Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца

Если в магнитном поле находится замкнутый проводящий контур, не содержащий источников тока, то при изменении магнитного поля в контуре возникает электрический ток. Это явление называется электромагнитной индукцией. Появление тока свидетельствует о возникновении в контуре электрического поля, которое может обеспечить замкнутое движение электрических зарядов или, другими словами, о возникновении ЭДС. Электрическое поле, которое возникает при изменении поля магнитного и работа которого при перемещении зарядов по замкнутому контуру не равна нулю, имеет замкнутые силовые линии и называется вихревым.

Для количественного описания электромагнитной индукции вводится понятие магнитного потока (или потока вектора магнитной индукции) через замкнутый контур. Для плоского контура, расположенного в однородном магнитном поле (а только такие ситуации и могут встретиться школьникам на едином государственном экзамене), магнитный поток определяется как

где - индукция поля, - площадь контура, - угол между вектором индукции и нормалью (перпендикуляром) к плоскости контура (см. рисунок; перпендикуляр к плоскости контура показан пунктиром). Единицей магнитного потока в международной системе единиц измерений СИ является Вебер (Вб), который определяется как магнитный поток через контур площади 1 м 2 однородного магнитного поля с индукцией 1 Тл, перпендикулярной плоскости контура.

Величина ЭДС индукции , возникающая в контуре при изменении магнитного потока через этот контур, равна скорости изменения магнитного потока

Здесь - изменение магнитного потока через контур за малый интервал времени . Важным свойством закона электромагнитной индукции (23.2) является его универсальность по отношению к причинам изменения магнитного потока: магнитный поток через контур может меняться из-за изменения индукции магнитного поля, изменения площади контура или изменения угла между вектором индукции и нормалью, что происходит при вращении контура в поле. Во всех этих случаях по закону (23.2) в контуре будет возникать ЭДС индукции и индукционный ток.

Знак минус в формуле (23.2) «отвечает» за направление тока, возникающего в результате электромагнитной индукции (правило Ленца). Однако понять на языке закона (23.2), к какому направлению индукционного тока приведет этот знак при том или ином изменении магнитного потока через контур, не так-то просто. Но достаточно легко запомнить результат: индукционный ток будет направлен таким образом, что созданное им магнитное поле будет «стремиться» компенсировать то изменение внешнего магнитного поля, которое этот ток и породило. Например, при увеличении потока внешнего магнитного поля через контур в нем возникнет индукционный ток, магнитное поле которого будет направлено противоположно внешнему магнитному полю так, чтобы уменьшить внешнее поле и сохранить, таким образом, первоначальную величину магнитного поля. При уменьшении потока поля через контур поле индукционного тока будет направлено так же, как и внешнее магнитное поле.

Если в контуре с током ток в силу каких-то причин изменяется, то изменяется и магнитный поток через контур того магнитного поля, которое создано самим этим током. Тогда по закону (23.2) в контуре должна возникать ЭДС индукции. Явление возникновения ЭДС индукции в некоторой электрической цепи в результате изменения тока в самой этой цепи называется самоиндукцией. Для нахождения ЭДС самоиндукции в некоторой электрической цепи необходимо вычислить поток магнитного поля, создаваемого этой цепью через нее саму. Такое вычисление представляет собой сложную проблему из-за неоднородности магнитного поля. Однако одно свойство этого потока является очевидным. Поскольку магнитное поле, создаваемого током в цепи, пропорционально величине тока, то и магнитный поток собственного поля через цепь пропорционален току в этой цепи

где - сила тока в цепи, - коэффициент пропорциональности, который характеризует «геометрию» цепи, но не зависит от тока в ней и называется индуктивностью этой цепи. Единицей индуктивности в международной системе единиц СИ является Генри (Гн). 1 Гн определяется как индуктивность такого контура, поток индукции собственного магнитного поля через который равен 1 Вб при силе тока в нем 1 А. С учетом определения индуктивности (23.3) из закона электромагнитной индукции (23.2) получаем для ЭДС самоиндукции

Благодаря явлению самоиндукции ток в любой электрической цепи обладает определенной «инерционностью» и, следовательно, энергией. Действительно, для создания тока в контуре необходимо совершить работу по преодолению ЭДС самоиндукции. Энергия контура с током и равна этой работе. Необходимо запомнить формулу для энергии контура с током

где - индуктивность контура, - сила тока в нем.

