Тема: Электроизмерительные приборы и измерения электрических величин. Измерительные мосты переменного тока. Эталоны единиц электрических величин

Потребности науки и техники включают в себя проведение множества измерений, средства и методы которых постоянно развиваются и совершенствуются. Важнейшая роль в этой области принадлежит измерениям электрических величин, находящим широчайшее применение в самых различных отраслях.

Понятие об измерениях

Измерение любой физической величины производится путем сравнения ее с некоторой величиной того же рода явлений, принятой в качестве единицы измерения. Результат, полученный при сравнении, представляется в численном виде в соответствующих единицах.

Эта операция осуществляется с помощью специальных средств измерения - технических приспособлений, взаимодействующих с объектом, те или иные параметры которого требуется измерить. При этом используются определенные методы - приемы, посредством которых проводится сравнение измеряемой величины с единицей измерения.

Существует несколько признаков, служащих основой для классификации измерений электрических величин по видам:

  • Количество актов измерения. Здесь существенна их однократность или многократность.
  • Степень точности. Различают технические, контрольно-поверочные, максимально точные измерения, а также равноточные и неравноточные.
  • Характер изменения измеряемой величины во времени. Согласно этому критерию измерения бывают статические и динамические. Путем динамических измерений получают мгновенные значения величин, меняющихся во времени, а статических - некоторые постоянные значения.
  • Представление результата. Измерения электрических величин могут быть выражены в относительной или в абсолютной форме.
  • Способ получения искомого результата. По данному признаку измерения делятся на прямые (в них результат получается непосредственно) и косвенные, при которых прямо измеряются величины, связанные с искомой величиной какой-либо функциональной зависимостью. В последнем случае искомая физическая величина вычисляется по полученным результатам. Так, измерение силы тока с помощью амперметра - это пример прямого измерения, а мощности - косвенного.

Средства измерения

Приспособления, предназначенные для измерения, должны обладать нормированными характеристиками, а также сохранять на протяжении определенного времени либо воспроизводить единицу той величины, для измерения которой они предназначены.

Средства измерения электрических величин подразделяются на несколько категорий в зависимости от назначения:

  • Меры. Данные средства служат для воспроизведения величины некоторого заданного размера - как, например, резистор, воспроизводящий с известной погрешностью определенное сопротивление.
  • формирующие сигнал в форме, удобной для хранения, преобразования, передачи. Для непосредственного восприятия информация такого рода недоступна.
  • Электроизмерительные приборы. Эти средства предназначены для представления информации в доступной наблюдателю форме. Они могут быть переносными или стационарными, аналоговыми или цифровыми, регистрирующими или сигнализирующими.
  • Электроизмерительные установки представляют собой комплексы вышеперечисленных средств и дополнительных устройств, сосредоточенные в одном месте. Установки позволяют проводить более сложные измерения (например, магнитных характеристик или удельного сопротивления), служат как поверочные или эталонные устройства.
  • Электроизмерительные системы тоже являются совокупностью различных средств. Однако, в отличие от установок, приборы для измерения электрических величин и прочие средства в составе системы рассредоточены. С помощью систем можно измерять несколько величин, хранить, обрабатывать и передавать сигналы измерительной информации.

При необходимости решения какой-либо конкретной сложной измерительной задачи формируют измерительно-вычислительные комплексы, объединяющие ряд устройств и электронно-вычислительную аппаратуру.

Характеристики измерительных средств

Устройства измерительной аппаратуры обладают определенными свойствами, важными для выполнения их непосредственных функций. К ним относятся:

  • такие как чувствительность и ее порог, диапазон измерения электрической величины, погрешность прибора, цена деления, быстродействие и др.
  • Динамические характеристики, например амплитудные (зависимость амплитуды выходного сигнала прибора от амплитуды на входе) или фазовые (зависимость фазового сдвига от частоты сигнала).
  • Эксплуатационные характеристики, отражающие меру соответствия прибора требованиям эксплуатации в определенных условиях. К ним относятся такие свойства, как достоверность показаний, надежность (работоспособность, долговечность и безотказность аппарата), ремонтопригодность, электрическая безопасность, экономичность.

