы биомембраны. Такой механизм называют везикулярным транспортом .

Рисунок 9.12. Типы везикулярного транспорта: 1 - эндоцитоз; 2 - экзоцитоз.

При переносе макромолекул происходит последовательное образование и слияние окружённых мембраной пузырьков (везикул). По направлению транспорта и характеру переносимых веществ различают следующие типы везикулярного транспорта:

Эндоцитоз (рисунок 9.12, 1) — перенос веществ в клетку. В зависимости от размера образующихся везикул различают:

а) пиноцитоз — поглощение жидкости и растворённых макромолекул (белков, полисахаридов, нуклеиновых кислот) с помощью небольших пузырьков (150 нм в диаметре);

б) фагоцитоз — поглощение крупных частиц, таких, как микроорганизмы или обломки клеток. В этом случае образуются крупные пузырьки, называемые фагосомами диаметром более 250 нм.

Пиноцитоз характерен для большинства эукариотических клеток, в то время как крупные частицы поглощаются специализированными клетками - лейкоцитами и макрофагами. На первой стадии эндоцитоза вещества или частицы адсорбируются на поверхности мембраны, этот процесс происходит без затраты энергии. На следующей стадии мембрана с адсорбированным веществом углубляется в цитоплазму; образовавшиеся локальные впячивания плазматической мембраны отшнуровываются от поверхности клетки, образуя пузырьки, которые затем мигрируют внутрь клетки. Этот процесс связан системой микрофиламентов и является энергозависимым. Поступившие в клетку пузырьки и фагосомы могут сливаться с лизосомами. Содержащиеся в лизосомах ферменты расщепляют вещества, содержащиеся в пузырьках и фагосомах до низкомолекулярных продуктов (аминокислот, моносахаридов, нуклеотидов), которые транспортируются в цитозоль, где они могут быть использованы клеткой.

Экзоцитоз (рисунок 9.12, 2) — перенос частиц и крупных соединений из клетки. Этот процесс, как и эндоцитоз, протекает с поглощением энергии. Основными разновидностями экзоцитоза являются:

а) секреция - выведение из клетки водорастворимых соединений, которые используются или воздействуют на другие клетки организма. Может осуществляться как неспециализированными клетками, так и клетками эндокринных желёз, слизистой желудочно-кишечного тракта, приспособленными для секреции производимых ими веществ (гормонов, нейромедиаторов, проферментов) в зависимости от определённых потребностей организма.

Секретируемые белки синтезируются на рибосомах, связанных с мембранами шероховатого эндоплазматического ретикулума. Затем эти белки транспортируются к аппарату Гольджи, где они модифицируются, концентрируются, сортируются, и затем упаковываются в пузырьки, которые отщепляются в цитозоль и в дальнейшем сливаются с плазматической мембраной, так что содержимое пузырьков оказывается вне клетки.

В отличие от макромолекул, секретируемые частицы малых размеров, например, протоны, транспортируются из клетки при помощи механизмов облегчённой диффузии и активного транспорта.

б) экскреция - удаление из клетки веществ, которые не могут быть использованы (например, удаление в ходе эритропоэза из ретикулоцитов сетчатой субстанции, представляющей собой агрегированные остатки органелл). Механизм экскреции, по-видимому, состоит в том, что вначале выделяемые частицы оказываются в цитоплазматическом пузырьке, который затем сливается с плазматической мембраной.

9.5.1. Одна из главных функций мембран - участие в переносе веществ. Этот процесс обеспечивается при помощи трёх основных механизмов: простой диффузией, облегчённой диффузией и активным транспортом (рисунок 9.10). Запомните важнейшие особенности этих механизмов и примеры транспортируемых веществ в каждом случае.

Рисунок 9.10. Механизмы транспорта молекул через мембрану

Простая диффузия - перенос веществ через мембрану без участия специальных механизмов. Транспорт происходит по градиенту концентрации без затраты энергии. Путём простой диффузии транспортируются малые биомолекулы - Н2 О, СО2 , О2 , мочевина, гидрофобные низкомолекулярные вещества. Скорость простой диффузии пропорциональна градиенту концентрации.