Явление электромагнитной индукции широко применяется в технике. На нем основано создание электрического тока в электрических генераторах и электростанциях. Благодаря закону электромагнитной индукции происходит преобразование механических колебаний в электрические в микрофонах. На основе закона электромагнитной индукции работает, в частности, электрическая цепь, которая называется колебательным контуром (см. следующую главу), и которая является основой любой радиопередающей или радиопринимающей техники.

Рассмотрим теперь задачи.

Из перечисленных в задаче 23.1.1 явлений только одно есть следствие закона электромагнитной индукции - появление тока в кольце при проведении сквозь него постоянного магнита (ответ 3 ). Все остальное - результат магнитного взаимодействия токов.

Как указывалось во введении к настоящей главе, явление электромагнитной индукции лежит в основе работы генератора переменного тока (задача 23.1.2 ), т.е. прибора, создающего переменный ток, заданной частоты (ответ 2 ).

Индукция магнитного поля, создаваемого постоянным магнитом, уменьшается с увеличением расстояния до него. Поэтому при приближении магнита к кольцу (задача 23.1.3 ) поток индукции магнитного поля магнита через кольцо изменяется, и в кольце возникает индукционный ток. Очевидно, это будет происходить при приближении магнита к кольцу и северным, и южным полюсом. А вот направление индукционного тока в этих случаях будет различным. Это связано с тем, что при приближении магнита к кольцу разными полюсами, поле в плоскости кольца в одном случае будет направлено противоположно полю в другом. Поэтому для компенсации этих изменений внешнего поля магнитное поле индукционного тока должно быть в этих случаях направлено по-разному. Поэтому и направления индукционных токов в кольце будут противоположными (ответ 4 ).

Для возникновения ЭДС индукции в кольце необходимо, чтобы менялся магнитный поток через кольцо. А поскольку магнитная индукция поля магнита зависит от расстояния до него, то в рассматриваемом в задаче 23.1.4 случае поток через кольцо будет меняться, в кольце возникнет индукционный ток (ответ 1 ).

При вращении рамки 1 (задача 23.1.5 ) угол между линиями магнитной индукции (а, значит, и вектором индукции) и плоскостью рамки в любой момент времени равен нулю. Следовательно, магнитный поток через рамку 1 не изменяется (см. формулу (23.1)), и индукционный ток в ней не возникает. В рамке 2 индукционный ток возникнет: в положении показанном на рисунке, магнитный поток через нее равен нулю, когда рамка повернется на четверть оборота - будет равен , где - индукция, - площадь рамки. Еще через четверть оборота поток снова будет равен нулю и т.д. Поэтому поток магнитной индукции через рамку 2 изменяется в процессе ее вращения, следовательно, в ней возникает индукционный ток (ответ 2 ).

В задаче 23.1.6 индукционный ток возникает только в случае 2 (ответ 2 ). Действительно, в случае 1 рамка при движении остается на одном и том же расстоянии от проводника, и, следовательно, магнитное поле, созданное этим проводником в плоскости рамки, не изменяется. При удалении рамки от проводника магнитная индукция поля проводника в области рамки изменяется, меняется магнитный поток через рамку, и возникает индукционный ток

В законе электромагнитной индукции утверждается, что индукционный ток в кольце будет течь в такие моменты времени, когда изменяется магнитный поток через это кольцо. Поэтому пока магнит покоится около кольца (задача 23.1.7 ) индукционный ток в кольце течь не будет. Поэтому правильный ответ в этой задаче - 2 .

Согласно закону электромагнитной индукции (23.2) ЭДС индукции в рамке определяется скоростью изменения магнитного потока через нее. А поскольку по условию задачи 23.1.8 индукция магнитного поля в области рамки изменяется равномерно, скорость ее изменения постоянна, величина ЭДС индукции не изменяется в процессе проведения опыта (ответ 3 ).

В задаче 23.1.9 ЭДС индукции, возникающая в рамке во втором случае, вчетверо больше ЭДС индукции, возникающей в первом (ответ 4 ). Это связано с четырехкратным увеличением площади рамки и, соответственно, магнитного потока через нее во втором случае.