Совокупность характеристик аппаратуры устанавливается соответствующими нормативно-техническими документами для каждого типа устройств.

Применяемые методы

Измерение электрических величин производится посредством различных методов, которые также можно классифицировать по следующим критериям:

  • Род физических явлений, на основе которого измерение проводится (электрические или магнитные явления).
  • Характер взаимодействия измерительного средства с объектом. В зависимости от него различают контактные и бесконтактные методы измерения электрических величин.
  • Режим проведения измерения. В соответствии с ним измерения бывают динамическими и статическими.
  • Разработаны как методы непосредственной оценки, когда искомая величина прямо определяется прибором (к примеру, амперметром), так и более точные методы (нулевые, дифференциальные, противопоставления, замещения), в которых она выявляется путем сравнения с известной величиной. В качестве приборов сравнения служат компенсаторы и электроизмерительные мосты постоянного и переменного тока.

Электроизмерительные приборы: виды и особенности

Измерение основных электрических величин требует большого разнообразия приборов. В зависимости от физического принципа, положенного в основу их работы, все они делятся на следующие группы:

  • Электромеханические приборы обязательно имеют в конструкции подвижную часть. К этой большой группе измерительных средств относятся электродинамические, ферродинамические, магнитоэлектрические, электромагнитные, электростатические, индукционные приборы. Например, магнитоэлектрический принцип, применяющийся очень широко, может быть положен в основу таких устройств, как вольтметры, амперметры, омметры, гальванометры. На индукционном принципе основаны счетчики электроэнергии, частотомеры и т. д.
  • Электронные приборы отличаются наличием дополнительных блоков: преобразователей физических величин, усилителей, преобразователей и пр. Как правило, в приборах этого типа измеряемая величина преобразуется в напряжение, и конструктивной основой их служит вольтметр. Электронные измерительные приборы применяются в качестве частотомеров, измерителей емкости, сопротивления, индуктивности, осциллографов.
  • Термоэлектрические приборы сочетают в своей конструкции измерительное устройство магнитоэлектрического типа и термопреобразователь, образуемый термопарой и нагревателем, через который протекает измеряемый ток. Приборы этого типа используются в основном при измерениях высокочастотных токов.
  • Электрохимические. Принцип их работы базируется на процессах, которые протекают на электродах либо в исследуемой среде в межэлектродном пространстве. Применяются приборы этого типа для измерения электропроводности, количества электричества и некоторых неэлектрических величин.

По функциональным особенностям различают следующие виды приборов для измерения электрических величин:

  • Показывающие (сигнализирующие) - это устройства, позволяющие производить только непосредственное считывание измерительной информации, такие как ваттметры или амперметры.
  • Регистрирующие - приборы, допускающие возможность регистрации показаний, например, электронные осциллографы.

По типу сигнала приборы делятся на аналоговые и цифровые. Если устройство вырабатывает сигнал, представляющий собой непрерывную функцию измеряемой величины, оно является аналоговым, например, вольтметр, показания которого выдаются при помощи шкалы со стрелкой. В том случае, если в устройстве автоматически вырабатывается сигнал в виде потока дискретных значений, поступающий на дисплей в численной форме, говорят о цифровом измерительном средстве.

Цифровые приборы имеют некоторые недостатки по сравнению с аналоговыми: меньшая надежность, потребность в источнике питания, более высокая стоимость. Однако их отличают и существенные преимущества, в целом делающие применение цифровых устройств более предпочтительным: удобство эксплуатации, высокая точность и помехоустойчивость, возможность универсализации, сочетания с ЭВМ и дистанционной передачи сигнала без потери точности.

Погрешности и точность приборов

Важнейшая характеристика электроизмерительного прибора - класс электрических величин, как и любых других, не может производиться без учета погрешностей технического устройства, а также дополнительных факторов (коэффициентов), влияющих на точность измерения. Предельные значения приведенных погрешностей, допускаемые для данного типа прибора, называются нормированными и выражаются в процентах. Они и определяют класс точности конкретного прибора.

Стандартные классы, которыми принято маркировать шкалы измерительных устройств, следующие: 4,0; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05. В соответствии с ними установлено разделение по назначению: приборы, принадлежащие к классам от 0,05 до 0,2, относятся к образцовым, классами 0,5 и 1,0 обладают лабораторные приборы, и, наконец, устройства классов 1,5-4,0 являются техническими.