Облегчённая диффузия - перенос веществ через мембрану при помощи белковых каналов или специальных белков-переносчиков. Осуществляется по градиенту концентрации без затраты энергии. Транспортируются моносахариды, аминокислоты, нуклеотиды, глицерол, некоторые ионы. Характерна кинетика насыщения - при определённой (насыщающей) концентрации переносимого вещества в переносе принимают участие все молекулы переносчика и скорость транспорта достигает предельной величины.

Активный транспорт - также требует участия специальных белков-переносчиков, но перенос происходит против градиента концентрации и поэтому требует затраты энергии. При помощи этого механизма через клеточную мембрану транспортируются ионы Na+ , K+ , Ca2+ , Mg2+ , через митохондриальную - протоны. Для активного транспорта веществ характерна кинетика насыщения.

9.5.2. Примером транспортной системы, осуществляющей активный транспорт ионов, является Na+ ,K+ -аденозинтрифосфатаза (Na+ ,K+ -АТФаза или Na+ ,K+ -насос). Этот белок находится в толще плазматической мембраны и способен катализировать реакцию гидролиза АТФ. Энергия, выделяемая при гидролизе 1 молекулы АТФ, используется для переноса 3 ионов Na+ из клетки во внеклеточное пространство и 2 ионов К+ в обратном направлении (рисунок 9.11). В результате действия Na+ ,K+ -АТФазы создаётся разность концентраций между цитозолем клетки и внеклеточной жидкостью. Поскольку перенос ионов неэквивалентен, то возникает разность электрических потенциалов. Таким образом, возникает электрохимический потенциал, который складывается из энергии разности электрических потенциалов Δφ и энергии разности концентраций веществ ΔС по обе стороны мембраны.

Рисунок 9.11. Схема Na+ , K+ -насоса.

9.5.3. Перенос через мембраны частиц и высокомолекулярных соединений

Наряду с транспортом органических веществ и ионов, осуществляемым переносчиками, в клетке существует совершенно особый механизм, предназначенный для поглощения клеткой и выведения из неё высокомолекулярных соединений при помощи изменения формы биомембраны. Такой механизм называют везикулярным транспортом .

Рисунок 9.12. Типы везикулярного транспорта: 1 - эндоцитоз; 2 - экзоцитоз.

При переносе макромолекул происходит последовательное образование и слияние окружённых мембраной пузырьков (везикул). По направлению транспорта и характеру переносимых веществ различают следующие типы везикулярного транспорта:

Эндоцитоз (рисунок 9.12, 1) — перенос веществ в клетку. В зависимости от размера образующихся везикул различают:

а) пиноцитоз — поглощение жидкости и растворённых макромолекул (белков, полисахаридов, нуклеиновых кислот) с помощью небольших пузырьков (150 нм в диаметре);

б) фагоцитоз — поглощение крупных частиц, таких, как микроорганизмы или обломки клеток. В этом случае образуются крупные пузырьки, называемые фагосомами диаметром более 250 нм.

Пиноцитоз характерен для большинства эукариотических клеток, в то время как крупные частицы поглощаются специализированными клетками - лейкоцитами и макрофагами. На первой стадии эндоцитоза вещества или частицы адсорбируются на поверхности мембраны, этот процесс происходит без затраты энергии. На следующей стадии мембрана с адсорбированным веществом углубляется в цитоплазму; образовавшиеся локальные впячивания плазматической мембраны отшнуровываются от поверхности клетки, образуя пузырьки, которые затем мигрируют внутрь клетки. Этот процесс связан системой микрофиламентов и является энергозависимым. Поступившие в клетку пузырьки и фагосомы могут сливаться с лизосомами. Содержащиеся в лизосомах ферменты расщепляют вещества, содержащиеся в пузырьках и фагосомах до низкомолекулярных продуктов (аминокислот, моносахаридов, нуклеотидов), которые транспортируются в цитозоль, где они могут быть использованы клеткой.

Экзоцитоз (рисунок 9.12, 2) — перенос частиц и крупных соединений из клетки. Этот процесс, как и эндоцитоз, протекает с поглощением энергии. Основными разновидностями экзоцитоза являются:

а) секреция - выведение из клетки водорастворимых соединений, которые используются или воздействуют на другие клетки организма. Может осуществляться как неспециализированными клетками, так и клетками эндокринных желёз, слизистой желудочно-кишечного тракта, приспособленными для секреции производимых ими веществ (гормонов, нейромедиаторов, проферментов) в зависимости от определённых потребностей организма.

Секретируемые белки синтезируются на рибосомах, связанных с мембранами шероховатого эндоплазматического ретикулума. Затем эти белки транспортируются к аппарату Гольджи, где они модифицируются, концентрируются, сортируются, и затем упаковываются в пузырьки, которые отщепляются в цитозоль и в дальнейшем сливаются с плазматической мембраной, так что содержимое пузырьков оказывается вне клетки.

В отличие от макромолекул, секретируемые частицы малых размеров, например, протоны, транспортируются из клетки при помощи механизмов облегчённой диффузии и активного транспорта.

б) экскреция - удаление из клетки веществ, которые не могут быть использованы (например, удаление в ходе эритропоэза из ретикулоцитов сетчатой субстанции, представляющей собой агрегированные остатки органелл). Механизм экскреции, по-видимому, состоит в том, что вначале выделяемые частицы оказываются в цитоплазматическом пузырьке, который затем сливается с плазматической мембраной.

Природа создала множество организмов и клеток, но, несмотря на это, строение и большая часть функций биологических мембран одинаковы, что позволяет рассматривать их структуру и изучать их ключевые свойства без привязанности к конкретному виду клеток.

Что такое мембрана?

Мембраны - это защитный элемент, который является неотъемлемой составляющей клетки любого живого организма.

Структурной и функциональной единицей всех живых организмов на планете является клетка. Жизнедеятельность ее неразрывно связана с окружающей средой, с которой она обменивается энергией, информацией, веществом. Так, питательная энергия, необходимая для функционирования клетки, поступает извне и тратится на осуществление ею различных функций.

Структура простейшей единицы строения живого организма: мембрана органеллы, разнообразные включения. Она окружена мембраной, внутри которой располагается ядро и все органеллы. Это митохондрии, лизосомы, рибосомы, эндоплазматический ретикулум. Каждый структурный элемент имеет свою мембрану.

Роль в жизнедеятельности клетки

Биологическая мембрана играет кульминационную роль в строении и функционировании элементарной живой системы. Только клетка, окруженная защитной оболочкой, по праву может называться организмом. Такой процесс, как обмен веществ, также осуществляется благодаря наличию мембраны. Если структурная целостность ее нарушена, это приводит к изменению функционального состояния организма в целом.

Клеточная мембрана и ее функции

Она отделяет цитоплазму клетки от внешней среды или от оболочки. Мембрана клетки обеспечивает должное выполнение специфических функций, специфику межклеточных контактов и иммунных проявлений, поддерживает трансмембранную разницу электрического потенциала. В ней имеются рецепторы, способные воспринимать химические сигналы - гормоны, медиаторы и другие биологические активные компоненты. Эти рецепторы наделяют ее еще одной способностью - изменять метаболическую активность клетки.

Функции мембраны:

1. Активный перенос веществ.

2. Пассивный перенос веществ:

2.1. Диффузия простая.

2.2. Перенос через поры.

2.3. Транспорт, осуществляемый за счет диффузии переносчика вместе с мембранным веществом или посредством передачи по эстафете вещества по молекулярной цепи переносчика.

3. Перенос неэлектролитов благодаря простой и облегченной диффузии.

Строение мембраны клетки

Составляющие мембраны клетки - липиды и белки.

Липиды: фосфолипиды, фосфатидилэтаноламин, сфингомиелин, фосфатидилинозит и фосфатидилсерин, гликолипиды. Доля липидов составляет 40-90 %.

Белки: периферические, интегральные (гликопротеины), спектрин, актин, цитоскелет.

Основной структурный элемент - двойной слой фосфолипидных молекул.

Кровельная мембрана: определение и типология

Немного статистики. На территории Российской Федерации мембрана в качестве кровельного материала используется не так уж и давно. Удельный вес мембранных кровель из общего числа мягких перекрытий крыш составляет всего 1,5 %. Более широкое распространение в России получили битумные и мастичные кровли. А вот в Западной Европе на долю мембранных кровель приходится 87 %. Разница ощутимая.

Как правило, мембрана в роли основного материала при перекрытии крыши идеально подходит для плоских кровель. Для имеющих большой уклон она подходит в меньшей степени.

Объемы производства и реализации мембранных кровель на отечественном рынке имеют положительную тенденцию роста. Почему? Причины более чем ясны:

  • Срок эксплуатации составляет около 60 лет. Представьте себе, только гарантийный срок использования, который устанавливается производителем, достигает 20 лет.
  • Легкость в монтаже. Для сравнения: установка битумной кровли занимает в 1,5 раза больше времени, нежели монтаж мембранного перекрытия.
  • Простота в обслуживании и проведении ремонтных работ.

Толщина кровельных мембран может составлять 0,8-2 мм, а средний показатель веса одного метра квадратного равен 1,3 кг.

Свойства кровельных мембран:

  • эластичность;
  • прочность;
  • устойчивость к воздействию ультрафиолетовых лучей и иных сред-агрессоров;
  • морозоустойчивость;
  • огнеупорность.

Мембрана кровельная бывает трех типов. Главный классификационный признак - вид полимерного материала, составляющего основание полотна. Итак, кровельные мембраны бывают:

  • принадлежащие группе ЭПДМ, изготовлены на основе полимеризированного этилен-пропилен-диен-мономера, а проще говоря, Преимущества: высокая прочность, эластичность, водонепроницаемость, экологичность, низкая стоимость. Недостатки: клеевая технология соединения полотен посредством использования специальной ленты, низкие показатели прочности соединений. Сфера применения: используется как гидроизоляционный материал для туннельных перекрытий, водных источников, хранилищ отходов, искусственных и природных водоемов и т. д.
  • ПВХ-мембраны. Это оболочки, при производстве которых в качестве основного материала используется поливинилхлорид. Преимущества: устойчивость к ультрафиолету, огнеупорность, обширная цветовая гамма мембранных полотен. Недостатки: низкие показатели устойчивости к битумным материалам, маслам, растворителям; выделяет в атмосферу вредные вещества; цвет полотна со временем тускнеет.
  • ТПО. Изготавливаются из термопластичных олефинов. Могут быть армированными и неармированными. Первые оснащаются сеткой из полиэстера или стекловолоконной тканью. Преимущества: экологичность, долговечность, высокая эластичность, температуростойкость (как при высоких, так и при низких температурах), сварные соединения швов полотен. Недостатки: высокая ценовая категория, отсутствие производителей на отечественном рынке.

Мембрана профилированная: характеристика, функции и преимущества

Профилированные мембраны - это инновация на строительном рынке. Такая мембрана эксплуатируется в качестве гидроизоляционного материала.

Вещество, используемое при изготовлении, - полиэтилен. Последний бывает двух типов: полиэтилен высокого давления (ПВД) и полиэтилен низкого давления (ПНД).

Техническая характеристика мембраны из ПВД и ПНД

Показатель

Прочность при разрыве (МРа)

Удлинение при растяжении (%)

Плотность (кг/куб. м)

Прочность при сжатии (МРа)

Ударная вязкость (с надрезом) (КДж/кв. м)

Модуль упругости на изгиб (МРа)

Твёрдость (МРа)

Рабочий температурный режим (˚С)

от -60 до +80

от -60 до +80

Суточная норма водопоглощения (%)

Профилированная мембрана из полиэтилена высокого давления имеет особую поверхность - пустотелые пупырышки. Высота этих образований может колебаться от 7 до 20 мм. Внутренняя поверхность мембраны ровная. Это дает возможность беспроблемного сгибания стройматериала.

Изменение формы отдельных участков мембраны исключено, поскольку давление по всей ее площади распределяется равномерно благодаря наличию все тех же выступов. Геомембрана может использоваться в качестве вентиляционной изоляции. В таком случае обеспечивается свободный тепловой обмен внутри здания.

Преимущества профилированных мембран:

  • повышенная прочность;
  • теплоустойчивость;
  • устойчивость химического и биологического влияния;
  • длительный срок эксплуатации (более 50 лет);
  • простота в установке и обслуживании;
  • доступная стоимость.

Профилированные мембраны бывают трех видов:

  • с однослойным полотном;
  • с двухслойным полотном = геотекстиль + дренажная мембрана;
  • с трехслойным полотном = скользкая поверхность + геотекстиль + дренажная мембрана.

Однослойная профилированная мембрана применяется для защиты основной гидроизоляции, монтажа и демонтажа подготовки бетоном стен с повышенной влажностью. Двухслойную защитную используют во время оснащения Состоящую из трех слоев применяют на грунте, который поддается морозным пучениям, и грунтовой почве, находящейся глубоко.

Сферы использования дренажных мембран

Профилированная мембрана находит свое применение в следующих областях:

  1. Основная гидроизоляция фундамента. Обеспечивает надежную защиту от разрушительного влияния грунтовых вод, корневых систем растений, просадки грунта, повреждений механического типа.
  2. Стеновой дренаж фундамента. Нейтрализует воздействие грунтовых вод, атмосферных осадков посредством переправления их в дренажные системы.
  3. Горизонтальный типа - защита от деформации благодаря структурным особенностям.
  4. Аналог подготовки бетоном. Эксплуатируется в случае проведения строительных работ по возведению зданий в зоне низкого залегания грунтовых вод, в тех случаях, когда используется горизонтальная гидроизоляция с целью защиты от капиллярной влаги. Также в функции мембраны профилированной входит непропускание цементного молока в грунт.
  5. Вентиляция стеновых поверхностей повышенного уровня влажности. Может устанавливаться как на внутренней, так и на внешней стороне помещения. В первом случае активизируется воздушная циркуляция, а во втором обеспечивается оптимальная влажность и температура.
  6. Используемая инверсионная кровля.

Супердиффузионная мембрана

Мембрана супердиффузионная является материалом нового поколения, главное предназначение которого - защита элементов кровельной конструкции от ветровых явлений, осадков, пара.

Производство защитного материала основано на использовании нетканых веществ, плотных волокон высокого качества. На отечественном рынке популярна трехслойная и четырехслойная мембрана. Отзывы специалистов и потребителей подтверждают, что чем больше слоев лежит в основе конструкции, тем сильнее ее защитные функции, а значит, и выше энергоэффективность помещения в целом.

В зависимости от типа крыши, особенностей ее конструкции, климатических условий, производители рекомендуют отдавать предпочтение тому или иному виду диффузионных мембран. Так, существуют они для скатных кровель сложных и простых конструкций, для крыш скатного типа с минимальным уклоном, для кровель с фальцевым покрытием и т. д.

Супердиффузионная мембрана укладывается непосредственно на теплоизоляционный слой, настил из досок. Необходимости в вентиляционном зазоре нет. Крепится материал специальными скобами или стальными гвоздями. Края диффузионных листов соединяются работы разрешается проводить даже при экстремальных условиях: в при сильных порывах ветра и т. д.

Кроме того, рассматриваемое покрытие может использоваться в качестве временного перекрытия крыши.

ПВХ-мембраны: сущность и предназначение

ПФХ-мембраны - это материал для кровли, изготавливаемый из поливинилхлорида и обладающий эластичными свойствами. Такой современный кровельный материал вовсе вытеснил битумные рулонные аналоги, имеющие существенный недостаток - необходимость систематического обслуживания и ремонта. На сегодняшний день характерные особенности ПВХ-мембран позволяют использовать их при проведении ремонтных работ на старых кровлях плоского типа. Применяются они и при монтаже новых крыш.

Кровля из такого материала удобна в эксплуатации, а ее установка возможна на любые типы поверхностей, в любое время года и при любых погодных условиях. ПВХ-мембрана обладает следующими свойствами:

  • прочность;
  • устойчивость при воздействии УФ-лучей, различного рода атмосферных осадков, точечных и поверхностных нагрузках.

Именно благодаря своим уникальным свойствам ПВХ-мембраны будут служить вам верой и правдой на протяжении многих лет. Срок использования такой кровли приравнивается к сроку эксплуатации самого здания, в то время как рулонные кровельные материалы нуждаются в регулярном ремонте, а в некоторых случаях и вовсе в демонтаже и установке нового перекрытия.

Между собой мембранные полотна из ПВХ соединяются методом сварки горячим вздохом, температура которого находится в пределах 400-600 градусов по Цельсию. Такое соединение является абсолютно герметичным.

Преимущества ПВХ-мембран

Достоинства их очевидны:

  • гибкость кровельной системы, что максимально соответствует строительному проекту;
  • прочный, обладающий герметичными свойствами соединительный шов между мембранными полотнами;
  • идеальная переносимость перемены климата, погодных условий, температуры, влажности;
  • повышенная паропроницаемость, которая содействует испарению влаги, скопившейся в подкровельном пространстве;
  • множество вариантов цветовых решений;
  • противопожарные свойства;
  • способность длительный период сохранять первоначальные свойства и внешний вид;
  • ПВХ-мембрана - абсолютно экологичный материал, что подтверждается соответствующими сертификатами;
  • процесс монтажа механизирован, поэтому не займет много времени;
  • правила эксплуатации допускают установку различных архитектурных дополнений непосредственно сверху самой мембранной ПВХ-кровли;
  • однослойная укладка сэкономит ваши деньги;
  • простота в обслуживании и ремонте.

Мембранная ткань

Текстильной промышленности мембранная ткань известна давно. Из такого материала изготавливается обувь и одежда: взрослая и детская. Мембрана - основа мембранной ткани, представленная в виде тонкой полимерной пленки и обладающая такими характеристиками, как водонепроницаемость и паропроницаемость. Для производства данного материала эту пленку покрывают наружным и внутренним защитными слоями. Строение их определяет сама мембрана. Делается это с целью сохранения всех полезных свойств даже в случае повреждения. Иными словами, мембранная одежда не промокает при воздействии осадков в виде снега или дождя, но в то же время отлично пропускает пар от тела во внешнюю среду. Такая пропускная способность позволяет коже дышать.

Учитывая все вышесказанное, можно сделать вывод о том, что из подобной ткани изготавливается идеальная одежда зимняя. Мембрана, находящаяся в основе ткани, при этом может быть:

  • с порами;
  • без пор;
  • комбинированная.

В составе мембран, имеющих множество микропор, числится тефлон. Размеры таких пор не достигают габаритов даже капли воды, но больше водной молекулы, что свидетельствует о водонепроницаемости и способности выводить пот.

Мембраны, которые не имеют пор, как правило, произведены из полиуретана. Их внутренний слой концентрирует в себе все потожировые выделения тела человека и выталкивает их наружу.

Строение мембраны комбинированной подразумевает наличие двух слоев: пористого и гладкого. Такая ткань обладает высокими качественными характеристиками и прослужит долгие годы.

Благодаря этим достоинствам одежда и обувь, изготовленные из мембранных тканей и предназначенные для носки в зимнюю пору года, прочные, но легкие, превосходно защищают от мороза, влаги, пыли. Они просто незаменимы для множества активных видов зимнего отдыха, альпинизма.