В задаче 23.1.10 во втором случае в два раза увеличивается скорость изменения магнитного потока (индукция поля меняется на ту же величину, но за вдвое меньшее время). Поэтому ЭДС электромагнитной индукции, возникающая в рамке во втором случае, в два раза больше, чем в первом (ответ 1 ).

При увеличении тока в замкнутом проводнике в два раза (задача 23.2.1 ), величина индукции магнитного поля возрастет в каждой точке пространства в два раза, не изменившись по направлению. Поэтому ровно в два раза изменится магнитный поток через любую малую площадку и, соответственно, и весь проводник (ответ 1 ). А вот отношение магнитного потока через проводник к току в этом проводнике, которое и представляет собой индуктивность проводника , при этом не изменится (задача 23.2.2 - ответ 3 ).

Используя формулу (23.3) находим в задаче 32.2.3 Гн (ответ 4 ).

Связь между единицами измерений магнитного потока, магнитной индукции и индуктивности (задача 23.2.4 ) следует из определения индуктивности (23.3): единица магнитного потока (Вб) равна произведению единицы тока (А) на единицу индуктивности (Гн) - ответ 3 .

Согласно формуле (23.5) при двукратном увеличении индуктивности катушки и двукратном уменьшении тока в ней (задача 23.2.5 ) энергия магнитного поля катушки уменьшится в 2 раза (ответ 2 ).

Когда рамка вращается в однородном магнитном поле, магнитный поток через рамку меняется из-за изменения угла между перпендикуляром к плоскости рамки и вектором индукции магнитного поля. А поскольку и в первом и втором случае в задаче 23.2.6 этот угол меняется по одному и тому же закону (по условию частота вращения рамок одинакова), то ЭДС индукции меняются по одному и тому же закону, и, следовательно, отношение амплитудных значений ЭДС индукции в рамках равно единице (ответ 2 ).

Магнитное поле, создаваемое проводником с током в области рамки (задача 23.2.7 ), направлено «от нас» (см. решение задач главы 22). Величина индукции поля провода в области рамки при ее удалении от провода будет уменьшаться. Поэтому индукционный ток в рамке должен создать магнитное поле, направленное внутри рамки «от нас». Используя теперь правило буравчика для нахождения направления магнитной индукции, заключаем, что индукционный ток в рамке будет направлен по часовой стрелке (ответ 1 ).

При увеличении тока в проводе будет возрастать созданное им магнитное поле и в рамке возникнет индукционный ток (задача 23.2.8 ). В результате возникнет взаимодействие индукционного тока в рамке и тока в проводнике. Чтобы найти направление этого взаимодействия (притяжение или отталкивание) можно найти направление индукционного тока, а затем по формуле Ампера силу взаимодействия рамки с проводом. Но можно поступить и по-другому, используя правило Ленца. Все индукционные явления должны иметь такое направление, чтобы компенсировать вызывающую их причину. А поскольку причина - увеличение тока в рамке, сила взаимодействия индукционного тока и провода должна стремиться уменьшить магнитный поток поля провода через рамку. А поскольку магнитная индукция поля провода убывает с увеличением расстояния до него, то эта сила будет отталкивать рамку от провода (ответ 2 ). Если бы ток в проводе убывал, то рамка притягивалась бы к проводу.

Задача 23.2.9 также связана с направлением индукционных явлений и правилом Ленца. При приближении магнита к проводящему кольцу в нем возникнет индукционный ток, причем направление его будет таким, чтобы компенсировать вызывающую его причину. А поскольку эта причина - приближение магнита, кольцо будет отталкиваться от него (ответ 2 ). Если магнит отодвигать от кольца, то по тем же причинам возникло бы притяжение кольца к магниту.

Задача 23.2.10 - единственная вычислительная задача в этой главе. Для нахождения ЭДС индукции нужно найти изменение магнитного потока через контур . Это можно сделать так. Пусть в некоторый момент времени перемычка находилась в положении, показанном на рисунке, и пусть прошел малый интервал времени . За этот интервал времени перемычка переместится на величину . Это приведет к увеличению площади контура на величину . Поэтому изменение магнитного потока через контур будет равно , а величина ЭДС индукции (ответ 4 ).

