Теория классической механики. Классическая механика (механика Ньютона). Основные виды рычажных механизмов

Основы классической механики

Механика – раздел физики, изучающий законы механического движения тел.

Тело – вещественный материальный объект.

Механическое движение – изменение положения тела или его частей в пространстве с течением времени.

Аристотель представлял такой вид движения как непосредственную перемену телом своего места относительно других тел, поскольку в его физике материальный мир был неразрывно связан с пространством, существовал вместе с ним. Время он считал мерой движения тела. Изменение в дальнейшем взглядов на природу движения привело к постепенному отделению пространства и времени от физических тел. Наконец, абсолютизация пространства и времени Ньютоном вообще вывела их за пределы возможного опыта.

Однако, этот подход позволил к концу XVIII века построить законченную систему механики, называемую теперь классической . Классичность заключается в том, что она:

1) описывает большинство механических явлений в макромире, используя небольшое число исходных определений и аксиом;

2) строго обоснована математически;

3) часто используется в более специфических разделах науки.

Опыт показывает, что классическая механика применима к описанию движения тел со скоростями υ << с ≈ 3·10 8 м/с. Ее основные разделы:

1) статика изучает условия равновесия тел;

2) кинематика – движение тел без учета его причин;

3) динамика – влияние взаимодействия тел на их движение.

Основные понятия механики:

1) Механическая система – мысленно выделенная совокупность тел, существенных в данной задаче.

2) Материальная точка – тело, формой и размерами которого можно пренебречь в рамках данной задачи. Тело может быть представлено в виде системы материальных точек.

3) Абсолютно твердое тело – тело, расстояние между любыми двумя точками которого не меняется в условиях данной задачи.

4) Относительность движения заключается в том, что изменение положения тела в пространстве может быть установлено только по отношению к каким-то другим телам.

5) Тело отсчета (ТО) – абсолютно твердое тело, относительно которого рассматривается движение в данной задаче.

6) Система отсчета (СО) = {ТО + СК + часы}. Начало системы координат (СК) совмещают с какой-нибудь точкой ТО. Часы измеряют промежутки времени.

Декартова СК:

Рисунок 5

Положение материальной точки М описывается радиусом-вектором точки , – ее проекции на оси координат.

Если задать начальный момент времени t 0 = 0, то движение точки М опишется вектор-функцией или тремя скалярными функциями x (t ), y (t ), z (t ).

Линейные характеристики движения материальной точки:

1) траектория – линия движения материальной точки (геометрическая кривая),

2) путь (S ) – расстояние, пройденное вдоль нее за промежуток времени ,

3) перемещение ,

4) скорость ,

5) ускорение .

Любое движение твердого тела можно свести к двум основным видам – поступательному и вращательному вокруг неподвижной оси.

Поступательное движение – такое, при котором прямая, соединяющая любые две точки тела, остается параллельной своему первоначальному положению. Тогда все точки движутся одинаково, и движение всего тела можно описать движением одной точки .

Вращение вокруг неподвижной оси – такое движение, при котором существует прямая, жестко связанная с телом, все точки которой остаются неподвижными в данной СО. Траектории остальных точек – окружности с центрами на этой прямой. В этом случае удобны угловые характеристики движения, которые одинаковы для всех точек тела.

Угловые характеристики движения материальной точки:

1) угол поворота (угловой путь) , измеряемый в радианах [рад], где r – радиус траектории точки,

2) угловое перемещение , модуль которого представляет собой угол поворота за малый промежуток времени dt ,

3) угловая скорость ,

4) угловое ускорение .

Рисунок 6

Связь между угловыми и линейными характеристиками:

, , .

Динамика использует понятие силы , измеряемой в ньютонах (H), как меры воздействия одного тела на другое. Это воздействие является причиной движения.

Принцип суперпозиции сил – результирующий эффект воздействия на тело нескольких тел равен сумме эффектов воздействий каждого из этих тел в отдельности. Величина называется равнодействующей силой и характеризует эквивалентное воздействие на тело n тел.

Законы Ньютона обобщают опытные факты механики.

1-й закон Ньютона . Существуют системы отсчета, относительно которых материальная точка сохраняет состояние покоя или равномерного прямолинейного движения при отсутствии силового воздействия на нее, т.е. если , то .

Такое движение называется движением по инерции или инерциальным движением, и поэтому системы отсчета, в которых выполняется 1-й закон Ньютона, называются инерциальными (ИСО).

2-й закон Ньютона . , где – импульс материальной точки, m – ее масса, т.е. если , то и, следовательно, движение уже не будет инерциальным.

3-й закон Ньютона . При взаимодействии двух материальных точек возникают силы и , приложенные к обеим точкам, причем .

Возникновение классической механики явилось началом превращения физики в строгую науку, то есть систему знания утверждающую истинность, объективность, обоснованность и проверяемость как своих исходных принципов, так и своих конечных выводов. Это возникновение происходило в XVI-XVII веке и связано с именами Галилео Галилея, Рене Декарта и Исаака Ньютона. Именно они осуществили "математизацию" природы и заложили основы экспериментально-математического взгляда на природу. Они представили природу как множество "материальных" точек, обладающих пространственно-геометрическими (форма), количественно-математическими (число, величина) и механическими (движение) свойствами и связанных причинно-следственными зависимостями, которые можно выразить в уравнениях математики.

Начало превращения физики в строгую науку было положено Г. Галилеем. Галилей сформулировал ряд фундаментальных принципов и законов механики. А именно:

- принцип инерции , согласно которому когда тело двигается по горизонтальной плоскости, не встречая никаких сопротивлений движению, то движение его является равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца;

- принцип относительности , согласно которому в инерциальных системах все законы механики одинаковы и нет возможности, находясь внутри, определить движется ли она прямолинейно и равномерно или покоится;

- принцип сохранения скоростей и сохранения пространственных и временных интервалов при переходе от одной инерциальной системы к другой. Это знаменитое галилеево преобразование .

