Азот обозначение в таблице. Азот — большая медицинская энциклопедия. Проблема нитратов в сельскохозяйственной продукции

Азот

Азот (от греч. бzфos - безжизненный, лат. Nitrogenium), N, химический элемент V группы периодической системы Менделеева, атомный номер 7, атомная масса 14,0067; бесцветный газ, не имеющий запаха и вкуса.

Историческая справка . Соединения А. - селитра, азотная кислота, аммиак - были известны задолго до получения А. в свободном состоянии. В 1772 Д. Резерфорд, сжигая фосфор и др. вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им "удушливым воздухом", не поддерживает дыхания и горения. В 1787 А. Лавуазье установил, что "жизненный" и "удушливый" газы, входящие в состав воздуха, это простые вещества, и предложил название "А.". В 1784 Г. Кавендиш показал, что А. входит в состав селитры; отсюда и происходит латинское название А. (от позднелатинское nitrum - селитра и греческое gennao - рождаю, произвожу), предложенное в 1790 Ж. А. Шапталем. К началу 19 в. были выяснены химическая инертность А. в свободном состоянии и исключительная роль его в соединениях с др. элементами в качестве связанного азота. С тех пор "связывание" А. воздуха стало одной из важнейших технических проблем химии.

Распространённость в природе . А. - один из самых распространённых элементов на Земле, причём основная его масса (около 4ґ1015 т) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный А. (в виде молекул N2) составляет 78,09% по объёму (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и окислов. Среднее содержание А. в литосфере 1,9ґ10-3% по массе. Природные соединения А. - хлористый аммоний NH4Cl и различные нитраты (см. Селитры.) Крупные скопления селитры характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитры были главным поставщиком А. для промышленности (сейчас основное значение для связывания А. имеет промышленный синтез аммиака из А. воздуха и водорода). Небольшие количества связанного А. находятся в каменном угле (1-2,5%) и нефти (0,02-1,5%), а также в водах рек, морей и океанов. А. накапливается в почвах (0,1%) и в живых организмах (0,3%).

Хотя название "А." означает "не поддерживающий жизни", на самом деле это - необходимый для жизнедеятельности элемент (см. Азот в организме). В белке животных и человека содержится 16 - 17% А. В организмах плотоядных животных белок образуется за счёт потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значительные количества А. поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный А. воздуха в соединения А. (см. Азотфиксация).

В природе осуществляется круговорот А. (см. Круговорот веществ), главную роль в котором играют микроорганизмы - нитрофицирующие, денитрофицирующие, азотфиксирующие и др. Однако в результате извлечения из почвы растениями огромного количества связанного А. (особенно при интенсивном земледелии) почвы оказываются обеднёнными А. Дефицит А. характерен для земледелия почти всех стран, наблюдается дефицит А. и в животноводстве ("белковое голодание"). На почвах, бедных доступным А., растения плохо развиваются. Азотные удобрения и белковая подкормка животных - важнейшее средство подъёма сельского хозяйства. Хозяйственная деятельность человека нарушает круговорот А. Так, сжигание топлива обогащает атмосферу А., а заводы, производящие удобрения, связывают А. воздуха. Транспортировка удобрений и продуктов сельского хозяйства перераспределяет А. на поверхности земли.

А.- четвёртый по распространённости элемент Солнечной системы (после водорода, гелия и кислорода) (см. Космохимия).

Изотопы, атом, молекула . Природный А. состоит из двух стабильных изотопов: 14N (99,635%) и 15N (0,365%). Изотоп 15N применяют в химических и биохимических исследованиях в качестве меченого атома. Из искусственных радиоактивных изотопов А. наибольший период полураспада имеет 13N (T1/2 = 10,08 мин), остальные весьма короткоживущие. В верхних слоях атмосферы, под действием нейтронов космического излучения, 14N превращается в радиоактивный изотоп углерода 14C. Этот процесс используют и в ядерных реакциях для получения 14C (см. Углерод). Внешняя электронная оболочка атома А. состоит из 5 электронов (одной неподелённой пары и трёх неспаренных - конфигурация 2s22p3, см. Атом). Чаще всего А. в соединениях З-ковалентен за счёт неспаренных электронов (как в аммиаке NH3). Наличие неподелённой пары электронов может приводить к образованию ещё одной ковалентной связи, и А. становится 4-ковалентным (как в ионе аммония NH4+). Степени окисления А. меняются от +5 (в N205) до -3 (в NH3). В обычных условиях в свободном состоянии А. образует молекулу N2, где атомы N связаны тремя ковалентными связями. Молекула А. очень устойчива: энергия диссоциации её на атомы составляет 942,9 кдж/моль (225,2 ккал/моль), поэтому даже при t около 3300°C степень диссоциации А. составляет лишь около 0,1%.