После того, как было установлено, что магнитное поле создаётся электрическими токами, учёные пытались решить обратную задачу - при помощи магнитного поля создать электрический ток. Эту задачу в 1831 г. успешно решил М. Фарадей , который открыл явление электромагнитной индукции. Суть этого явления заключается в том, что в замкнутом проводящем контуре при любом изменении магнитного потока, пронизывающего этот контур, возникает электрически ток, который называется индукционным . Схема некоторых опытов Фарадея показана на рис. 3.12.

При изменении положения постоянного магнита относительно катушки, замкнутой на гальванометр, в последней возникал электрический ток, причём направление тока оказывалось различным - в зависимости от направления перемещения постоянного магнита. Аналогичный результат достигался и при перемещении другой катушки, по которой шёл электрический ток. Более того, в большой катушке возникал ток даже при неизменном положении меньшей катушки, но при изменении тока в ней.

На основании подобных опытов М. Фарадей пришёл к выводу, что в катушке всегда возникает электрический ток при изменении магнитного потока, сцепленного с этой катушкой. Величина тока зависит от скорости изменения магнитного потока. Сейчас мы формулируем открытия Фарадея в виде закона электромагнитной индукции : при любом изменении магнитного потока, сцепленного с проводящим замкнутым контуром, в этом контуре возникает ЭДС индукции, которая определяется как

Знак “-” в выражении (3.53) означает, что при увеличении магнитного потока магнитное поле, созданное индукционным током, направлено против внешнего магнитного поля. Если же магнитный поток уменьшается по величине, то магнитное поле индукционного тока совпадает по направлению с внешним магнитным полем. Русский учёный Х. Ленц таким образом определил появление знака минус в выражении (3.53) - индукционный ток в контуре всегда имеет такое направление, что создаваемое им магнитное поле имеет такое направление, что препятствует изменению магнитного потока, вызвавшего возникновение индукционного тока .

Дадим ещё одну формулировку закона электромагнитной индукции : ЭДС индукции в замкнутом проводящем контуре равна взятой с противоположным знаком скорости изменения магнитного потока, пронизывающего этот контур.

Немецкий физик Гельмгольц показал, что закон электромагнитной индукции можно получить из закона сохранения энергии. В самом деле, энергия источника ЭДС по перемещению проводника с током в магнитном поле (см.рис.3.37) будет затрачена как на Джоулев разогрев проводника сопротивлением R, так и на работу по перемещению проводника:


Тогда из уравнения (3.54) сразу же следует, что

В числителе выражения (3.55) стоит алгебраическая сумма ЭДС, действующих в контуре. Следовательно,

Какова же физическая причина возникновения ЭДС? На заряды в проводнике АВ действует сила Лоренца при движении проводника вдоль оси x. Под действием этой силы положительные заряды будут смещаться вверх, в результате чего электрическое поле в проводнике будет ослаблено. Другими словами, в проводнике появится ЭДС индукции. Следовательно, в рассмотренном нами случае физической причиной возникновения ЭДС является сила Лоренца. Однако, как мы уже отмечали, и в неподвижном замкнутом контуре может появиться ЭДС индукции, если будет изменяться магнитное поле, пронизывающее этот контур.

В этом случае заряды можно считать неподвижными, а на неподвижные заряды сила Лоренца не действует. Чтобы объяснить возникновение ЭДС в этом случае, Максвелл предположил, что всякое изменяющееся магнитное поле порождает в проводнике изменяющееся электрическое поле, которое и является причиной возникновения ЭДС индукции. Циркуляция вектора напряжённости, действующей в этом контуре, таким образом, будет равна ЭДС индукции, действующей в контуре:

. (3.56)

Явление электромагнитной индукции используется для превращения механической энергии вращения в электрическую - в генераторах электрического тока. Обратный процесс - превращение электрической энергии в механическую, основанный на вращательном моменте, действующем на рамку с током в магнитном поле, используется в электродвигателях.