При выборе измерительного прибора необходимо, чтобы он соответствовал по классу решаемой задаче, при этом верхний предел измерения должен быть как можно ближе к численному значению искомой величины. То есть чем большего отклонения стрелки прибора удается достичь, тем меньше будет относительная погрешность проводимого измерения. Если в распоряжении имеются только приборы низкого класса, выбирать следует такой, который обладает наименьшим рабочим диапазоном. Используя данные способы, измерения электрических величин можно провести достаточно точно. При этом также нужно учитывать тип шкалы прибора (равномерная или неравномерная, как, например, шкалы омметров).

Основные электрические величины и единицы их измерения

Чаще всего электрические измерения связаны со следующим набором величин:

  • Сила тока (или просто ток) I. Данной величиной обозначается количество электрического заряда, проходящего через сечение проводника за 1 секунду. Измерение величины электрического тока проводится в амперах (A) при помощи амперметров, авометров (тестеров, так называемых «цешек»), цифровых мультиметров, измерительных трансформаторов.
  • Количество электричества (заряд) q. Эта величина определяет, в какой мере то или иное физическое тело может являться источником электромагнитного поля. Электрический заряд измеряется в кулонах (Кл). 1 Кл (ампер-секунда) = 1 А ∙ 1 с. Приборами для измерения служат электрометры либо электронные зарядометры (кулон-метры).
  • Напряжение U. Выражает разность потенциалов (энергии зарядов), существующую между двумя различными точками электрического поля. Для данной электрической величины единицей измерения служит вольт (В). Если для того, чтобы из одной точки переместить в другую заряд в 1 кулон, поле совершает работу в 1 джоуль (то есть затрачивается соответствующая энергия), то разность потенциалов - напряжение - между этими точками составляет 1 вольт: 1 В = 1 Дж/1 Кл. Измерение величины электрического напряжения производится посредством вольтметров, цифровых либо аналоговых (тестеры) мультиметров.
  • Сопротивление R. Характеризует способность проводника препятствовать прохождению через него электрического тока. Единица сопротивления - ом. 1 Ом - это сопротивление проводника, имеющего напряжение на концах в 1 вольт, к току величиной в 1 ампер: 1 Ом = 1 В/1 А. Сопротивление прямо пропорционально сечению и длине проводника. Для измерения его используются омметры, авометры, мультиметры.
  • Электропроводность (проводимость) G - величина, обратная сопротивлению. Измеряется в сименсах (См): 1 См = 1 Ом -1 .
  • Емкость C - это мера способности проводника накапливать заряд, также одна из основных электрических величин. Единицей измерения ее служит фарад (Ф). Для конденсатора эта величина определяется как взаимная емкость обкладок и равна отношению накопленного заряда к разности потенциалов на обкладках. Емкость плоского конденсатора растет с увеличением площади обкладок и с уменьшением расстояния между ними. Если при заряде в 1 кулон на обкладках создается напряжение величиной 1 вольт, то емкость такого конденсатора будет равна 1 фараду: 1 Ф = 1 Кл/1 В. Измерение производят при помощи специальных приборов - измерителей емкости или цифровых мультиметров.
  • Мощность P - величина, отражающая скорость, с которой осуществляется передача (преобразование) электрической энергии. В качестве системной единицы мощности принят ватт (Вт; 1 Вт = 1Дж/с). Эта величина также может быть выражена через произведение напряжения и силы тока: 1 Вт = 1 В ∙ 1 А. Для цепей переменного тока различают активную (потребляемую) мощность P a , реактивную P ra (не принимает участия в работе тока) и полную мощность P. При измерениях для них используют следующие единицы: ватт, вар (расшифровывается как «вольт-ампер реактивный») и, соответственно, вольт-ампер В∙А. Размерность их одинакова, и служат они для различения указанных величин. Приборы для измерения мощности - аналоговые или цифровые ваттметры. Косвенные измерения (например, с помощью амперметра) применимы далеко не всегда. Для определения такой важной величины, как коэффициент мощности (выражается через угол фазового сдвига) применяют приборы, называемые фазометрами.
  • Частота f. Это характеристика переменного тока, показывающая количество циклов изменения его величины и направления (в общем случае) за период в 1 секунду. За единицу частоты принята обратная секунда, или герц (Гц): 1 Гц = 1 с -1 . Измеряют данную величину посредством обширного класса приборов, называемых частотомерами.

Магнитные величины

Магнетизм теснейшим образом связан с электричеством, поскольку и то, и другое представляют собой проявления единого фундаментального физического процесса - электромагнетизма. Поэтому столь же тесная связь свойственна методам и средствам измерения электрических и магнитных величин. Но есть и нюансы. Как правило, при определении последних практически проводится электрическое измерение. Магнитную величину получают косвенным путем из функционального соотношения, связывающего ее с электрической.

Эталонными величинами в данной области измерений служат магнитная индукция, напряженность поля и магнитный поток. Они могут быть преобразованы с помощью измерительной катушки прибора в ЭДС, которая и измеряется, после чего производится вычисление искомых величин.

  • Магнитный поток измеряют посредством таких приборов, как веберметры (фотогальванические, магнитоэлектрические, аналоговые электронные и цифровые) и высокочувствительные баллистические гальванометры.
  • Индукция и напряженность магнитного поля измеряются при помощи тесламетров, оснащенных преобразователями различного типа.

Измерение электрических и магнитных величин, состоящих в непосредственной взаимосвязи, позволяет решать многие научные и технические задачи, например, исследование атомного ядра и магнитного поля Солнца, Земли и планет, изучение магнитных свойств различных материалов, контроль качества и прочие.

Неэлектрические величины

Удобство электрических методов дает возможность успешно распространять их и на измерения всевозможных физических величин неэлектрического характера, таких как температура, размеры (линейные и угловые), деформация и многие другие, а также исследовать химические процессы и состав веществ.

Приборы для электрического измерения неэлектрических величин обычно представляют собой комплекс из датчика - преобразователя в какой-либо параметр цепи (напряжение, сопротивление) и электроизмерительного устройства. Существует множество типов преобразователей, благодаря которым можно измерять самые разные величины. Вот лишь несколько их примеров:

  • Реостатные датчики. В таких преобразователях при воздействии измеряемой величины (например, при изменении уровня жидкости или же ее объема) перемещается движок реостата, изменяя тем самым сопротивление.
  • Терморезисторы. Сопротивление датчика в аппаратах этого типа изменяется под воздействием температуры. Применяются для измерения скорости газового потока, температуры, для определения состава газовых смесей.
  • Тензосопротивления позволяют проводить измерения деформации проволоки.
  • Фотодатчики, преобразующие изменение освещенности, температуры либо перемещение в измеряемый затем фототок.
  • Емкостные преобразователи, используемые как датчики химического состава воздуха, перемещения, влажности, давления.
  • работают по принципу возникновения ЭДС в некоторых кристаллических материалах при механическом воздействии на них.
  • Индукционные датчики основаны на преобразовании таких величин, как скорость или ускорение, в индуктированную ЭДС.

Развитие электроизмерительных средств и методов

Большое многообразие средств измерения электрических величин обусловлено множеством различных явлений, в которых эти параметры играют существенную роль. Электрические процессы и явления имеют чрезвычайно широкий диапазон использования во всех отраслях - нельзя указать такую область человеческой деятельности, где они не находили бы применения. Этим и определяется все более расширяющийся круг задач электрических измерений физических величин. Непрерывно растет разнообразие и совершенствование средств и методов решения этих задач. Особенно быстро и успешно развивается такое направление измерительной техники, как измерение неэлектрических величин электрическими методами.

Современная электроизмерительная техника развивается в направлении повышения точности, помехоустойчивости и быстродействия, а также все большей автоматизации измерительного процесса и обработки его результатов. Средства измерений прошли путь от простейших электромеханических приспособлений до электронных и цифровых приборов, и далее до новейших измерительно-вычислительных комплексов с использованием микропроцессорной техники. При этом повышение роли программной составляющей измерительных устройств является, очевидно, основной тенденцией развития.