Целостный вид логико-математически организованной системы основных понятий, принципов и законов механика получила в работах Исаака Ньютона. Прежде всего в работе "Математические начала натуральной философии" В этой работе Ньютон вводит понятия: масса , или количество материи, инерция , или свойство тела сопротивляться изменению состояния покоя или движения, вес , как мера массы, сила , или действие, производимое на тело для изменения его состояния.

Ньютон различал абсолютные (истинные, математические) пространство и время, которые не зависят от находящихся в них тел и всегда равны сами себе, и относительные пространство и время - подвижные части пространства и измеряемые длительности времени.

Особое место в концепции Ньютона занимает учение о силе тяготения или гравитации, в котором он объединяет движение "небесных" и земных тел. Это учение включает утверждения:

Тяжесть тела пропорциональна заключенному в нем количеству материи или массы;

Сила тяжести пропорциональна массе;


Сила тяжести или тяготение и есть та сила, которая действует между Землей и Луной обратно пропорционально квадрату расстояния между ними;

Эта сила тяготения действует между всеми материальными телами на расстоянии.

В отношении природы силы тяготения Ньютон говорил: "Гипотез не измышляю".

Механика Галилея-Ньютона, развитая в работах Д. Аламбера, Лагранжа, Лапласа, Гамильтона... получила в итоге стройную форму, определяющую физическую картину мира того времени. Эта картина основывалась на принципах самотождественности физического тела; его независимости от пространства и времени; детерминированности, то есть строгой однозначной причинно-следственной связи между конкретными состояниями физических тел; обратимости всех физических процессов.

Термодинамика.

Исследования процесса превращения теплоты в работу и обратно, осуществленные в Х1Х веке С. Кално, Р. Майером, Д. Джоулем, Г. Гемгольцем, Р. Клаузиусом, У. Томсоном (лордом Кельвином), привели к выводам, о которых Р. Майер писал: "Движение, теплота..., электричество представляют собой явления, которые измеряются друг другом и переходят друг в друга по определенным законам". Гемгольц обобщает это утверждение Майера в вывод: "Сумма существующих в природе напряженных и живых сил постоянна". Уильям Томсон уточнил понятия "напряженные и живые силы" до понятий потенциальной и кинетической энергии, определив энергию как способность совершать работу. Р. Клаузиус обобщил эти идеи в формулировке: "Энергия мира постоянна". Так, совместными усилиями сообщества физиков был сформулирован фундаментальный для всего физического знания закон сохранения и превращения энергии .

Исследования процессов сохранения и превращения энергии привели к открытию еще одного закона - закона возрастания энтропии . "Переход теплоты от более холодного тела к более теплому, - писал Клаузиус, - не может иметь места без компенсации". Меру способности теплоты к превращению Клаузиус назвал энтропией. Суть энтропии выражается в том, что во всякой изолированной системе процессы должны протекать в направлении превращения всех видов энергии в теплоту при одновременном уравнивании температурных разностей существующих в системе. Это означает, что реальные физические процессы протекают необратимо. Принцип, утверждающий стремление энтропии к максимуму называют вторым началом термодинамики. Первое начало - закон сохранения и превращения энергии.

Принцип возрастания энтропии поставил перед физической мыслью ряд проблем: соотношения обратимости и необратимости физических процессов, формальности сохранения энергии, не способной совершать работу при температурной однородности тел. Все это требовало более глубокого обоснования начал термодинамики. Прежде всего природы тепла.

Попытку такого обоснования предпринял Людвиг Больцман, который пришел, опираясь на молекулярно-атомное представление о природе теплоты, к выводу о статистическом характере второго закона термодинамики, так как вследствие огромного числа молекул, составляющих макроскопические тела, и чрезвычайной быстроты и хаотичности их движения мы наблюдаем лишь средние значения . Определение же средних значений - задача теории вероятностей. При максимальном температурном равновесии максимален и хаос движения молекул, в котором исчезает всякий порядок. Встает вопрос: может ли и, если да, то как, из хаоса снова возникнуть порядок? На это физика сможет ответить лишь через сто лет, введя принцип симметрии и принцип синергии.

Электродинамика.

К середине Х1Х века физика электрических и магнитных явлений достигла определенного завершения. Был открыт ряд важнейших законов Кулона, закон Ампера, закон электромагнитной индукции, законы постоянного тока и т.д. Все эти законы базировались на принципе дальнодействия . Исключением были взгляды Фарадея, который считал, что электрическое действие передается посредством непрерывной среды, то есть на основе принципа близкодействия . Опираясь на идеи Фарадея, английский физик Дж. Максвелл вводит понятие электромагнитного поля и описывает "открытое" им состояние материи в своих уравнениях. "... Электромагнитное поле, - пишет Максвелл, - это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии". Комбинируя уравнения электромагнитного поля, Максвелл получает волновое уравнение, из которого следует существование электромагнитных волн , скорость распространения которых в воздухе равна скорости света. Существование таких электромагнитных волн экспериментально было подтверждено немецким физиком Генрихом Герцем в 1888 г.

Для того, чтобы объяснить взаимодействие электромагнитных волн с веществом, немецкий физик Гендрик Антон Лоренц выдвинул гипотезу о существовании электрона , то есть малой электрически заряженной частички, которая в громадных количествах присутствует во всех весомых телах. Эта гипотеза объяснила открытое в 1896 году немецким физиком Зееманом явление расщепления спектральных линий в магнитном поле. В 1897 году Томсон экспериментально подтвердил наличие мельчайшей отрицательно заряженной частицы или электрона.

Так, в рамках классической физики возникла достаточно стройная и завершенная картина мира, описывающая и объясняющая движение, гравитацию, теплоту, электричество и магнетизм, свет. Это и дало повод лорду Кельвину (Томсону) сказать, что здание физики практически построено, не хватает лишь несколько деталей...