Рассмотрим принцип действия генератора электрического тока (рис. 3.13). Пусть у нас проводящая рамка вращается между полюсами магнита (это может быть и электромагнит) с частотой w. Тогда угол между нормалью к плоскости рамки и направлением магнитного поля изменяется по закону a = wt . В этом случае магнитный поток, сцепленный с рамкой, будет изменяться в соответствии с формулой

где S - площадь контура. В соответствии с законом электромагнитной индукции в рамке будет индуцироваться ЭДС

с e max = BSw. Таким образом, если в магнитном поле вращается с постоянной угловой скоростью проводящая рамка, то в ней будет индуцироваться ЭДС, изменяющаяся по гармоническому закону. В реальных генераторах вращают много витков, соединенных последовательно, а в электромагнитах, для увеличения магнитной индукции, используют сердечники с большой магнитной проницаемостью m ..

Индукционные токи могут возникать и в толще проводящих тел, помещённых в переменное магнитное поле. В этом случае эти токи называются токами Фуко. Эти токи вызывают разогрев массивных проводников. Это явление используется в вакуумных индукционных печах, где сильные токи разогревают металл до плавления. Поскольку разогрев металлов происходит в вакууме, то это позволяет получать особо чистые материалы.

Что может быть лучше, чем вечером понедельника почитать про основы электродинамики . Правильно, можно найти множество вещей, которые будут лучше. Тем не менее, мы все равно предлагаем Вам прочесть эту статью. Времени занимает не много, а полезная информация останется в подсознании. Например, на экзамене, в условиях стресса, можно будет успешно извлечь из недр памяти закон Фарадея. Так как законов Фарадея несколько, уточним, что здесь мы говорим о законе индукции Фарадея.

Электродинамика – раздел физики, изучающий электромагнитное поле во всех его проявлениях.

Это и взаимодействие электрического и магнитного полей, электрический ток, электро-магнитное излучение, влияние поля на заряженные тела.

Здесь мы не ставим целью рассмотреть всю электродинамику. Упаси Боже! Рассмотрим лучше один из основных ее законов, который называется законом электромагнитной индукции Фарадея .

История и определение

Фарадей, параллельно с Генри, открыл явление электромагнитной индукции в 1831 году. Правда, успел опубликовать результаты раньше. Закон Фарадея повсеместно используется в технике, в электродвигателях, трансформаторах, генераторах и дросселях. В чем суть закона Фарадея для электромагнитной индукции, если говорить просто? А вот в чем!

При изменении магнитного потока через замкнутый проводящий контур, в контуре возникает электрический ток. То есть, если мы скрутим из проволоки рамку и поместим ее в изменяющееся магнитное поле (возьмем магнит, и будем крутить его вокруг рамки), по рамке потечет ток!

Этот ток Фарадей назвал индукционным, а само явление окрестил электромагнитной индукцией.

Электромагнитная индукция – возникновение в замкнутом контуре электрического тока при изменении магнитного потока, проходящего через контур.

Формулировка основного закона электродинамики – закона электромагнитной индукции Фарадея, выглядит и звучит следующим образом:

ЭДС , возникающая в контуре, пропорциональна скорости изменения магнитного потока Ф через контур.

А откуда в формуле минус, спросите Вы. Для объяснения знака минус в этой формуле есть специальное правило Ленца . Оно гласит, что знак минус, в данном случае, указывает на то, как направлена возникающая ЭДС. Дело в том, что создаваемое индукционным током магнитное поле направлено так, что препятствует изменению магнитного потока, который вызвал индукционный ток.

Примеры решения задач

Вот вроде бы и все. Значение закона Фарадея фундаментально, ведь на использовании данного закона построена основа почти всей электрической промышленности. Чтобы понимание пришло быстрее, рассмотрим пример решения задачи на закон Фарадея.

И помните, друзья! Если задача засела, как кость в горле, и нет больше сил ее терпеть - обратитесь к нашим авторам! Теперь вы знаете . Мы быстро предоставим подробное решение и разъясним все вопросы!

Явление электромагнитной индукции представляет собой возникновение электрического тока в условиях замкнутого проводящего контура, в то время как магнитный поток, пронизывающий этот контур, изменяется во времени. На этом явлении основан закон электромагнитной индукции, формула которого была выведена английским физиком Фарадеем.