Электроизмерительные приборы предназначены для измерения параметров, характеризующих: 1) процессы в электрических системах: токов, напряжений, мощностей, электрической энергии, частот, сдвигов фаз. Для этого используются амперметры, вольтметры, ваттметры, частотомеры, фазомеры; счетчики электрической...
()
  • и метод сравнения.
    (ОБЩАЯ ЭЛЕКТРОТЕХНИКА)
  • Мерами
  • Основные сведения о средствах электрических измерений и электроизмерительных приборах
    К средствам электрических измерений относятся: меры, электроизмерительные приборы, измерительные преобразователи, электроизмерительные установки и измерительные информационные системы. Мерами называют средства измерений, предназначенные для воспроизведения физической величины заданного размера....
    (АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ БУРЕНИЯ НЕФТЕГАЗОВЫХ СКВАЖИН)
  • А. Электрические измерения
    Развитие науки и техники неразрывно связаны с измерениями. Д. И. Менделеев писал: «Наука начинается с тех пор, как начинают измерять, точная наука немыслима без меры». У. Т. Кельвин говорил: «Каждая вещь известна лишь в той степени, в какой ее можно измерить». Совершенно естественно, что электротехника...
    (ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ)
  • Электрические измерения, классификация средств измерений
    Измерение - нахождение значений физических величин опытным путем с помощью специальных средств, называемых средствами измерений, и выражение этих значений в принятых единицах Фридман А. Э. Теория метрологической надежности средств измерений // Фундаментальные проблемы теории точности. СПб.: Наука,...
    (ТЕОРЕТИЧЕСКАЯ ИННОВАТИКА)
  • Основные методы электрических измерений. Погрешности измерительных приборов
    Существует два основных метода электрических измерений: метод непосредственной оценки и метод сравнения. В методе непосредственной оценки измеряемая величина отсчитывается непосредственно по шкале прибора. При этом шкала измерительного прибора предварительно градуируется по эталонному прибору...
    (ОБЩАЯ ЭЛЕКТРОТЕХНИКА)
  • При изучении электротехники приходится иметь дело с электрическим, магнитными и механическими величинами и измерять эти величины.

    Измерить электрическую, магнитную или какую-либо иную величину - это значит сравнить ее с другой однородной величиной, принятой за единицу.

    В этой статье рассмотрена классификация измерений, наиболее важная для . К такой классификации можно отнести классификацию измерений с методологической точки зрения, т. е. в зависимости от общих приемов получения результатов измерений (виды или классы измерений), классификацию измерений в зависимости от использования принципов и средств измерений (методы измерений) и классификацию измерений в зависимости от динамики измеряемых величин.

    Виды электрических измерений

    В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.

    К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y - искомое значение измеряемой величины; X -значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах.

    Например, измерения силы тока амперметром, температуры - термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.

    Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F(Xl, Х2 ... Хn ), где Y - искомое значение измеряемой величины; Х1 , Х2, Хn - значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.

    Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20

    Методы электрических измерений

    В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.

    Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина.

    Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.

    Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения . К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.

    Методы сравнения делятся на следующие: нулевой, дифференциальный, замещения и совпадения.

    Нулевой метод - это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов - нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений.

    Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.

    При дифференциальном методе , так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.

    Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга.

    Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры. Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.

    Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

    Примером применения метода замещения может быть измерение сравнительно большого путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлениями.

    Метод совпадений - это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений.

    Примером может служить измерение длины . В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.

    Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины . В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.

    Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими . Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными.

    Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t1 , t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными .

    ЭЛЕКТРОННОЕ УЧЕБНОЕ ПОСОБИЕ

    ПО ДИСЦИПЛИНЕ «ЭЛЕКТРОТЕХНИЧЕСКИЕ

    ИЗМЕРЕНИЯ»

    Выполнила:

    преподаватель КНТ Архипова Н.А.

    Кстово 2015

    Рассмотрено на ПЦК

    электротехнических дисциплин

    «___»_________20___ г.

    Протокол №_________

    Председатель ПЦК Н.И. Фомочкина

    Утверждено

    на методическом

    совете

    «___»_________20___г.

    Председатель методического совета Е.А. Костина

    Учебное пособие предназначено для студентов, обучающихся по специальности 220703 Автоматизация технологических процессов и производств (по отраслям) очного отделения.

    СОДЕРЖАНИЕ

    ВВЕДЕНИЕ 4

    Раздел 1. Государственная система обеспечения единства измерений 5

    Тема 1.1 Основные виды и методы измерений, их классификация 5

    Тема 1.2. Метрологические показатели средств измерения 7

    Раздел 2 Приборы и методы электрических измерений 9

    Тема 2.1 Механизмы и измерительные цепи электромеханических

    приборов 9

    Тема 2.2 Приборы и методы измерения тока 14

    Тема 2.3 Приборы и методы измерения напряжения 18

    Тема 2.4 Приборы и методы измерения мощности и энергии 21

    Тема 2.5 Приборы и методы измерения параметров электрических цепей 24

    приборы 28

    Раздел 3 Исследование формы сигналов 31

    Тема 3.1 Осциллографы 31

    Тема 3.2 Приборы и методы измерения частоты и интервала времени 32

    Тема 3.3 Приборы и методы измерения фазового сдвига 35

    ВВЕДЕНИЕ

    Цель и задачи учебной дисциплины. Краткие сведения из истории развития электрических измерений. Связь данной учебной дисциплины с другими дисциплинами.

    Проведение измерений является одним из основных средств получения объективных знаний о мире, а накопленный экспериментальный материал это база для обобщений и установления закономерностей его существования и развития. Вместе с тем проведение измерений имеет безусловное практическое значение, во многом на результатах измерений базируется и техническое развитие, и взаимодействие между отдельными субъектами хозяйственной деятельности. Среди всех измерений особое место занимают электротехнические измерения в силу универсальности электрических сигналов и имеющихся возможностей для их обработки и хранения, часто при измерении магнитных и неэлектрических величин выходным сигналом преобразователя является именно электрический сигнал.

    Раздел 1. Государственная система обеспечения единства

    измерений

    Тема 1.1 Основные виды и методы измерений, их

    классификация

    Роль и значение электроизмерительной техники. Определение понятия «измерение». Единицы физических величин. Классификация методов измерений и их краткая характеристика. Прямой и косвенный методы. Методы непосредственной оценки и методы сравнения (дифференциальный, нулевой, замещения). Понятие о средствах измерений: меры основных электрических величин, электроизмерительные приборы, электроизмерительные установки, измерительные преобразователи, информационные системы. Классификация и маркировка электроизмерительных приборов.

    К числу технических средств измерения относятся меры, измерительные преобразователи, измерительные приборы и измерительные системы. Измерительным преобразователем называют устройство, предназначенное для преобразования измеряемого параметра в сигнал, удобный для дальнейшей передачи на расстояние или в цепь управляющего устройства.

    Преобразователи подразделяют на первичные (датчики), промежуточные, передающие и масштабные. Измеряемую величину называют входной, а результат преобразования - выходным сигналом.

    Первичные преобразователи предназначены для преобразования физических величин в сигналы, а передающие и промежуточные преобразователи формируют сигналы, удобные для передачи на расстояние и регистрации.

    К масштабным относят преобразователи, с помощью которых измеряемая величина изменяется в заданное число раз, т. е. они не преобразуют одну физическую величину в другую.

    Измерительным прибором называют устройство, предназначенное для выработки измерительной информации в форме, доступной для непосредственного восприятия наблюдателем (оператором). Измерительные приборы делят на две группы.

    К первой группе относят аналоговые приборы, показания которых являются не прерывной функцией измеряемого параметра.

    Вторая группа включает в себя цифровые приборы. Они вырабатывают дискретные сигналы измеряемой информации в цифровой форме.

    Измерительная система объединяет измерительные преобразователи и приборы, обеспечивая измерения параметра без участия человека.

    Государственный стандарт устанавливает применение Международной системы единиц (СИ) во всех областях науки и техники.

    В состав СИ входят семь основных единиц, две дополнительные и двадцать семь важнейших производных единиц. В состав основных единиц входят: метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), моль (моль), кандела (кд).