Во-первых, оказалось, что уравнения Максвелла являются неинвариантными относительно преобразований Галилея. Во-вторых, теория эфира, как абсолютной системы координат, к которой "привязаны" уравнения Максвелла, не нашла экспериментального подтверждения. Опыт Майкельсона-Морли показал, что никакой зависимости скорости света от направления в движущейся системе координат нет . Сторонник сохранения уравнений Максвелла Гендрик Лоренц, "привязав" эти уравнения к эфиру, как абсолютной системе отсчета, пожертвовал принципом относительности Галилея, его преобразованиями и сформулировал свои преобразования. Из преобразований Г. Лоренца следовало, что пространственные и временные интервалы неинвариантны при переходе от одной инерциальной системы отсчета к другой. Все бы ничего, но существование абсолютной среды - эфира не подтверждалось, как отмечалось, опытно-экспериментально. Это кризис.

Неклассическая физика. Специальная теория относительности .

Описывая логику создания специальной теории относительности Альберт Эйнштейн в совместной книге с Л. Инфельдом пишет: "Соберем теперь вместе те факты, которые достаточно проверены опытом, не заботясь больше о проблеме эфира:

1. Скорость света в пустом пространстве всегда постоянна, независимо от движения источника или приемника света.

2. В двух системах координат, движущихся прямолинейно и равномерно друг относительно друга, все законы природы строго одинаковы, и нет никакого средства обнаружить абсолютное прямолинейное и равномерное движение...

Первое положение выражает постоянство скорости света, второе обобщает принцип относительности Галилея, сформулированный для механических явлений, на все происходящее в природе". Эйнштейн отмечает, что принятие этих двух принципов и отказ от принципа галилеевского преобразования, так как он противоречит постоянству скорости света, и положило начало специальной теории относительности. К принятым двум принципам: постоянства скорости света и эквивалентности всех инерциальных систем отсчета, Эйнштейн добавляет принцип инвариантности всех законов природы по отношению к преобразованиям Г. Лоренца. Поэтому во всех инерциальных системах справедливы те же самые законы, а переход от одной системы к другой дается преобразованиями Лоренца. Это значит, что ритм движущихся часов и длина движущихся стержней зависит от скорости: стержень сократится до нуля, если его скорость достигнет скорости света, а ритм движущихся часов замедляется, часы совершенно остановились бы, если бы они могли двигаться со скоростью света.

Так из физики были элиминированы ньютоновское абсолютное время, пространство, движение, которые были как бы независимы от движущихся тел и их состояния.

Общая теория относительности.

В цитируемой уже книге Эйнштейн спрашивает: "Можем ли сформулировать физические законы таким образом, чтобы они были справедливы для всех систем координат, не только для систем, движущихся прямолинейно и равномерно, но и для систем, движущихся совершенно произвольно по отношению друг к другу?". И отвечает: "Это оказывается возможным".

Потеряв в специальной теории относительности свою "независимость" от движущихся тел и друг от друга, пространство и время как бы "нашли" друг друга в едином пространственно-временном четырехмерном континууме. Автор континуума математик Герман Минковский опубликовал в 1908 году работу "Основания теории электромагнитных процессов", в которой утверждал, что отныне пространство само по себе и время само по себе должны быть низведены до роли теней, и только некоторый вид соединения обоих должен по-прежнему сохранять самостоятельность. Идея А. Эйнштейна и состояла в том, чтобы представить все физические законы как свойства этого континуума, как его метрику . С этой новой позиции Эйнштейн рассмотрел закон тяготения Ньютона. Вместо силы тяготения он стал оперировать полем тяготения . Поля тяготения были включены в пространственно-временной континуум как его "искривление". Метрика континуума стала неевклидовой, "римановской" метрикой. "Кривизна" континуума стала рассматриваться как результат распределения движущихся в нем масс. Новая теория объяснила не согласующуюся с ньютоновским законом тяготения траекторию вращения Меркурия вокруг Солнца, а также отклонения луча звездного света проходящего вблизи Солнца.

Так из физики было элиминировано понятие "инерциальной системы координат" и обосновано утверждение обобщенного принципа относительности : любая система координат является одинаково пригодной для описания явлений природы .

Квантовая механика.

Вторым, по мнению лорда Кельвина (Томсона), недостающим элементом для завершения здания физики на рубеже Х1Х-ХХ веков было серьезное расхождение между теорией и экспериментом при исследовании законов теплового излучения абсолютно черного тела. Согласно господствующей теории, оно должно быть непрерывным, континуальным . Однако, это приводило к парадоксальным выводам, вроде того, что общая энергия, излучаемая черным телом при данной температуре, равна бесконечности (формула Релея-Джина). Для решения проблемы немецкий физик Макс Планк выдвинул в 1900 году гипотезу, что вещество не может излучать или поглощать энергию иначе, как конечными порциями (квантами), пропорциональными излучаемой (или поглощаемой) частоте. Энергия одной порции (кванта) Е=hn, где n - частота излучения, а h - универсальная константа. Гипотеза Планка была использована Эйнштейном для объяснения фотоэффекта. Эйнштейн ввел понятие кванта света или фотона. Он же предложил, что свет , в соответствии с формулой Планка, обладает одновременно волновыми и квантовыми свойствами. В сообществе физиков заговорили о корпускулярно-волновом дуализме, тем более что в 1923 году было открыто еще одно явление, подтверждающее существование фотонов - эффект Комптона.

В 1924 году Луи де Бройль распространил идею о двойственной корпускулярно-волновой природе света на все частицы материи, введя представление о волнах материи . Отсюда можно говорить и о волновых свойствах электрона, например, о дифракции электрона, каковые и были экспериментально установлены. Однако эксперименты Р. Фейнмана с "обстрелом" электронами щита с двумя отверстиями показали, что невозможно, с одной стороны, сказать, через какое отверстие пролетает электрон, то есть точно определить его координату, а с другой стороны - не исказить картины распределения регистрируемых электронов, не нарушив характера интерференции. Это значит, что мы можем знать или координату электрона, или импульс, но не то и другое вместе.

Этот эксперимент поставил под вопрос само понятие частицы в классическом смысле точной локализации в пространстве и времени.