Понятия электромагнитной индукции

Одной из основных величин, связанных с электромагнитной индукцией является магнитный поток. Чтобы понять его физический смысл, следует рассмотреть формулу, определяющую эту величину: Φ = B . S . cos α. Здесь В выступает в роли модуля вектора магнитной индукции, S - площадь проводящего контура, α - угол между нормалью к плоскости контура и вектором магнитной индукции.

При неоднородном магнитном поле и неплоском контуре, значение магнитного потока можно обобщить. Для этого, в системе СИ существует обозначение единицы магнитного потока, называемое вебером. Для создания 1 Вб требуется магнитное поле в 1 Тл, которое пронизывает плоский контур, площадь которого составляет 1 м2. (1 Вб = 1 Тл. 1 м2)

Фарадей открыл закон электромагнитной индукции, формула которого выражается в следующих показателях:

Эта формула наглядно демонстрирует, что изменение магнитного потока в контуре, приводит к возникновению ЭДС индукции. ЭДС, в свою очередь, равна скорости, с какой изменяется магнитный поток при прохождении через площадь, ограниченную контуром. Все значение ЭДС берется со знаком минус. Это и есть .

Причины изменения магнитного потока

Магнитный поток, пронизывающий замкнутый контур, может изменяться в силу ряда причин.

Прежде всего, эти изменения происходят, когда контур перемещается в магнитном поле, постоянном по времени. В этом случае, проводники вместе со свободными носителями зарядов передвигаются в магнитном поле. ЭДС индукции возникает под воздействием сторонних сил, которые влияют на свободные заряды, находящиеся в движущихся проводниках.

Другая причина, изменяющая магнитный поток, заключается в изменении во времени магнитного поля, когда контур неподвижен. В неподвижном проводнике, электроны могут двигаться только под действием электрического поля. Это поле, в свою очередь, возникает воздействия магнитного поля, изменяющегося во времени.

Работа , затрачиваемая на перемещение одного положительного заряда в замкнутом контуре, равна ЭДС индукции для неподвижного проводника. Такое поле, полученное с помощью изменяющегося магнитного поля, получило название вихревого электрического поля.

Возникновение электродвижущей силы индукции было важнейшим открытием в области физики. Оно явилось основополагающим для развития технического применения этого явления.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-24.jpg 765w" sizes="(max-width: 600px) 100vw, 600px">

Майкл Фарадей

История

В 20-е годы 19-го века датчанин Эрстед наблюдал за отклонением магнитной стрелки при расположении ее рядом с проводником, по которому протекал электроток.

Это явление захотел исследовать ближе Майкл Фарадей. С большим упорством он преследовал свою цель – преобразовать магнетизм в электричество.

Первые опыты Фарадея принесли ему ряд неудач, так как он изначально считал, что значительный постоянный ток в одном контуре может сгенерировать ток в рядом находящемся контуре при условии отсутствия электрической связи между ними.

Исследователь видоизменил эксперименты, и в 1831 году они увенчались успехом. Опыты Фарадея начинались с наматывания медной проволоки вокруг бумажной трубки и соединения ее концов с гальванометром. Затем ученый погружал магнит внутрь катушки и замечал, что стрелка гальванометра давала мгновенное отклонение, показывая, что в катушке был индуцирован ток. После вынимания магнита наблюдалось отклонение стрелки в противоположном направлении. Вскоре в ходе других экспериментов он заметил, что в момент подачи и снятия напряжения с одной катушки появляется ток в рядом находящейся катушке. Обе катушки имели общий магнитопровод.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-21-120x74..jpg 706w" sizes="(max-width: 600px) 100vw, 600px">

Опыты Фарадея

Многочисленные опыты Фарадея с другими катушками и магнитами были продолжены, и исследователь установил, что сила индуцированного тока зависит от:

  • количества витков в катушке;
  • силы магнита;
  • скорости, с которой магнит погружался в катушку.

Термин «электромагнитная индукция» (эми) относится к явлению, что ЭДС генерируется в проводнике переменным внешним магнитным полем.

Формулирование закона электромагнитной индукции

Словесная формулировка закона электромагнитной индукции: индуцированная электродвижущая сила в любом замкнутом контуре равна отрицательной временной скорости изменения магнитного потока, заключенного в цепь.