Физические и химические свойства . А. немного легче воздуха; плотность 1,2506 кг/м3 (при 0°C и 101325 н/м2 или 760 мм рт. ст.), tпл -209,86°C, tкип -195,8?C. А. сжижается с трудом: его критическая температура довольно низка (-147,1 °C), а критическое давление высоко 3,39 Мн/м2 (34,6 кгс/см2); плотность жидкого А. 808 кг{м3. В воде А. менее растворим, чем кислород: при 0°C в 1 м3 Н2О растворяется 23,3 г А. Лучше, чем в воде, А. растворим в некоторых углеводородах.

Только с такими активными металлами, как литий, кальций, магний, А. взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов А. реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения А. с кислородом N2O, NO, N2O3, NO2 и N2O5 (см. Азота окислы). Из них при непосредственном взаимодействии элементов (4000?C) образуется окись NO, которая при охлаждении легко окисляется далее до двуокиси NO2. В воздухе окислы А. образуются при атмосферных разрядах. Их можно получить также действием на смесь А. с кислородом ионизирующих излучений (см. Радиационная химия). При растворении в воде азотистого N2О3 и азотного N2О5 ангидридов соответственно получаются азотистая кислота HNO2 и азотная кислота HNO3, образующие соли - нитриты и нитраты. С водородом А. соединяется только при высокой температуре и в присутствии катализаторов, при этом образуется аммиак NH3. Кроме аммиака, известны и другие многочисленные соединения А. с водородом, например гидразин H2N-NH2, диимид HN=NH, азотистоводородная кислота HN3(H-N=NєN), октазон N8H14 и др.; большинство соединений А. с водородом выделено только в виде органических производных. С галогенами А. непосредственно не взаимодействует, поэтому все галогениды А. получают только косвенным путём, например фтористый азот NF3- при взаимодействии фтора с аммиаком. Как правило, галогениды А. - малостойкие соединения (за исключением NF3); более устойчивы оксигалогениды А. - NOF, NOCI, NOBr, N02F и NO2CI. С серой также не происходит непосредственного соединения А.; азотистая сера N4S4 получается в результате реакции жидкой серы с аммиаком. При взаимодействии раскалённого кокса с А. образуется циан (CN).;. Нагреванием А. с ацетиленом C2H2 до 1500?C может быть получен цианистый водород HCN. Взаимодействие А. с металлами при высоких температурах приводит к образованию нитридов (например, Mg3N2).

При действии на обычный А. электрических разрядов [давление 130 - 270 н/м2 (1- 2 мм рт ст)] или при разложении нитридов В, Ti, Mg и Са, а также при электрических разрядах в воздухе может образоваться активный А., представляющий собой смесь молекул и атомов А., обладающих повышенным запасом энергии. В отличие от молекулярного, активный А. весьма энергично взаимодействует с кислородом, водородом, парами серы, фосфором и некоторыми металлами.

А. входит в состав очень многих важнейших органических соединений (амины, аминокислоты, нитросоединения и др.).

Получение и применение . В лаборатории А. легко может быть получен при нагревании концентрированного раствора нитрита аммония: NH4NO2 = N2 + 2H2О. Технический способ получения А. основан на разделении предварительно сжиженного воздуха, который затем подвергается разгонке (см. Газов разделения).

Основная часть добываемого свободного А. используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д. Помимо прямого синтеза аммиака из элементов, промышленное значение для связывания А. воздуха имеет разработанный в 1905 цианамидный метод, основанный на том, что при 1000?C карбид кальция (получаемый накаливанием смеси извести и угля в электрической печи) реагирует со свободным А.: СаС? + N? -= CaCN? + С. Образующийся цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака:

CaCN+ЗН2О=СаСО3+2NH3.

Свободный А. применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д. Жидкий А. находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный А. в сжатом виде - в баллонах. Широко применяют многие соединения А. производство связанного А. стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.

Азот - седьмой элемент в таблице Менделеева и первый элемент группы УА. Название азот означает "безжизненный" (греч. "а" - отрицательная приставка, "зоэ" - жизнь). Такая оценка азота может считаться справедливой только в отношении простого вещества, но азот как элемент необходим для жизни, так как вместе с углеродом, водородом и кислородом он образует белки и другие жизненно важные вещества. В организме человека содержится в среднем 1,8 кг азота.

Азот - довольно широко распространенный элемент биосферы. Наибольшее количество его находится в атмосфере в виде простого вещества Ы 2 . Общая масса азота в атмосфере составляет 4 10 18 кг. Твердых минералов, содержащих азот, почти нет. Лишь в исключительно сухой

пустыне на севере Чили есть залежи нитрата натрия, названного чилийской селитрой. Значительное количество азота содержится в биомассе растений и животных и в органических остатках (каменный уголь, торф). В обычных условиях на поверхности земли большая часть азота из отмерших растений постепенно превращается в газообразный азот и переходит в атмосферу. Некоторая доля имеющихся в почве соединений азота вымывается водой и попадает в водоемы. Поэтому растения часто оказываются в условиях недостатка азота, доступного для биологического усвоения. Неисчерпаемые запасы азота Ы 2 в окружающем воздухе большинство растений использовать не могут. Можно сравнить отношение растений к атмосферному азоту и кислороду. Последний активно используется растениями и животными в процессах окисления. Это различие между азотом и кислородом связано с необычайной прочностью молекул Ы 2 . Азот с трудом участвует в обычных химических реакциях. Биохимические реакции азота возможны лишь при участии фермента нитрогеназы, который имеется только у отдельных видов бактерий.

Промышленное получение соединений азота было трудной проблемой еще в начале XX в. В то же время потребность в соединениях азота огромна, так как они необходимы для производства не только удобрений, но и взрывчатых веществ. Немецкий химик Ф. Габер (Нобелевская премия по химии 1918 г.) внес важнейший вклад в решение проблемы связывания атмосферного азота, разработав катализатор для синтеза аммиака из азота и водорода. Это изобретение оказало огромное влияние на дальнейшее развитие промышленности и сельского хозяйства. В 1913 г. был пущен первый завод по производству аммиака, а в настоящее время его годовое производство превышает 100 млн т.

По строению атома азот - трехвалентный элемент. В устойчивых соединениях он образует не менее трех химических связей. Азот не может повысить свою валентность за счет перехода в возбужденное состояние. Для него единственная возможность перехода в четырехвалентное состояние - это потеря одного электрона:

В таком состоянии азот может находиться только в соединениях с более электроотрицательными элементами, г.е. кислородом и фтором. В этих соединениях азот имеет положительные степени окисления, а в соединениях со всеми остальными элементами - отрицательные.

Атом азота имеет валентную электронную пару на подуровне 2.? и как донор (основание) часто образует дополнительную химическую связь по донорно-акцепторному механизму. Примерами соответствующих соединений служат соли аммония и комплексные соединения ионов металлов с лигандом МН 3 .

Пример 20.1. Каковы степени окисления у азота в гидразине К 2 Н 4 , нитробензоле С 6 Н 5 Ы0 2 и аминоэтане С 2 Н 5 ЫН 2 ?

Решение. В гидразине СО азота -2. В этой молекуле имеется связь между атомами азота, не влияющая на степень окисления. В нитробензоле азот связан одновременно с более электроотрицательным кислородом и менее электроотрицательным углеродом. К двум атомам кислорода смещено четыре электрона, а от углерода - один. Получается СО +3. В аминоэтане азот связан с менее электроотрицательными водородом и углеродом. Степень окисления -3.

У азота известно только одно простое вещество N9, называемое, согласно химической номенклатуре, диазотом. Это газ, начинающий переходить в жидкость при -195,8°С при обычном давлении. Жидкий азот замерзает в бесцветные кристаллы при -210°С. В индивидуальном состоянии азот хранят и перевозят в баллонах под высоким давлением. Молекулы К 2 имеют на два электрона меньше, чем молекулы кислорода 0 2:

Два дополнительных электрона кислорода уменьшают прочность связи. Связь между атомами азота без этих электронов становится по-настоящему тройной, и Ы 2 оказывается самой устойчивой и наименее реакционноспособной из всех молекул. Энергия связи в молекуле Ы 2 -946 кДж/моль.

Прочностью молекул Ы 2 определяются нс только свойства этого вещества, но и поведение соединений азота. Они, как правило, не очень устойчивы, разлагаются при сравнительно слабом нагревании. Азот образует также неустойчивые соединения, являющиеся взрывчатыми веществами. Во всех случаях разложению соединений азота способствует образование устойчивых молекул Ы 2 .

Простой лабораторный способ получения азота заключается в разложении нитрита аммония при слабом нагревании соли как в виде твердого вещества, так и ее раствора:

Для проведения реакции в растворе можно взять часто используемые соли с теми же ионами - хлорид аммония и нитрит натрия:

При сгорании органических соединений азота также образуется простое вещество:

В промышленности азот получают из воздуха ректификацией при низкой температуре. Используется также азот воздуха после удаления кислорода химическими способами. В этом случае азот содержит примесь благородных газов. Азот используется в наибольшем количестве для синтеза аммиака. Инертность азота в обычных условиях позволяет применять его в качестве газообразной среды при проведении технологических процессов и в научных исследованиях.

У азота крайне мало реакций, способных идти при обычной температуре. Металл литий на воздухе реагирует одновременно и с кислородом, и с парами воды, и с азотом. Поверхность лития чернеет, так как на ней образуется нитрид лития:

Других реакций азота при обычной температуре не было известно до середины прошлого века. Настоящей сенсацией в химии явилось открытие реакций азота в водной среде с совместно осажденными гидроксидами двух металлов, один из которых является восстановителем, а другой несет каталитическую функцию. Гидроксид ванадия(П), осажденный с гидроксидом магния, реагирует следующим образом:

Получающееся соединение азота с водородом называется гидразин. По строению молекулы он аналогичен перекиси водорода:

Известно также вещество гидроксиламин КН 2 ОП, молекулы которого сочетают фрагменты гидразина и перекиси водорода:

При высокой температуре азот может реагировать со многими простыми веществами. С кислородом реакция идет при нагревании до 2000°С:

Реакция эндотермическая и обратимая, выход оксида азота(П) увеличивается при повышении температуры. В небольшом количестве N0 образуется в атмосфере при грозовых разрядах и при работе двигателей внутреннего сгорания.

Наибольшее практическое значение имеет реакция азота с водородом, о которой уже говорилось в параграфах 67 и 70. Напомним, что это экзотермическая реакция, и ее равновесие смещается влево при повышении температуры. Согласно уравнению реакции, из четырех молекул азота и водорода образуются две молекулы аммиака. Следовательно, при повышении давления равновесие смещается вправо. Выход продукта, определяемый положением равновесия реакции, зависит как от температуры, так и от давления. Эта зависимость показана на рис. 20.1. Возьмем на рисунке какую-либо точку, например, 450°С при давлении 600 атм. В этих условиях выход аммиака составляет 40%, что вполне приемлемо для этого процесса.

Однако устанавливается равновесие крайне медленно. Скорость реакции можно увеличить повышением температуры, но при этом быстро падает выход. Для дальнейшего повышения давления потребовалось бы применение более дорогого оборудования. Поэтому экономически приемлемое сочетание выхода продукта и скорости его образования может быть

достигнуто только при применении катализатора. Катализатор обычно удается создать в результате длительного экспериментального поиска. В этом процессе хорошим катализатором оказалось металлическое железо, активированное оксидами калия и алюминия. Теперь при промышленном получении аммиака применяют давления 300-500 атм (3 10 4 -5 -10 1 кПа) и температуру около 300°С. При этом выход аммиака составляет 10-20%. Однако смесь азота и водорода после отделения полученного аммиака может снова направляться в контактный аппарат с катализатором, и таким образом доля использования сырья повышается.

Рис. 20.1.

Принципиальная схема заводской установки для синтеза аммиака показана па рис. 20.2.

Рис. 20.2.

1 - компрессор; 2 - колонна синтеза; 3 - холодильник; 3 - сепаратор; 5 - сборник жидкого аммиака; в - циркуляционный насос

Очищенная от примесей газовая смесь, состоящая из одного объема азота и трех объемов водорода, сжимается компрессором 1 до 300 атм и поступает в колонну синтеза 2, заполненную катализатором, где и идет реакция образования аммиака. Перед запуском процесса колонну с катализатором нагревают электрическими нагревателями до 500°С. Далее температура поддерживается выделяющейся при реакции теплотой. После прохождения через колонну газы, содержащие до 20% аммиака, поступают в холодильник^, где из смеси газов, находящейся под большим давлением, конденсируется жидкий аммиак. Жидкость отделяется от газовой смеси в сепараторе 4. Отсюда аммиак перекачивается в сборник низкого давления 5 и далее поступает на склад. Неирореагировавшие газы перекачиваются насосом в для смешивания со свежей азото-водородной смесью. Смесь продолжает непрерывно поступать в колонну 2, где постоянно идет синтез аммиака.

В химии уже длительное время изучается возможность получения соединений азота при обычных температуре и давлении, так как применение устройств высокого давления дорого и опасно: они могут взрываться. Надежда на успех поддерживается тем, что известны микроорганизмы - нитробактерии , - имеющие фермент нитрогеназу , при участии которого азот восстанавливается в бактериальной клетке, превращаясь в необходимые органические соединения. По искусственно воспроизвести работу этих чрезвычайно сложных ферментов или похожих на них веществ пока не удается. Восстановление азота до гидразина по реакции с гидроксидами металлов также не удается осуществить в виде непрерывного процесса. Поэтому синтез аммиака, существенным недостатком которого является необходимость применения высокого давления, является пока самым лучшим источником получения соединений азота.

Азот реагирует с углеродом при горении вольтовой дуги с образованием газообразного вещества д и циана:

До промышленного освоения синтеза аммиака имела практическое значение реакция азота с карбидом кальция, продуктом которой является цианамид кальция Са=Ы-С=Ы (СаСЫ 2):

Для осуществления реакции азот пропускают через слой карбида кальция, сильно нагретый в каком-то одном месте. В этом месте возникает реакция, сопровождающаяся выделением теплоты. Масса окружающего вещества нагревается, в нем тоже происходит процесс поглощения азота. В итоге в реакцию вступает весь помещенный в аппарат карбид кальция.

Полученный таким образом цианамид кальция гидролизуют перегретым водяным паром:

Этот способ получения аммиака в настоящее время вытеснен синтезом его из водорода и азота.

При высокой температуре азот реагирует со многими металлами и сплавами, образуя нитриды металлов. Иногда образование нитрида в поверхностном слое придает сплаву дополнительную твердость. В некоторых случаях металл приходится изолировать от воздействия азота. Например, листы титана сваривают в атмосфере аргона во избежание образования нитрида титана.

Большая часть азота находится в природе в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит азота. Неорганические соединения азота не встречаются в природе в больших количествах, если не считать натриевую селитру , образующую мощные пласты на побережье Тихого океана в Чили. Почва содержит незначительные количества азота, преимущественно в виде солей азотной кислоты. Но в виде сложных органических соединений - белков - азот входит в состав всех живых организмов. Превращения, которым подвергаются белки в клетках растений и животных, составляют основу всех жизненных процессов. Без белка нет жизни, а так как азот является обязательной составной частью белка, то понятно, какую важную роль играет этот элемент в живой природе.

Получение азота из воздуха сводится в основном к отделению его от кислорода. В промышленности это осуществляется путем испарения жидкого воздуха в специальных установках.

В лабораториях обычно пользуются азотом, поставляемым в баллонах под повышенным давлением или в сосудах Дьюара. Можно получать азот разложением некоторых его соединений, например нитрита аммония , который разлагается с выделением азота при сравнительно небольшом нагревании:

В молекуле азота атомы связаны тройной связью. Энергия диссоциации этой молекулы очень велика (945 кДж/моль), поэтому термическая диссоциация азота делается заметной лишь при очень сильном нагревании (при диссоциирует около ).

Азот - бесцветный газ, не имеющий запаха и весьма мало растворимый в воде. Он немного легче воздуха: масса 1 л азота равна 1,25 г.

Молекулярный азот - химически малоактивное вещество. При комнатной температуре он взаимодействует лишь с литием. Малая активность азота объясняется большой прочностью его молекул, обусловливающей высокую энергию активации реакций, протекающих с участием азота. Однако при нагревании он начинает реагировать со многими металлами - с магнием, кальцием, титаном. С водородом азот вступает во взаимодействие при высоких температуре и давлении в присутствии катализатора. Реакция азота с кислородом начинается при .

Животные, помещенные в атмосферу азота, быстро погибают, но не вследствие ядовитости азота, а из-за отсутствия кислорода.

Основное применение азот находит в качестве исходного продукта для синтеза аммиака и некоторых других соединений. Кроме того, он применяется для заполнения электрических ламп, для создания инертной среды при промышленном проведении некоторых химических реакций, при перекачке горючих жидкостей.

Азот (N 2) был открыт Дж. Пристли в 1774 г. Название "азот" в переводе с греческого означает "безжизненный". Оно обусловлено тем, что азот не поддерживает процессы горения и дыхания. Но для всех основных процессов жизнедеятельности растительных и живых оргнизмов азот крайне важен.


Характеристика элемента

7 N 1s 2 2s 2 2p 3



Изотопы: 14 N (99,635%); 15 N (0,365%)


Кларк в земной коре 0,01 % по массе. В атмосфере 78,09 % по объему (75,6 % по массе). Азот входит в состав живой материи (белки, нуклеиновые кислоты и др. ОВ). В гидросфере азот присутствует в виде нитратов (NО 3). Атомы азота занимают 5-е место по распространенности во Вселенной.

Важнейшие N-содержащие неорганические вещества.

Свободный (молекулярный) азот


Атомы азота связаны между собой тремя ковалентными неполярными связями: одна из них - сигма-связь, 2 - пи-связи. Энергия разрыва связи очень велика

Физические свойства

При обычной температуре и атмосферном давлении N 2 - бесцветный газ, без запаха и вкуса, немного легче воздуха, очень плохо растворяется в воде. В жидкое состояние переводится с большим трудом (Ткип -196"С). Жидкий азот имеет большую теплоту испарения и применяется для создания низких температур (хладагент).

Способы получения

Азот присутствует в воздухе в свободном состоянии, поэтому промышленный способ получения заключается в разделении воздушной смеси (ректификация жидкого воздуха).


В лабораторных условиях небольшие количества азота можно получить следующими способами:


1. Пропускание воздуха над раскаленной медью, которая поглощает кислород за счет реакции: 2Cu + О 2 = 2СиО. Остается азот с примесями инертных газов.


2. Окислительно-восстановительное разложение некоторых солей аммония:


NH 4 NО 2 = N 2 + 2Н 2 О


(NH 4) 2 Cr 2 О 7 = N 2 + Cr 2 О 3 + 4Н 2 О


3. Окисление аммиака и солей аммония:


4NH 3 + 3О 2 = 2N 2 + 6Н 2 О


8NH 3 + ЗВr 2 = N 2 + 6NH 4 Br


NH 4 Cl + NaNO 2 = N 2 + NaCl + 2Н 2 О

Химические свойства

Молекулярный азот - химически инертное вещество вследствие исключительно высокой устойчивости молекул N 2 . Только реакции соединения с металлами протекают более или менее легко. Во всех остальных случаях для инициирования и ускорения реакций необходимо применять высокие температуры, искровые электрические разряды, ионизирующее излучение, катализаторы (Fe, Cr, V, Ti и их соединения).

Реакции с восстановителями (N 2 - окислитель)

1. Взаимодействие с металлами:


Реакции образования нитридов щелочных и щелочноземельных Me протекают как с чистым азотом, так и при горении металлов на воздухе


N 2 + 6Li = 2Li 3 N


N 2 + 6Cs = 2Cs 3 N


N 2 + 3Mg = Mg 3 N 2


2. Взаимодействие с водородом (реакция имеет большое практическое значение):


N 2 + ЗН 2 = 2NH 3 аммиак


3. Взаимодействие с кремнием и углеродом


2N 2 + 3Si = Si 3 N 4 нитрид кремния (IV)


N 2 + 2C = (CN) 2 дициан


2N 2 + 5C + 2Na 2 CО 3 = 4NaCN + 3CО 2 цианид натрия

Реакции с окислителями (N 2 - восстановитель)

Эти реакции в обычных условиях не протекают. С фтором и другими галогенами азот непосредственно не взаимодействует, а с кислородом реакция происходит при температуре электрических искровых разрядов:


N 2 + О 2 = 2NO


Реакция сильно обратимая; прямая протекает с поглощением тепла (эндотермичная).

Соединения Азота - селитра, азотная кислота, аммиак - были известны задолго до получения Азота в свободном состоянии. В 1772 году Д. Резерфорд, сжигая фосфор и других вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им "удушливым воздухом", не поддерживает дыхания и горения. В 1787 году А. Лавуазье установил, что "жизненный" и "удушливый" газы, входящие в состав воздуха, это простые вещества, и предложил название "Азот". В 1784 году Г. Кавендиш показал, что Азот входит в состав селитры; отсюда и происходит латинское название Азот (от позднелатинского nitrum - селитра и греческого gennao - рождаю, произвожу), предложенное в 1790 году Ж. А. Шапталем. К началу 19 века были выяснены химическая инертность Азота в свободном состоянии и исключительная роль его в соединениях с других элементами в качестве связанного азота. С тех пор "связывание" Азота воздуха стало одной из важнейших технических проблем химии.

Распространение Азота в природе. Азот - один из самых распространенных элементов на Земле, причем основная его масса (около 4·10 15 т) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный Азот (в виде молекул N 2) составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и оксидов. Среднее содержание Азота в литосфере 1,9·10 -3 % по массе. Природные соединения Азота - хлористый аммоний NH 4 Cl и различные нитраты. Крупные скопления селитры характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитры были главным поставщиком Азота для промышленности (сейчас основные значение для связывания Азота имеет промышленный синтез аммиака из Азота воздуха и водорода). Небольшие количества связанного Азота находятся в каменном угле (1-2,5%) и нефти (0,02-1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1%) и в живых организмах (0,3%).

Хотя название "Азот" означает "не поддерживающий жизни", на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16-17% Азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значит, количества Азот поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный Азот воздуха в соединения Азота.

В природе осуществляется круговорот Азота, главную роль в котором играют микроорганизмы - нитрофицирующие, денитрофицирующие, азотфиксирующие и другие. Однако в результате извлечения из почвы растениями огромного количества связанного Азота (особенно при интенсивном земледелии) почвы оказываются обедненными Азотом. Дефицит Азота характерен для земледелия почти всех стран, наблюдается дефицит Азота и в животноводстве ("белковое голодание"). На почвах, бедных доступным Азотом, растения плохо развиваются. Азотные удобрения и белковая подкормка животных - важнейшее средство подъема сельского хозяйства. Хозяйственная деятельность человека нарушает круговорот Азота. Так, сжигание топлива обогащает атмосферу Азотом, а заводы, производящие удобрения, связывают Азот воздуха. Транспортировка удобрений и продуктов сельского хозяйства перераспределяет Азот на поверхности земли. Азот - четвертый по распространенности элемент Солнечной системы (после водорода, гелия и кислорода).

Изотопы, атом и молекула Азота. Природный Азот состоит из двух стабильных изотопов: 14 N (99,635%) и 15 N (0,365%). Изотоп 15 N применяют в химических и биохимических исследованиях в качестве меченого атома. Из искусственных радиоактивных изотопов Азота наибольший период полураспада имеет 13 N (T ½ = 10,08 мин), остальные весьма короткоживущие. В верхних слоях атмосферы, под действием нейтронов космического излучения, 14 N превращается в радиоактивный изотоп углерода 14 С. Этот процесс используют и в ядерных реакциях для получения 14 С. Внешняя электронная оболочка атома Азота состоит из 5 электронов (одной неподеленной пары и трех неспаренных - конфигурация 2s 2 2р 3 . Чаще всего Азот в соединениях 3-ковалентен за счет неспаренных электронов (как в аммиаке NН 3). Наличие неподеленной пары электронов может приводить к образованию еще одной ковалентной связи, и Азот становится 4-ковалентным (как в ионе аммония NH 4). Степени окисления Азот меняются от +5 (в N 2 O 5) до -3 (в NH 3). В обычных условиях в свободном состоянии Азот образует молекулу N 2 , где атомы N связаны тремя ковалентными связями. Молекула Азота очень устойчива: энергия диссоциации ее на атомы составляет 942,9 кдж/моль (225,2 ккал/моль), поэтому даже при t ок. 3300°С степень диссоциации Азот составляет лишь около 0,1%.

Физические свойства Азота. Азот немного легче воздуха; плотность 1,2506 кг/м 3 (при 0°С и 101325 н/м 2 или 760 мм рт. ст.), t пл -209,86°С, t кип -195,8°С. Азот сжижается с трудом: его критическая температуpa довольно низка (-147,1°С) а критическое давление высоко 3,39 Мн/м 2 (34,6 кгс/см 2); плотность жидкого Азота 808 кг/м 3 . В воде Азот менее растворим, чем кислород: при 0°С в 1 м 3 Н 2 О растворяется 23,3 г Азота. Лучше, чем в воде, Азот растворим в некоторых углеводородах.

Химические свойства Азота. Только с такими активными металлами, как литий, кальций, магний, Азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов Азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения Азота с кислородом N 2 O, NO, N 2 O 3 , NO 2 и N 2 O 5 . Из них при непосредственном взаимодействии элементов (4000°С) образуется оксид NO, который при охлаждении легко окисляется далее до оксида (IV) NO 2 . В воздухе оксиды Азота образуются при атмосферных разрядах. Их можно получить также действием на смесь Азота с кислородом ионизирующих излучений. При растворении в воде азотистого N 2 O 3 и азотного N 2 O 5 ангидридов соответственно получаются азотистая кислота HNO 2 и азотная кислота HNO 3 , образующие соли - нитриты и нитраты. С водородом Азот соединяется только при высокой температуре и в присутствии катализаторов, при этом образуется аммиак NH 3 . Кроме аммиака, известны и другие многочисленные соединения Азот с водородом, например гидразин H 2 N-NH 2 , диимид HN=NH, азотистоводородная кислота HN 3 (H-N=N≡N), октазон N 8 H 14 и другие; большинство соединений Азота с водородом выделено только в виде органических производных. С галогенами Азот непосредственно не взаимодействует, поэтому все галогениды Азота получают только косвенным путем, например фтористый азот NF 3 - при взаимодействии фтора с аммиаком. Как правило, галогениды Азота - малостойкие соединения (за исключением NF 3); более устойчивы оксигалогениды Азота - NOF, NOCl, NOBr, NO 2 F и NO 2 Cl. С серой также не происходит непосредственного соединения Азот; азотистая сера N 4 S 4 получается в результате реакции жидкой серы с аммиаком. При взаимодействии раскаленного кокса с Азот образуется циан (CN) 2 . Нагреванием Азота с ацетиленом С 2 Н 2 до 1500°С может быть получен цианистый водород HCN. Взаимодействие Азота с металлами при высоких температурах приводит к образованию нитридов (например, Mg 3 N 2).

При действии на обычный Азот электрических разрядов [давление 130-270 н/м 2 (1-2 мм рт. cт.)] или при разложении нитридов В, Ti, Mg и Са, а также при электрических разрядах в воздухе может образоваться активный Азот, представляющий собой смесь молекул и атомов Азота, обладающих повышенным запасом энергии. В отличие от молекулярного, активный Азот весьма энергично взаимодействует с кислородом, водородом, парами серы, фосфором и некоторыми металлами.