Объяснение "неклассического" поведения микрочастиц было впервые дано немецким физиком Вернером Гейзенбергом. Последний сформулировал закон движения микрочастицы, согласно которому знание точной координаты частицы приводит к полной неопределенности ее импульса, и наоборот, точное знание импульса частицы - к полной неопределенности ее координаты. В. Гейзенберг установил соотношение неопределенностей значений координаты и импульса микрочастицы:

Dх * DР х ³ h, где Dх - неопределенность в значении координаты; DР х - неопределенность в значении импульса; h - постоянная Планка. Этот закон и соотношение неопределенностей получил название принципа неопределенности Гейзенберга.

Анализируя принцип неопределенностей датский физик Нильс Бор показал, что в зависимости от постановки эксперимента микрочастица обнаруживает либо свою корпускулярную природу, либо волновую, но не обе сразу . Следовательно, эти две природы микрочастиц взаимно исключают друг друга, и в то же время должны быть рассмотрены как дополняющие друг друга, а их описание на основе двух классов экспериментальных ситуаций (корпускулярной и волновой) - целостным описанием микрочастицы. Существует не частица "само по себе", а система "частица - прибор". Эти вывод Н. Бора получили название принципа дополнительности .

Неопределенность и дополнительность оказываются в рамках такого подхода не мерой нашего незнания, а объективными свойствами микрочастиц , микромира в целом. Из этого следует, что статистические, вероятностные законы лежат в глубине физической реальности, а динамические законы однозначной причинно-следственной зависимости лишь некоторый частный и идеализированный случай выражения статистических закономерностей.

Релятивистская квантовая механика.

В 1927 году английский физик Поль Дирак обратил внимание на то, что для описания движения открытых к тому времени микрочастиц: электрона, протона и фотона, так как они движутся со скоростями, близкими к скорости света, требуется применение специальной теории относительности. Дирак составил уравнение, которое описывало движение электрона с учетом законов и квантовой механики, и теории относительности Эйнштейна. Этому уравнению удовлетворяли два решения: одно решение давало известный электрон с положительной энергией, другое - неизвестный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и симметричных им античастицах. Это породило вопрос: пуст ли вакуум? После эйнштейновского "изгнания" эфира он казался несомненно пустым.

Современные, хорошо доказанные представления говорят, что вакуум "пуст" только в среднем. В нем постоянно рождается и исчезает огромное количество виртуальных частиц и античастиц. Это не противоречит и принципу неопределенности, который имеет также выражение DЕ * Dt ³ h. Вакуум в квантовой теории поля определяется как наинизшее энергетическое состояние квантового поля, энергия которого равна нулю только в среднем. Так что вакуум - это "нечто" по имени "ничто".

На пути построения единой теории поля.

В 1918 году Эмми Нетером было доказано, что если некоторая система инвариантна относительно некоторого глобального преобразования, то для нее существует определенная сохраняющая величина. Из этого следует, что закон сохранения (энергии) является следствием симметрий , существующих в реальном пространстве-времени.

Симметрия как философское понятие означает процесс существования и становления тождественных моментов между различными и противоположными состояниями явлений мира. Это означает, что, изучая симметрию каких-либо систем, необходимо рассматривать их поведение при различных преобразованиях и выделять во всей совокупности преобразований такие, которые оставляют неизменными, инвариантными некоторые функции, соответствующие рассматриваемым системам.

В современной физике употребляется понятие калибровочной симметрии . Под калибровкой железнодорожники понимают переход с узкой колеи на широкую. В физике под калибровкой первоначально понималось также изменение уровня или масштаба. В специальной теории относительности законы физики не изменяются относительно переноса или сдвига при калибровке расстояния. В калибровочной симметрии требование инвариантности порождает определенный конкретный вид взаимодействия. Следовательно, калибровочная инвариантность позволяет ответить на вопрос: "Почему и зачем в природе существуют такого рода взаимодействия?". В настоящее время в физике определено существование четырех типов физических взаимодействий: гравитационного, сильного, электромагнитного и слабого. Все они имеют калибровочную природу и описываются калибровочными симметриями, являющимися различными представлениями групп Ли. Это позволяет предположить существование первичного суперсимметричного поля , в котором еще нет различия между типами взаимодействий. Различия, типы взаимодействия являются результатом самопроизвольного, спонтанного нарушения симметрии исходного вакуума. Эволюция Вселенной предстает тогда как синергетический самоорганизующийся процесс : в процессе расширения из вакуумного суперсимметричного состояния Вселенная разогрелась до "большого взрыва". Дальнейший ход ее истории пролегал через критические точки - точки бифуркации, в которых происходили спонтанные нарушения симметрии исходного вакуума. Утверждение самоорганизации систем через самопроизвольное нарушение исходного типа симметрии в точках бифуркации и есть принцип синергии .

Выбор направленности самоорганизации в точках бифуркации, то есть в точках самопроизвольного нарушения исходной симметрии не случаен. Он определен как бы присутствующим уже на уровне суперсимметрии вакуума "проектом" человека, то есть "проектом" существа, спрашивающего о том, почему мир таков. Это антропный принцип , который в физике сформулировал в 1962 году Д. Дике.

Принципы относительности, неопределенности, дополнительности, симметрии, синергии, антропный принцип, а также утверждение глубинно-основного характера вероятностных причинно-следственных зависимостей по отношению к динамическим, однозначным причинно-следственным зависимостям и составляют категориально-концептуальную структуру современного гештальта, образа физической реальности.

Литература

1. Ахиезер А.И., Рекало М.П. Современная физическая картина мира. М., 1980.

2. Бор Н. Атомная физика и человеческое познание. М., 1961.

3. Бор Н. Причинность и дополнительность// Бор Н. Избранные научные труды в 2-х т. Т.2. М., 1971.

4. Борн М. Физика в жизни моего поколения, М., 1061.

5. Бройль Л. Де. Революция в физике. М., 1963

6. Гейзенберг В. Физика и философия. Часть и целое. М. 1989.

8. Эйнштейн А., Инфельд Л. Эволюция физики. М., 1965.

Классическая механика (механика Ньютона)

Рождение физики как науки связано с открытиями Г Галилея и И. Ньютона. Особенно значителен вклад И. Ньютона, который записал законы механики на языке математики. Свою теорию, которую часто называют классической механикой, И. Ньютон изложил в труде «Математические начала натуральной философии» (1687).

Основу классической механики составляют три закона и два положения относительно пространства и времени.

Прежде чем рассматривать законы И. Ньютона, напомним, что такое система отсчета и инерциальная система отсчета, поскольку законы И. Ньютона выполняются не во всех системах отсчета, а только в инерциальных системах отсчета.

Системой отсчета называется система координат, например прямоугольных декартовых координат, дополненная часами, находящимися в каждой точке геометрически твердой среды. Геометрически твердой средой называется бесконечное множество точек, расстояния между которыми фиксированы. В механике И. Ньютона предполагается, что время течет независимо от положения часов, т.е. часы синхронизированы и поэтому время течет одинаково во всех системах отсчета.

В классической механике пространство считается евклидовым, а время представляется евклидовой прямой. Иными словами, И. Ньютон считал пространство абсолютным, т.е. оно везде является одним и тем же. Это значит, что для измерения длин можно использовать не- деформируемые стержни с нанесенными на них делениями. Среди систем отсчета можно выделить такие системы, которые благодаря учету ряда специальных динамических свойств отличаются от остальных.

Система отсчета, по отношению к которой тело движется равномерно и прямолинейно, называется инерциальной или галилеевой.

Факт существования инерциальных систем отсчета нельзя проверить экспериментально, так как в реальных условиях нельзя выделить часть материи, изолировать ее от остального мира так, чтобы движение этой части материи не подвергалось воздействию других материальных объектов. Чтобы определить в каждом конкретном случае, может ли система отсчета быть принята за инерциальную, проверяют, сохраняется ли скорость тела. Степень этого приближения определяет степень идеализации задачи.

Например, в астрономии при изучении движения небесных тел за инерциальную систему отсчета часто принимают декартову систему ординат, начало которой находится в центре масс какой-то «неподвижной» звезды, а оси координат направлены на другие «неподвижные» звезды. На самом деле звезды движутся с большими скоростями относительно других небесных объектов, поэтому понятие «неподвижная» звезда условно. Но в силу больших расстояний между звездами приведенное нами положение достаточно для практических целей.

Например, наилучшей инерциальной системой отсчета для Солнечной системы будет такая, начало которой совпадает с центром масс Солнечной системы, практически находящимся в центре Солнца, так как в Солнце сосредоточено более 99% массы нашей планетной системы. Оси координат системы отсчета направлены на далекие звезды, которые считаются неподвижными. Такая система называется гелиоцентрической.

Утверждение о существовании инерциальных систем отсчета И. Ньютон сформулировал в виде закона инерции, который называют первым законом Ньютона. Этот закон гласит: всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние.

Первый закон Ньютона отнюдь не очевиден. До Г. Галилея считалось, что это воздействие обусловливает не изменение скорости (ускорение), а саму скорость. Данное мнение основывалось на таких известных из повседневной жизни фактах, как необходимость непрерывно толкать тележку, которая движется по горизонтальной ровной дороге, для того чтобы ее движение не замедлялось. Теперь известно, что, толкая тележку, мы уравновешиваем воздействие, оказываемое на нее трением. Но, не зная об этом, легко прийти к заключению, что воздействие необходимо для поддержания движения неизменным.

Второй закон Ньютона гласит: скорость изменения импульса частицы равна действующей на частицу силе :

или

где т - масса; t- время; а -ускорение; v - вектор скорости; p = mv - импульс; F - сила.

Силой называется векторная величина, характеризующая воздействие на данное тело со стороны других тел. Модуль этой величины определяет интенсивность воздействия, а направление совпадает с направлением ускорения, сообщаемого телу этим воздействием.

Масса является мерой инертности тела. Под инертностью понимают неподатливость тела действию силы, т.е. свойство тела сопротивляться изменению скорости под действием силы. Для того, чтобы выразить массу некоторого тела числом, надо сравнить ее с массой эталонного тела, принятого за единицу.

Формула (3.1) называется уравнением движения частицы. Выражение (3.2) - это вторая формулировка второго закона Ньютона: произведение массы частицы на ее ускорение равно силе, которая действует на частицу.

Формула (3.2) справедлива и для протяженных тел в том случае, если они движутся поступательно. Если на тело действует несколько сил, то под силой F в формулах (3.1) и (3.2) подразумевается их результирующая, т.е. сумма сил.

Из (3.2) следует, что при F = 0 (т.е. на тело не действуют другие тела) ускорение а равно нулю, поэтому тело движется прямолинейно и равномерно. Таким образом, первый закон Ньютона как бы входит во второй закон как его частный случай. Но первый закон Ньютона формируется независимо от второго, так как в нем содержится утверждение о существовании в природе инерциальных систем отсчета.

Уравнение (3.2) имеет такой простой вид только при согласованном выборе единиц измерения силы, массы и ускорения. При независимом выборе единиц измерения второй закон Ньютона записывается следующим образом:

где к - коэффициент пропорциональности.

Воздействие тел друг на друга всегда носит характер взаимодействия. В том случае, если тело А действует на тело В с силой F BA то и тело В действует на тело А с силой F AB .

Третий закон Ньютона гласит, что силы, с которыми взаимодействуют два тела, равны по модулю и противоположны по направлению, т.е.

Поэтому силы всегда возникают попарно. Заметим, что силы в формуле (3.4) приложены к разным телам, и поэтому они не могут уравновешивать друг друга.

Третий закон Ньютона, также как и первые два, выполняется только в инерциальных системах отсчета. В неинерциальных системах отсчета он не является справедливым. Кроме этого отступления от третьего закона Ньютона будут наблюдаться у тел, которые движутся со скоростями, близкими к скорости света.

Следует заметить, что все три закона Ньютона появились в результате обобщения данных большого числа экспериментов и наблюдений и поэтому являются эмпирическими законами.

В механике Ньютона не все системы отсчета равноправны, так как инерциальные и неинерциальные системы отсчета отличаются друг от друга. Указанное неравноправие свидетельствует о недостаточной зрелости классической механики. С другой стороны, все инерциальные системы отсчета равноправны и в каждой из них законы Ньютона одни и те же.

Г. Галилей в 1636 г. установил, что в инерциальной системе отсчета никакими механическими опытами нельзя определить, находится ли она в состоянии покоя или движется равномерно и прямолинейно.

Рассмотрим две инерциальные системы отсчета N и N", причем система jV"движется относительно системы N по оси х с постоянной скоростью v (рис. 3.1).

Рис. 3.1.

Отсчет времени начнем с того момента, когда начала координат о и о"совпадали. В этом случае координаты х и х" произвольно взятой точки М будут связаны выражением х = х" + vt. При сделанном нами выборе осей координат у - у z~ Z- В механике Ньютона предполагается, что во всех системах отсчета время течет одинаково, т.е. t = t". Следовательно, мы получили совокупность четырех уравнений:

Уравнения (3.5) называются преобразованиями Галилея. Они дают возможность переходить от координат и времени одной инерциальной системы отсчета к координатам и времени другой инерциальной системы отсчета. Продифференцируем по времени / первое уравнение (3.5), имея в виду, что t = t поэтому производная по t совпадет с производной по Г. Получим:

Производная - это проекция скорости частицы и в системе N

на ось х этой системы, а производная - это проекция скорости частицы о "в системе N "на осьх "этой системы. Поэтому получаем

где v = v x =v X " - проекция вектора на ось х совпадает с проекцией того же вектора на ось*".

Теперь дифференцируем второе и третье уравнение (3.5) и получаем:

Уравнения (3.6) и (3.7) можно заменить одним векторным уравнением

Уравнение (3.8) можно рассматривать или как формулу преобразования скорости частицы из системы N" в систему N, или как закон сложения скоростей: скорость частицы относительно системы У равна сумме скорости частицы относительно системы N" и скорости системы N" относительно системы N. Продифференцируем по времени уравнение (3.8) и получим:

поэтому ускорения частицы относительно систем N и УУ’одни и те же. Сила F, N, равна силе F", которая действует на частицу в системе N", т.е.

Соотношение (3.10) будет выполняться, так как сила зависит от расстояний между данной частицей и взаимодействующими с ней частицами (а также от относительных скоростей частиц), а эти расстояния (и скорости) в классической механике полагаются одинаковыми во всех инерциальных системах отсчета. Масса тоже имеет одинаковое числовое значение во всех инерциальных системах отсчета.

Из приведенных выше рассуждений следует, что если выполняется соотношение та = F, то будет выполняться равенство та = F". Системы отсчета N и N" были взяты произвольно, поэтому полученный результат означает, что законы классической механики одинаковы для всех инерциальных систем отсчета. Это утверждение называется принципом относительности Галилея. Можно сказать иначе: законы механики Ньютона инвариантны относительно преобразований Галилея.

Величины, которые имеют одно и то же числовое значение во всех системах отсчета, называют инвариантными (от лат. invariantis - не- изменяющийся). Примерами таких величин служат электрический заряд, масса и др.

Инвариантными по отношению к преобразованию координат и времени при переходе от одной инерциальной системы отсчета к другой называются и уравнения, вид которых не меняется при таком переходе. Величины, которые входят в эти уравнения, могут меняться при переходе от одной системы отсчета к другой, но формулы, которые выражают связь между этими величинами, остаются неизменными. Примерами таких уравнений являются законы классической механики.

  • Под частицей подразумевается материальная точка, т.е. тело, размерами которогоможно пренебречь по сравнению с расстоянием до других тел.

Механика - раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие, основанный на законах Ньютона. Поэтому её часто называют «Ньютоновской механикой».

Классическая механика подразделяется на:

    статику (которая рассматривает равновесие тел)

    кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин)

    динамику (которая рассматривает движение тел).

Основные понятия механики:

    Пространство . Считается, что движение тел происходит в пространстве, являющимся евклидовым, абсолютным (не зависит от наблюдателя), однородным (две любые точки пространства неотличимы) и изотропным (два любых направления в пространстве неотличимы).

    Время - фундаментальное понятие, не определяемое в классической механике. Считается, что время является абсолютным, однородным и изотропным (уравнения классической механики не зависят от направления течения времени)

    Система отсчёта – состоит из тела отсчёта (некоего тела, реального или воображаемого, относительно которого рассматривается движение механической системы) и системы координат

    Материальная точка - объект, размерами которого в задаче можно пренебречь. В действительности, любое тело, которое подчиняется законам классической механики, обязательно имеет ненулевой размер. Тела ненулевого размера могут испытывать сложные движения, поскольку может меняться их внутренняя конфигурация, например, тело может вращаться или деформироваться. Тем не менее, в определённых случаях к подобным телам применимы результаты, полученные для материальных точек, если рассматривать такие тела, как совокупности большого количества взаимодействующих материальных точек.

    Масса - мера инертности тел.

    Радиус-вектор - вектор, проведённый из начала координат в точку расположения тела, характеризует положение тела в пространстве.

    Скорость является характеристикой изменения положения тела со временем, определяется как производная пути по времени.

    Ускорение - скорость изменения скорости, определяется как производная скорости по времени.

    Импульс - векторная физическая величина, равная произведению массы материальной точки на её скорость.

    Кинетическая энергия - энергия движения материальной точки, определяемая как половина произведения массы тела на квадрат его скорости.

    Сила - физическая величина, характеризующая степень взаимодействия тел между собой. Фактически, определением силы является второй закон Ньютона.

    Консервативная сила - сила, работа которой не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Консервативные силы - такие силы, работа по любой замкнутой траектории которых равна 0. Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.

    Диссипативные силы - силы, при действии которых на механическую систему её полная механическая энергия убывает (то есть диссипирует), переходя в другие, немеханические формы энергии, например, в теплоту.

Основные законы механики

Принцип относительности Галилея - основной принципом, на котором базируется классическая механика является принцип относительности, сформулированный на основе эмпирических наблюдений Г. Галилеем. Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Во всех инерциальных системах отсчёта свойства пространства и времени одинаковы, и все процессы в механических системах подчиняются одинаковым законам.

Законы Ньютона

Основой классической механики являются три закона Ньютона.

Первый закон Ньютона устанавливает наличие свойства инертности у материальных тел и постулирует наличие таких систем отсчёта, в которых движение свободного тела происходит с постоянной скоростью (такие системы отсчёта называются инерциальными).

Второй закон Ньютона вводит понятие силы как меры взаимодействия тела и на основе эмпирических фактов постулирует связь между величиной силы, ускорением тела и его инертностью (характеризуемой массой). В математической формулировке второй закон Ньютона чаще всего записывается в следующем виде:

где F -результирующий вектор сил, действующих на тело;

a - вектор ускорения тела;

m - масса тела.

Третий закон Ньютона - для каждой силы, действующей на первое тело со стороны второго, существует противодействующая сила, равная по величине и противоположная по направлению, действующей на второе тело со стороны первого.

Закон сохранения энергии

Закон сохранения энергии является следствием законов Ньютона для замкнутых систем, в которых действует только консервативные силы. Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.

Теория машин и механизмов

Основные понятия и определения.

Теория механизмов и машин занимается исследованием и разработкой высокопроизводительных механизмов и машин.

Механизм – совокупность подвижных материальных тел, одно из которых закреплено, а все остальные совершают вполне определенные движения, относительно неподвижного материального тела.

Звенья – материальные тела, из которых состоит механизм.

Стойка – неподвижное звено.

Стойка изображается. Звено, к которому изначально сообщается движение, называется входным (начальным, ведущим). Звено, совершающее движение, для выполнения которого предназначен механизм – выходное звено.

Кривошипно- ползунный механизм

Если это компрессор, то зв.1 – входное, а зв.3 – выходное.

Если это механизм ДВС, то зв.3 – входное, а зв.1 – выходное.

Кинематическая пара – подвижное соединение звеньев, допускающее их относительное движение. Все кинематические пары на схеме обозначают буквами латинского алфавита, например A, B, C и т.д.

Если, то К.П. – вращательная; если, то поступательная.

Порядок нумерации звеньев:

входное звено – 1;

стойка – последний номер.

Звенья бывают:

    простые – состоят из одной детали;

    сложные – состоят из нескольких, жестко скрепленных друг с другом и совершающих одно и тоже движение.

Например, шатунная группа механизма ДВС.

Звенья, соединяясь друг с другом, образуют кинематические цепи, которые разделяют на:

    простые и сложные;

    замкнутые и разомкнутые.

Машина – техническое устройство, в результате осуществления технологического процесса определенного рода, можно автоматизировать или механизировать труд человека.

Машины условно можно разделить на виды:

    энергетические;

    технологические;

    транспортные;

    информационные.

Энергетические машины разделяют на:

    двигатели;

    трансформирующие машины.

Двигатель – техническое устройство, преобразующее один вид энергии в другой. Например, ДВС.

Трансформаторная машина – техническое устройство, потребляющее энергию извне и совершающее полезную работу. Например, насосы, станки, прессы.

Техническое объединение двигателя и технологической (рабочей машины) – Машинный агрегат (МА).

Двигатель имеет определенную механическую характеристику, рабочая машина тоже.

 1 – скорость, с которой вращается вал двигателя;

 2 – скорость, с которой будет вращаться главный вал рабочей машины.

 1 и  2 нужно поставить в соответствие друг другу.

Например, число оборотов n 1 =7000 об/мин., а n 2 =70 об/мин.

Чтобы привести в соответствие механические характеристики двигателя и рабочей машины, между ними устанавливают передаточный механизм, который имеет свои механические характеристики.

u П =1/2=700/70=10

В качестве передаточного механизма могут быть использованы:

    фрикционные передачи (с использованием трения);

    цепные передачи (привод мотоцикла);

    зубчатые передачи.

В качестве рабочей машины наиболее часто используют рычажные механизмы.

Основные виды рычажных механизмов.

1. Кривошипно-ползунный механизм.

а) центральный (рис.1);

б) внеосный (дезоксиальный) (рис.2);

е - эксцентриситет

Рис. 2

1-кривошип, т.к. звено совершает полный оборот вокруг своей оси;

2-шатун, не связан со стойкой, совершает плоское движение;

3-ползун (поршень), совершает поступательное движение;

2. Четырехшарнирный механизм.

Звенья 1,3 могут быть кривошипами.

Если зв.1,3 – кривошипы, то механизм двукривошипный.

Если зв.1 – кривошип (совершает полный оборот), а зв.3 – коромысло (совершает неполный оборот), то механизм кривошипно-коромысловый.

Если зв.1,3 – коромысла, то механизм двукоромысловый.

3. Кулисный механизм.

1 - кривошип;

2 - камень кулисы (втулка) вместе с зв.1 совершает полный оборот вокруг А (1 и 2 одно и тоже), а также движется вдоль зв.3, приводя его во вращение;

3 - коромысло (кулиса).

4.Гидроцилиндр

(в кинематическом отношении подобен кулисному механизму).

В процессе проектирования конструктор решает две задачи:

    анализа (исследует готовый механизм);

    синтеза (проектируется новый механизм по требуемым параметрам);

Структурный анализ механизма.

Понятия о кинематических парах и их классификация.

Два звена неподвижно связанных между собой образуют кинематическую пару. Все кинематические пары подвергаются двум независимым классификациям:

Примеры классификации пар:

Рассмотрим кинематическую пару «винт-гайка». Число степеней подвижности этой пары равно 1, а число налагаемых связейравно 5. Это пара будет являться парой пятого класса, свободным можно выбрать только один вид движения для винта или гайки, а второе движение будет сопутствующим.

Кинематическая цепь – звенья, связанные между собой кинематическими парами различных классов.

Кинематические цепи бывают пространственными и плоскими.

Пространственные кинематические цепи – цепи, звенья которых двигаются в различных плоскостях.

Плоские кинематические цепи – цепи, звенья которых двигаются в одной или параллельных плоскостях.

Определение 1

Механика - обширный раздел физики, исследующий законы изменения положений физических тел в пространстве и времени, а также постулаты, основанные на законах Ньютона.

Рисунок 1. Основной закон динамики. Автор24 - интернет-биржа студенческих работ

Зачастую данное научное направление физики называют «Ньютоновской механикой». Классическая механика на сегодняшний день подразделяется на такие разделы:

  • статику - рассматривает и описывает равновесие тел;
  • кинематику - изучает геометрические особенности движения без рассмотрения его причин;
  • динамику – занимается исследованием движения материальных веществ.

Механическое движение представляет собой одну из простейших и вместе с тем наиболее распространенную форму существования живой материи. Поэтому классическая механика занимает исключительно значимое место в естествознании и считается главным подразделом физики.

Основные законы классической механики

Классическая механика в своих постулатах изучает движение рабочих тел, со скоростями, которые намного меньше скорости света. Согласно специальной гипотезе относительности, для движущихся на огромной скорости элементов не существует абсолютного пространства и времени. В результате характер взаимодействия веществ становится сложнее, в частности, их масса начинает зависеть от скорости движения. Все это стало объектом рассмотрения формул релятивистской механики, для которых константа световой скорости играет фундаментальную роль.

Классическая механика базируется на следующих основных законах.

  1. Принцип относительности Галилея. Согласно данному принципу существует множество систем отсчёта, в которых любое свободное тело находится в состоянии покоя или движется с постоянной по направлению скоростью. Эти концепции в науке называются инерциальными, и осуществляю движение относительно друга прямолинейно и равномерно.
  2. Три закона Ньютона. Первый устанавливает обязательное наличие свойства инертности у физических тел и постулирует наличие таких концепций отсчёта, в которых движение свободного вещества происходит с постоянной скоростью. Второй постулат вводит понятие силы как главной меры взаимодействия активных элементов и на основе теоретических фактов постулирует взаимосвязь между ускорением тела, его величиной и инертностью. Третий ньютоновский закон - для каждой действующей на первое тело силы существует противодействующий фактор, равный по величине и противоположный по направлению.
  3. Закон сохранения внутренней энергии является следствием законов Ньютона для стабильных, замкнутых систем, в которых действуют исключительно консервативные силы. Полная механическая сила замкнутой системы материальных тел, между которыми действуют только тепловая энергия, остается постоянной.

Правила параллелограмма в механике

Из трех фундаментальных теорий движения тела Ньютона вытекают определенные следствия, одно из которых - сложение общего количества элементов по правилу параллелограмма. Согласно данной идее, ускорение любого физического вещества зависит от величин, в основном характеризующих действие иных тел, определяющих особенности самого процесса. Механическое действие на исследуемый объект со стороны внешней среды, которая кардинально изменяет скорость движения сразу нескольких элементов, называют силой. Она может иметь многогранную природу.

В классической механике, которая имеет дело со скоростями, значительно меньшими скорости света, масса считается одной из основных характеристик самого тела, не зависящей от того, движется оно или находится в состоянии покоя. Масса физического тела находится вне зависимости от взаимодействия вещества с другими частями системы.

Замечание 1

Таким образом, масса стала постепенно пониматься как количество живой материи.

Установление понятий массы и силы, а также метода их измерения позволило Ньютону описать и сформулировать второй закон классической механики . Итак, масса есть одна из ключевых характеристик материи, определяющая ее гравитационные и инертные свойства.

Первое и второе начало механики относятся соответственно к систематическому движению одного тела или материальной точки. При этом учитывается только действие других элементов в определенной концепции. Однако любое физическое действие есть взаимодействие.

Третий закон механики уже фиксирует данное утверждение и гласит: действию всегда соответствует противоположно направленное и равное противодействие. В формулировке Ньютона этот постулат механики справедлив лишь для случая непосредственной взаимосвязи сил или при внезапной передаче действия одного материального тела на другое. В случае перемещения за длительный промежуток времени третий закон применяется тогда, когда временем передачи действия возможно пренебречь.

Вообще все законы классической механики справедливы для функционирования инерциальных систем отсчета. В случае неинерциальных концепций ситуация совершенно иная. При ускоренном движении координат относительно самой инерциальной системы первый закон Ньютона невозможно использовать - свободные тела в ней будут менять свою скорость движения с течением времени и зависеть от скорости движения и энергии других веществ.

Границы применимости законов классической механики

Рисунок 3. Границы применимости законов классической механики. Автор24 - интернет-биржа студенческих работ

В результате достаточно стремительного развития физики в начале XX столетия сформировалась определенная сфера применения классической механики: ее законы и постулаты выполняются для движений физических тел, скорость которых значительно меньше скорости света. Было определено, что с ростом скорости масса любого вещества будет автоматически возрастать.

Несоответствие принципов в классической механике в основном исходило из того, что будущее в известном смысле полностью находится в настоящем – этим и определяется вероятность точного предвидения поведения системы в любой отрезок времени.

Замечание 2

Ньютоновский способ сразу стал главным инструментом познания сущности природы и всего живого на планете. Законы механики и методы математического анализа вскоре показали свою эффективность и значимость. Физический эксперимент, который базировался на измерительной технике, обеспечивал ученым небывалую ранее точность.

Физическое знание все в более значительной степени становилось центральной промышленной технологией, что стимулировало общее развитие других важных естественных наук.

В физике все изолированные ранее электричество, свет, магнетизм и теплота стали целыми и объединенными в электромагнитную гипотезу. И хотя сама природа тяготения оставалась так и неопределенной, ее действия возможно было рассчитать. Утвердилась и реализовалась концепция механистического детерминизма Лапласа, которая исходит из возможности точно определить поведение тел в любой момент времени, если изначально определены исходные условия.

Структура механики как науки казалась достаточно надежной и прочной, а также практически завершенной. В итоге сложилось впечатление, что знание физики и ее законов близко к своему финалу – столь мощную силу показал фундамент классической физики.