Это определение математически выражает формула:

Е = — ΔΦ/ Δt,

где Ф = В х S, с плотностью магнитного потока В и площадью S, которую пересекает перпендикулярно магнитный поток.

Дополнительная информация. Существуют два разных подхода к индукции. Первый – объясняет индукцию с помощью силы Лоренца и ее действия на движущийся электрозаряд. Однако в определенных ситуациях, таких как магнитное экранирование или униполярная индукция, могут возникнуть проблемы в понимании физического процесса. Вторая теория использует методы теории поля и объясняет процесс индукции с помощью переменных магнитных потоков и связанных с ними плотностей этих потоков.

Физический смысл закона электромагнитной индукции формулируется в трех положениях:

  1. Изменение внешнего МП в катушке провода индуцирует в ней напряжение. При замкнутой проводящей электроцепи индуцированный ток начинает циркулировать по проводнику;
  2. Величина индуцированного напряжения соответствует скорости изменения магнитного потока, связанного с катушкой;
  3. Направление индукционной ЭДС всегда противоположно причине, ее вызвавшей.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/3-18-600x367.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-18-768x470..jpg 120w, https://elquanta.ru/wp-content/uploads/2018/03/3-18.jpg 900w" sizes="(max-width: 600px) 100vw, 600px">

Закон электромагнитной индукции

Важно! Формула для закона электромагнитной индукции применяется в общем случае. Не существует известной формы индукции, которая не может быть объяснена изменением магнитного потока.

ЭДС индукции в проводнике

Для расчета индукционного напряжения в проводнике, который движется в МП, применяют другую формулу:

E = — B x l x v х sin α, где:

  • В – индукция;
  • l – протяженность проводника;
  • v – скорость его движения;
  • α – угол, образованный направлением перемещения и векторным направлением магнитной индукции.

Важно! Способ определения, куда направлен индукционный ток, создающийся в проводнике: располагая правую руку ладонью перпендикулярно вхождению силовых линий МП и, отведенным большим пальцем указывая направление перемещения проводника, узнаем направление тока в нем по распрямленным четырем пальцам.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-17-210x140.jpg 210w" sizes="(max-width: 600px) 100vw, 600px">

Правило правой руки

Законы электролиза

Исторические опыты Фарадея в 1833 году были связаны и с электролизом. Он брал пробирку с двумя платиновыми электродами, погруженными в растворенный хлорид олова, нагретый спиртовой лампой. Хлор выделялся на положительном электроде, а олово – на отрицательном. Затем он взвешивал выделившееся олово.

В других опытах исследователь соединял емкости с разными электролитами последовательно и замерял количество осаждающегося вещества.

На основании этих экспериментов формулируются два закона электролиза:

  1. Первый из них: масса вещества, выделяемого на электроде, прямо пропорциональна количеству электричества, пропускаемого через электролит. Математически это записывают так:

m = K x q, где К – константа пропорциональности, называемая электрохимическим эквивалентом.

Сформулируйте его определение, как масса вещества в г, высвобождаемая на электроде при прохождении тока в 1 А за 1 с либо при прохождении 1 Кл электричества;

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/5-13-600x342.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-13-768x438..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Первый закон электролиза

  1. Второй закон Фарадея гласит: если одинаковое количество электричества пропускается через разные электролиты, то количество веществ, высвобождаемых на соответствующих электродах, прямо пропорционально их химическому эквиваленту (химический эквивалент металла получается путем деления его молярной массы на валентность – M/z).

Для второго закона электролиза используется запись:

Здесь F постоянная Фарадея, которая определяется зарядом 1 моля электронов:

F = Na (число Авогадро) х e (элементарный электрозаряд) = 96485 Кл/моль.

Запишите другое выражение для второго закона Фарадея:

m1/m2 = К1/К2.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/6-7-768x528..jpg 800w" sizes="(max-width: 600px) 100vw, 600px">

Второй закон электролиза

Например, если взять две соединенных последовательно электролитических емкости, содержащие раствор AgNO 3 и CuSO 4, и пропустить через них одинаковое количество электричества, то соотношение массы осажденной меди на катоде одной емкости к массе осажденного серебра на катоде другой емкости будет равно отношению их химических эквивалентов. Для меди это Оцените статью: