Как определить атомный радиус элемента. Атомные радиусы. Изменение свойств элементов по диагонали

В конце статьи, вы будете в состоянии описать- Определение радиуса атома, периодическая таблица тенденция, Самый большой атомный радиус, Атомный радиус диаграммы. Давайте начнем обсуждать один за другим.

Атомный радиус Определение

Общая картина атома в нашем сознании, что из сферы. Если это считается правильным, то это определение:

Однако, нет уверенности о точном положении электронов в любой момент времени. Теоретически, электрон, некогда, может быть очень близко к ядру, в то время как в другое время он может быть далеко от ядра. Также, Это невозможно измерить точное значение атомного радиуса атома элемента, так как атом очень много меньше в размерах.

Почему нет возможности точного определения?
A . Это не представляется возможным выделить один атом.
В. Это невозможно измерить точное расстояние атома не имеет четко определенную форму или границу и вероятность электрона равна нулю уровня, даже на большом расстоянии от ядра.
C.It может измениться из-за влияния окружающей среды и многие другие причины.

Однако, мы можем выразить различные формы атома в зависимости от характера связи атомов . Несмотря на указанные выше ограничения, Есть три оперативные концепции:


Ковалентная Радиус

В гомоатомных молекулах (содержащие один и тот же тип атомов) ковалентный радиус определяется как

Ван-дер-Ваальса радиус

На самом деле, ван-дер-Ваальса слабые силы их магнитуда(мощность) притяжения меньше, в газообразном, так и в жидком состоянии вещества. Поэтому радиус определяется в твердом состоянии, когда величина силы, как ожидается, до максимума.

  • Значение Ван-дер-Ваал больше, чем радиус ковалентной.
  • пример, Ван-дер-Ваал сила хлора 180 м, а радиус ковалентной является 99 вечера(пикометра).

Металлический радиус

поскольку металлическая связь слабее ковалентной связи межъядерное молекулярное расстояние между двумя атомами в металлической связи составляет более ковалентной связи.

  • Металлическая связь более чем ковалентная связь.

Периодическая Атомный радиус Таблица Trend

В ходе исследования, Ученые обнаружили самую маленькую частицу материи и назвали его в качестве атома. Различные атомы различных элементов показывают различные химические и физические свойства. Это можно увидеть, когда атомные изменения радиуса в периодической таблице тенденции. Изменение атомных радиусов имеет большое влияние на поведение атомов в процессе химической реакции. Это происходит потому, что она влияет на энергию ионизации, химическая реактивность, и многие другие факторы,.

Следует отметить, что атомный радиус последнего элемента в каждый период, который является довольно большой. Потому что благородные газы считаются ван-дер-радиус Ваала, который всегда имеет более высокую ценность, чем радиус ковалентной. Когда мы сравним три атомных радиусов порядок сил

  • Ван-дер-Ваал >Металлический радиус>Ковалентная

Атомный радиус Trend

В период, количество снарядов остается неизменным, но увеличивается ядерный заряд. Это следствие, увеличение силы притяжения к ядру, который вызывает сокращение размера.

  • Ядерный аттракцион α 1 / Атомные радиусы.
  • Основное квантовое число(N) α Атомные радиусы.
  • Скрининг эффект α Атомные радиусы.
  • Количество облигаций α 1 / Атомные радиусы.

Заметка: Атомный Радий это множественное число от радиуса атома.


В группе, по мере перехода от верхней части к нижней части в группе атомных радиусов возрастает с увеличением атомного номера, это связано с тем, что количество энергии оболочек возрастает.

Самый большой атомный радиус

  • Размер водорода является наименьшим.
  • Франций, имеющий атомный номер 87 имеет больший радиус ковалентные и Вандер-Ваальса, чем цезий.
  • Так как Франций является чрезвычайно нестабильным элементом. Так, Цезий имеет самый большой атомный номер.

Это все об основах Определение радиуса атома, периодическая таблица тенденция, Самый большой атомный радиус, Атомный радиус диаграммы.

Рассмотрим взаимосвязь между положением элементов в периодической системе и такими свойствами химических элементов, как атомный радиус и электроотрицательность.

Атомный радиус является величиной, которая показывает размер электронной оболочки атома. Это очень важная величина, от которой зависят свойства атомов химических элементов. В главных подгруппах с увеличением заряда ядра атома происходит увеличение числа электронных уровней, поэтому атомный радиус с увеличением порядкового номера в главных подгруппах увеличивается.

В периодах происходит увеличение заряда ядра атома химического элемента, что приводит к усилению притяжения внешних электронов к ядру. Кроме того, с увеличением заряда ядра увеличивается число электронов на внешнем уровне, однако число электронных уровней не увеличивается. Указанные закономерности приводят к сжатию электронной оболочки вокруг ядра. Поэтому атомный радиус с увеличением порядкового номера в периодах уменьшается.

Например , расположим химические элементы O, C, Li, F, N в порядке убывания атомных радиусов. Приведены химические элементы находятся во втором периоде. В периоде атомные радиусы с увеличением порядкового номера уменьшаются. Следовательно, указанные химические элементы надо записать в порядке возрастания их порядковых номеров: Li, C, N, O, F.

Свойства элементов и образуемых ими веществ зависят от числа валентных электронов, равную номеру группы в периодической таблице.

Завершены энергетические уровни, а также внешние уровне, содержащих восемь электронов, имеют повышенную устойчивость. Именно этим объясняется химическая инертность гелия, неона и аргона: они вообще не вступают в химические реакции. Атомы всех других химических элементов стремятся отдать или присоединить электроны, чтобы их электронная оболочка оказалась устойчивой, при этом они превращаются в заряженные частицы.

Электроотрицательность — это способность атома в соединениях притягивать к себе валентные электроны, то есть электроны, посредством которых образуются химические связи между атомами. Это свойство обусловлено тем, что атомы стремятся завершить внешний электронный слой и получить энергетически выгодное конфигурацию инертного газа — 8 электронов.

Электроотрицательность зависит от способности атомного ядра притягивать электроны внешнего энергетического уровня. Чем сильнее это притяжение, тем электроотрицательность больше. Сила притяжения электронов внешнего энергетического уровня тем больше, чем меньше атомный радиус. Следовательно, изменение электроотрицательности в периодах и главных подгруппах будет противоположная изменении атомных радиусов. Поэтому, в главных подгруппах электроотрицательность с увеличением порядкового номера уменьшается. В периодах с увеличением порядкового номера электроотрицательность увеличивается.

Например , расположим химические элементы Br, F, I, Cl в порядке увеличения электроотрицательности. Приведены химические элементы находятся в главной подгруппе седьмой группы. В главных подгруппах электроотрицательность с увеличением порядкового номера уменьшается. Следовательно, указанные химические элементы надо записать в порядке уменьшения их порядковых номеров: I, Br, Cl, F.

Под эффективным радиусом атома или иона понимается радиус сферы его действия, причем атом (ион) считается несжимаемым шаром. Используя планетарную модель атома, его представляют как ядро, вокруг которого по орбиталям вращаются электроны. Последовательность элементов в Периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты. Для определения эффективного радиуса представляют атомы (ионы) в структуре кристалла как соприкасающиеся жесткие шары, так что расстояние между их центрами равно сумме радиусов. Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантово-механических представлений.

Размеры ионных радиусов подчиняются следующим закономерностям:

1. Внутри одного вертикального ряда периодической системы радиусы ионов с одинаковым зарядом увеличиваются с возрастанием атомного номера, поскольку растет число электронных оболочек, а значит, и размер атома.

2. Для одного и того же элемента ионный радиус возрастает с увеличением отрицательного заряда и уменьшается с увеличением положительного заряда. Радиус аниона больше радиуса катиона, поскольку у аниона имеется избыток электронов, а у катиона – недостаток. Например, у Fe, Fe 2+ , Fe 3+ эффективный радиус равен 0, 126, 0, 080 и 0, 067 нм соответственно, у Si 4- , Si, Si 4+ эффективный радиус равен 0, 198, 0, 118 и 0, 040 нм.

3. Размеры атомов и ионов следуют периодичности системы Менделеева; исключения составляют элементы от № 57 (лантан) до №71 (лютеций), где радиусы атомов не увеличиваются, а равномерно уменьшаются (так называемое лантаноидное сжатие), и элементы от № 89 (актиний) и дальше (так называемое актиноидное сжатие).

Атомный радиус химического элемента зависит от координационного числа . Увеличение координационного числа всегда сопровождается увеличением межатомных расстояний. При этом относительная разность значений атомных радиусов, соответствующих двум разным координационным числам, не зависит от типа химической связи (при условии, что тип связи в структурах со сравниваемыми координационными числами одинаков). Изменение атомных радиусов с изменением координационного числа существенно сказывается на величине объемных изменений при полиморфных превращениях. Например, при охлаждении железа, его превращение из модификации с гранецентрированной кубической решеткой в модификацию с объемно-центрированной кубической решеткой имеющее место при 906 о С, должно сопровождаться увеличением объема на 9%, в действительности увеличение объема составляет 0, 8%. Это связано с тем, что за счет изменения координационного числа от 12 до 8 атомный радиус железа уменьшается на 3%. Т.е., изменение атомных радиусов при полиморфных превращениях в значительной степени компенсируют те объемные изменения, которые должны были бы произойти, если бы при этом не менялся атомный радиус. Атомные радиусы элементов можно сопоставлять только при одинаковом координационном числе.

Атомные (ионные) радиусы зависят также от типа химической связи.

В кристаллах с металлической связью атомный радиус определяется как половина межатомного расстояния между ближайшими атомами. В случае твердых растворов металлические атомные радиусы меняются сложным образом.

Под ковалентными радиусами элементов с ковалентной связью понимают половину межатомного расстояния между ближайшими атомами, соединенными единичной ковалентной связью. Особенностью ковалентных радиусов является их постоянство в разных ковалентных структурах с одинаковыми координационными числами. Так, расстояния в одинарных связях С-С в алмазе и насыщенных углеводородах одинаковы и равны 0, 154 нм.

Ионные радиусы в веществах с ионной связью не могут быть определены как полусумма расстояний между ближайшими ионами. Как правило, размеры катионов и анионов резко различаются. Кроме того, симметрия ионов отличается от сферической. Существует несколько подходов к оценке величины ионных радиусов. На основании этих подходов оценивают ионные радиусы элементов, а затем из экспериментально определенных межатомных расстояний определяют ионные радиусы других элементов.

Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми атомными радиусами считают половину межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой химической связью, т.е. принадлежащими разным молекулам (например, в молекулярных кристаллах).

При использовании в расчетах и построениях величин атомных (ионных) радиусов их значения следует брать из таблиц, построенных по одной системе.

АТОМНЫЙ РАДИУС - характеристика атома, позволяющая приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. T. к. атомы не имеют чётких границ, при введении понятия "А. р." подразумевают, что 90-98% электронной атома заключено в сфере этого радиуса. А. р. имеют порядок 0,1 HM, однако даже небольшие различия в их значениях могут определять структуру построенных из них кристаллов, сказываются на равновесной геометрии молекул и т. д. Для мн. задач кратчайшие расстояния между атомами в молекулах и конденсированных средах можно считать суммой их А. р., однако такая аддитивность весьма приближённа и выполняется не во всех случаях. В зависимости от того, какие силы действуют между атомами (см. Межатомное взаимодействие) , различают металлические, ионные, ковалентные и ван-дер-ваальсовы А. р.

Металлич. радиусы считаются равными половине кратчайшего расстояния между атомами в кристаллич. структуре элемента-металла, они зависят от координац. числа К . Если принять А. р. при К=12 за единицу, то при К=8 , 6 и 4 А. р. того же элемента соотв. равны 0,98; 0,96; 0,88. Близость значений А. р. разных металлов - необходимое (хотя и недостаточное) условие взаимной растворимости металлов по типу замещения. Так, жидкие К и Li обычно не смешиваются и образуют два жидких слоя, а К с Rb и Cs образуют непрерывный ряд твёрдых растворов (А. р. Li, К, Pb и Cs равны соотв. 0,155; 0,236; 0,248; 0,268 HM). Аддитивность А. р. позволяет приближённо предсказывать параметры кристаллич. решёток интерметаллич. соединений.

Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояние между ближайшими катионом и анионом равно сумме их ионных радиусов. О точности, с к-рой выполняется указанная аддитивность А. р., можно судить на основании кратчайших межъядерных расстояний в кристаллах галогенидов щелочных металлов, приведённых ниже:

Разность А. р. ионов , полученная сравнением межъядерных расстояний в KF и NaF, составляет 0,035 нм (А. р. иона в кристаллах KF в NaF предполагаются одинаковыми), а для соединений KCl и NaCl она равна 0,033 HM, из соединений KBr и NaBr - 0,031 HM и из соединений KI и NaI - 0,030 HM. T. о., типичная погрешность определения межъядерных расстояний в ионных кристаллах по А. р.~ 0,001 нм.

Существует неск. систем ионных А. р., отличающихся значениями А. р. индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Впервые работа по определению ионных А. р. была проделана в 20-х гг. 20 в. В. M. Гольдшмидтом (V. M. Goldschmidt), опиравшимся, с одной стороны, на межъядерные расстояния в кристаллах, измеренные методами рентгеновского структурного анализа, а с другой - на значения А. р. и , определённые методом рефрактометрии (соотв. 0,133 и 0,132 HM). Большинство др. систем также опирается на определённые . методами межъядерные расстояния в кристаллах и на нек-рое "реперное" значение А. р. определ. иона. В наиб. широко известной системе По-линга этим реперным значением является А. р. (0,140 HM). В системе Белова и Бокия, считающейся одной из наиб. надёжных, А. р. 0 2- принимается равным 0,136 HM. Ниже приведены значения радиусов нек-рых ионов:

в системе Гольдшмидта

в системе Полинга

в системе Гольдшмидта

в системе Полинга

Для ионных кристаллов, имеющих одинаковые координац. числа, ср. отклонение суммы А. р., вычисленной по приведённым выше А. р., от опытных значений кратчайших межъядерных расстояний в ионных кристаллах составляет 0,001-0,002 HM.

В 70-80-х гг. были сделаны попытки прямого определения А. р. ионов путём измерения электронной плотности методами рентгеновского структурного анализа при условии, что минимум электронной плотности на линии, соединяющей ядра, принимается за границу ионов. Дифракц. измерения для кристаллов галогенидов щелочных металлов позволили получить А. р. катионов Li + , Na + , К + , Rb + и Cs + , равные соотв. 0,094; 0,117; 0,149; 0,163; 0,186 нм, а А. р. анионов F - , Cl - , Br - , I - - равные соотв. 0,116; 0,164; 0,180; 0,205 HM. T. о. дифракц. измерения приводят к завышенным (по сравнению с традиционными, приведёнными выше) значениям А. р. катионов и к заниженным значениям А. р. анионов. А. р., найденные путём измерения распределения электронной плотности в кристалле, нельзя переносить от одного соединения к другому, а отклонения от их аддитивности слишком велики, поэтому такие А. р. не могут быть использованы для предсказания межъядерных расстояний.

Ковалентный радиус определяется как половина длины одинарной хим. связи X - X (где X - элемент-неметалл). Для галогенов ковалентный А. р.- это половина межъядерного расстояния X - X в молекуле X 2 , для S и Se - половина расстояния X - X в X 8 , для углерода - половина кратчайшего расстояния С - С в кристалле алмаза. Ковалентные А. р. F, Cl, Br, I, S, Se и С соотв. равны 0,064; 0,099; 0,114; 0,133; 0,104; 0,117 и 0,077 нм. Для атома H А. р. принимают равным 0,030 HM (хотя половина длины связи H - H в молекуле H 2 равна 0,037 HM). Аддитивность ковалентных А. р. позволяет предсказывать кратчайшие межъядерные расстояния (длины связей) в многоатомных молекулах. Так, согласно этому правилу длина связи C-Cl должна быть равной 0,176 HM, а экспериментально полученное для этой величины значение в молекуле CCl 4 равно 0,177 HM. Ниже приведены ковалентные А. р. для атомов нек-рых элементов, вычисленные на основании длин одинарных связей:

В молекулах, имеющих двойные или тройные хим. связи, используют уменьшенные значения ковалентных А. р., ибо кратные связи короче одинарных. Ниже приведены ковалентные радиусы атомов при образовании кратных связей:

Ван-дер-ваальсовы радиусы определяют эфф. размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми А. р. считают половину межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой хим. связью и принадлежащими разным молекулам (напр., в молекулярных кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание. Поэтому ван-дер-ваальсовы А. р. характеризуют минимальные допустимые контакты атомов, принадлежащих разным молекулам. Ниже приведены значения ван-дер-ваальсовых атомных радиусов для нек-рых атомов:

Ван-дер-ваальсовы А. р. в ср. на 0,08 нм больше ковалентных А. р. Ионный А. р. для отрицательно заряженного иона (напр., Cl -) практически совпадает с ван-дер-ваальсовым радиусом атома в нейтральном состоянии.

Знание ван-дер-ваальсовых А. р. позволяет определять форму молекул, конформации молекул и их упаковку в молекулярных кристаллах. Согласно принципу плотной упаковки, молекулы, образуя кристалл, располагаются таким образом, что "выступы" одной молекулы входят во "впадины" другой. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографические данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

Лит.: Бокий Г. Б., Кристаллохимия, 3 изд., M., 1971; Полинг Л., Общая химия, пер. с англ., M., 1974; Кемпбел Д ж., Современная общая химия, пер. с англ., т. 1, M., 1975; Картмелл Э., Фоулз Г. В. А., Валентность и строение молекул, пер. с англ., M., 1979. В. Г. Дашевский .

Определение атомных радиусов также связано с некоторыми проблемами. Во-первых, атом не является сферой со строго определенными поверхностью и радиусом. Напомним, что атом представляет собой ядро, окруженное облаком электронов. Вероятность обнаружения электрона по мере удаления от ядра постепенно возрастает до некоторого максимума, а затем постепенно уменьшается, но становится равной нулю только на бесконечно большом расстоянии. Во-вторых, если мы все же выберем некоторое условие для определения радиуса, такой радиус все равно нельзя будет измерить экспериментально.

Эксперимент позволяет определять только межъядерные расстояния, другими словами - длины связей (и то с определенными оговорками, приведенными в подписи к рис. 2.21). Для их определения используется рентгеноструктурный анализ или метод электронографии (основанный на дифракции электронов). Радиус атома полагают равным половине наименьшего межъядерного расстояния между одинаковыми атомами.

Вандерваальсовы радиусы. Для несвязанных между собой атомов половина наименьшего межъядерного расстояния называется вандерваальсовым радиусом. Это определение поясняет рис. 2.22.

Рис. 2.21. Длина связи. Вследствие того что молекулы непрерывно колеблются, межъядерное расстояние, или длина связи, не имеет фиксированного значения. Этот рисунок схематически изображает линейное колебание простой двухатомной молекулы. Колебания не позволяют определить длину связи просто как расстояние между центрами двух связанных атомов. Более точное определение выглядит так: длина связи это расстояние между связанными атомами, измеренное между центрами масс двух атомов и соответствующее минимуму энергии связи. Минимум энергии показан на кривой Морзе (см. рис. 2.1).

Рис. 2.22. Атомные радиусы, а - вандерваальсов радиус; б - ковалентный радиус; в - металлический радиус.

Ковалентные радиусы. Ковалентный радиус определяется как половина межъядерного расстояния (длины связи) между двумя одинаковыми атомами, связанными друг с другом ковалентной связью (рис. 2.22, б). В качестве примера возьмем молекулу хлора длина связи в которой составляет 0,1988 нм. Ковалентный радиус хлора полагается равным 0,0944 нм.

Зная ковалентный радиус атома одного элемента, можно вычислить ковалентный радиус атома другого элемента. Например, экспериментально установленное значение длины связи равно 0,1767 нм. Вычитая из этого значения ковалентный радиус хлора (0,0994 нм), находим, что ковалентный радиус углерода равен 0,0773 нм. Такой метод вычисления основан на принципе аддитивности, согласно которому атомные радиусы подчиняются простому закону сложения. Таким образом, длина связи представляет собой сумму ковалентных радиусов углерода и хлора. Принцип аддитивности применим только к простым ковалентным связям. Двойные и тройные ковалентные связи имеют меньшую длину (табл. 2.7).

Длина простой ковалентной связи зависит еще от ее окружения в молекуле. Например, длина связи изменяется от 0,1070 нм у тризамещенного атома углерода до 0,115 нм в соединении

Металлические радиусы. Металлический радиус полагается равным половине межъядерного расстояния между соседними ионами в кристаллической решетке металла (рис. 2.22, в). Термин атомный радиус обычно относится к ковалентному радиусу атомов неметаллических элементов, а термин металлический радиус - к атомам металлических элементов.

Ионные радиусы. Ионный радиус - это одна из двух частей межъядерного расстояния между соседними одноатомными (простыми) ионами в кристаллическом ионном соединении (соли). Определение ионного радиуса тоже сопряжено с немалыми проблемами, поскольку экспериментально измеряют межионные расстояния, а не сами ионные радиусы. Межионные расстояния зависят от упаковки ионов в кристаллической решетке. На рис. 2.23 показаны три возможных способа упаковки ионов в кристаллической решетке. К сожалению, экспериментально измеренные межионные расстояния

Рис. 2.23. Ионные радиусы, а - анионы соприкасаются друг с другом, но катионы не соприкасаются с анионами; б - катионы соприкасаются с анионами, но анионы не соприкасаются друг с другом; в - условно принятое расположение ионов, при котором катионы соприкасаются с анионами и анионы соприкасаются друг с другом. Расстояние а определяется экспериментально. Оно принимается за удвоенный радиус аниона. Это позволяет вычислить межионное расстояние b, представляющее собой сумму радиусов аниона и катиона. Зная межионное расстояние b, можно вычислить радиус катиона.

не позволяют судить о том, какой из этих трех способов упаковки действительно осуществляется в каждом конкретном случае. Проблема заключается в том, чтобы найти пропорцию, в которой следует разделить межионное расстояние на две части, соответствующие радиусам двух ионов, другими словами, решить, где же на самом деле кончается один ион и где начинается другой. Как показывает, например, рис. 2.12, этот вопрос не позволяют решить и карты электронной плотности солей. Для преодоления указанной трудности обычно предполагают, что: 1) межионное расстояние представляет собой сумму двух ионных радиусов, 2) ионы имеют сферическую форму и 3) соседние сферы соприкасаются друг с другом. Последнее предположение соответствует способу упаковки ионов, изображенному на рис. 2.23, в. Если известен один ионный радиус, другие ионные радиусы можно вычислить на основании принципа аддитивности.

Сопоставление радиусов различных типов. В табл. 2.8 указаны значения радиусов различных типов для трех элементов 3-го периода. Нетрудно видеть, что самые большие значения принадлежат анионным и вандерваальсовым радиусам. На рис. 11.9 сопоставлены размеры ионов и атомов для всех элементов 3-го периода, за исключением аргона. Размеры атомов определяются их ковалентными радиусами. Следует обратить внимание на то, что катионы имеют меньшие размеры, чем атомы, а анионы - большие размеры, чем атомы этих же элементов. Для каждого элемента из всех типов радиусов наименьшее значение всегда принадлежит катионному радиусу.

Таблица 2.8. Сопоставление атомных радиусов различных типов