Азот входит в состав очень многих важнейших органических соединений (амины, аминокислоты, нитросоединения и других).

Получение Азота. В лаборатории Азот легко может быть получен при нагревании концентрированного раствора нитрита аммония: NH 4 NO 2 = N 2 + 2H 2 O. Технический способ получения Азот основан на разделении предварительно сжиженного воздуха, который затем подвергается разгонке.

Применение Азота. Основная часть добываемого свободного Азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д. Помимо прямого синтеза аммиака из элементов, промышленное значение для связывания Азот воздуха имеет разработанный в 1905 году цианамидный метод, основанный на том, что при 1000°С карбид кальция (получаемый накаливанием смеси извести и угля в электрической печи) реагирует со свободным Азотом: СаС 2 + N 2 = CaCN 2 + С. Образующийся цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака: CaCN 2 + 3H 2 O = CaCO 3 + 2NH 3 .

Свободный Азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д. Жидкий Азот находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный Азот в сжатом виде - в баллонах. Широко применяют многие соединения Азота. Производство связанного Азот стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.

Азот в организме . Азот один из основных биогенных элементов, входящих в состав важнейших веществ живых клеток - белков и нуклеиновых кислот. Однако количество Азота в организме невелико (1-3% на сухую массу). Находящийся в атмосфере молекулярный азот могут усваивать лишь некоторые микроорганизмы и сине-зеленые водоросли.

Значительные запасы азота сосредоточены в почве в форме различных минеральных (аммонийные соли, нитраты) и органических соединений (азот белков, нуклеиновых кислот и продуктов их распада, то есть еще не вполне разложившиеся остатки растений и животных). Растения усваивают азот из почвы как в виде неорганических, так и некоторых органических соединений. В природных условиях для питания растений большое значение имеют почвенные микроорганизмы (аммонификаторы), которые минерализуют органический азот почвы до аммонийных солей. Нитратный азот почвы образуется в результате жизнедеятельности открытых С. Н. Виноградским в 1890 нитрифицирующих бактерий, окисляющих аммиак и аммонийные соли до нитратов. Часть усвояемого микроорганизмами и растениями нитратного азота теряется, превращаясь в молекулярный азот под действием денитрифицирующих бактерий. Растения и микроорганизмы хорошо усваивают как аммонийный, так и нитратный азот, восстанавливая последний до аммиака и аммонийных солей. Микроорганизмы и растения активно превращают неорганический аммонийный азот в органические соединения азота - амиды (аспарагин и глутамин) и аминокислоты. Как показали Д. Н. Прянишников и В. С. Буткевич, азот в растениях запасается и транспортируется в виде аспарагина и глутамина. При образовании этих амидов обезвреживается аммиак, высокие концентрации которого токсичны не только для животных, но и для растений. Амиды входят в состав многих белков как у микроорганизмов и растений, так и у животных. Синтез глутамина и аспарагина путем ферментативного амидирования глутамвиовой и аспарагиновой кислот осуществляется не только у микроорганизмов и растений, но в определенных пределах и у животных.

Синтез аминокислот происходит путем восстановительного аминирования ряда альдегидокислот и кетокислот, возникающих в результате окисления углеводов, или путем ферментативного переаминирования. Конечными продуктами усвоения аммиака микроорганизмами и растениями являются белки, входящие в состав протоплазмы и ядра клеток, а также отлагающиеся в виде запасных белков. Животные и человек способны лишь в ограниченной мере синтезировать аминокислоты. Они не могут синтезировать восемь незаменимых аминокислот (валин, изолейцин, лейцин, фенилаланин, триптофан, метионин, треонин, лизин), и потому для них основным источником азота являются белки, потребляемые с пищей, то есть, в конечном счете, - белки растений и микроорганизмов.

Белки во всех организмах подвергаются ферментативному распаду, конечными продуктами которого являются аминокислоты. На следующем этапе в результате дезаминирования органический азот аминокислот вновь превращается в неорганический аммонийный азот. У микроорганизмов и, особенно у растений аммонийный азот может использоваться для нового синтеза амидов и аминокислот. У животных обезвреживание аммиака, образующегося при распаде белков и нуклеиновых кислот, осуществляется путем синтеза мочевой кислоты (у пресмыкающихся и птиц) или мочевины (у млекопитающих, в том числе и у человека), которые затем выводятся из организма. С точки зрения обмена азота растения, с одной стороны, и животные (и человек), с другой, отличаются тем, что у животных утилизация образующегося аммиака осуществляется лишь в слабой мере - большая часть его выводится из организма; у растений же обмен азота "замкнут" - поступивший в растение азот возвращается в почву лишь вместе с самим растением.