    К дополнительным единицам системы СИ относятся радиан и стерадиан, а все остальные единицы являются производными. Например, единица силы - ньютон (Н), сообщает телу массой 1 кг ускорение 1 м/с2; единица давления - паскаль (Па), за единицу давления принимается такое равномерно распределенное давление, при котором на 1 м2 действует нормально к поверхности сила, равная 1 Н.

    Все измерения делят на прямые и косвенные. При прямых измерениях числовое значение измеряемого параметра определяют непосредственно измерительным прибором: например, измерение температуры термометром или линейных размеров детали мерительным инструментом.

    Косвенные измерения предусматривают определение искомого параметра на основании прямого измерения вспомогательной величины, связанной с измеряемым параметром определенной функциональной зависимостью. Например, определение объема тела по его длине, ширине и высоте или измерение температуры по изменению электропроводности термометра сопротивления.

    Вопросы для самопроверки

      Что такое измерение?

      Какова классификация видов измерений?

      В чем отличие образцовых измерительных средств от рабочих?

      Как классифицируются и обозначаются электроизмерительные и радиоизмерительные приборы?

    Тема 1.2. Метрологические показатели средств измерений

    Виды ошибок, их классификация по форме числового выражения, по закономерности появления, по вероятности реализации.

    Систематические погрешности, их задание и оценка. Случайные погрешности, источники их появления. Законы распределения погрешностей. Характеристики нормального распределения. Выявление промахов.

    Погрешности как характеристики средств измерений. Виды погрешностей и основные причины их возникновения. Определение приборной погрешности на основании класса точности прибора. Предел, цена деления, чувствительность электроизмерительного прибора. Типовая методика проверки электроизмерительных приборов. Общие сведения обработки результатов измерений.

    Любое измерение должно проходить по системе: планирование, проведение измерений, математическая обработка результатов измерений. При обработке обращать внимание на выявление промахов. Очень важно научиться рассчитывать результирующую погрешность, знать, как суммируются систематические и случайные погрешности, как определяется результирующая погрешность с заданным уровнем вероятности.

    В зависимости от причин погрешности подразделяют на пять групп: погрешности метода измерения, инструментальные, настройки прибора и его взаимодействия с объектом измерения, динамические и субъективные погрешности.

    Погрешности метода измерения являются результатом выбранной схемы измерения, не позволяющей устранить источники известных погрешностей.

    Инструментальные погрешности зависят от несовершенства измерительных устройств, т. е. от погрешностей изготовления деталей измерительного прибора.

    Погрешности настройки измерительных приборов определяются условиями эксплуатации. Погрешности могут возникать при взаимодействии прибора с объектом измерения; например, такие погрешности, которые вызываются влиянием измерительного усилия на деформацию измеряемой детали.

    Динамические погрешности возникают при преобразовании измеряемой величины. Динамические погрешности появляются в результате инерционности изменения измеряемого параметра.

    Субъективные погрешности появляются вследствие ограниченных физических возможностей оператора.

    В зависимости от условий работы различают два вида погрешностей: основные и дополнительные.

    Основные погрешности имеют место при нормальных режимах работы измерительного прибора, когда влияние внешних факторов минимально.

    Дополнительные погрешности вызываются воздействием внешних факторов, нарушающих нормальные условия работы прибора, например, изменением температуры или давления окружающей среды.

    Если значение абсолютной погрешности отнести к истинному значению А0 измеряемого параметра, то получим относительную погрешность , т. е.

    = / А0.

    Отношение абсолютной погрешности к диапазону шкалы прибора N называют приведенной относительной погрешностью.

    Вопросы для самопроверки

      По каким признакам классифицируются ошибки?

      Чем отличается относительная ошибка от приведенной?

      Какие показатели применяются для характеристики случайной погрешности?

      Каким образом можно выявить «промах» в ряде полученных результатов измерений?

      В чем отличие равноточных измерений от неравноточных?

      Какова методика обработки результатов косвенных измерений?

      Как рассчитать результирующую погрешность?

    ВАРИАНТ №1

    Вопросы

    1. Какую погрешность называют абсолютной?

    разность между измеренным и действительным значениями величины

    2 . Что такое чувствительность прибора?

    отношение изменения

    это число единиц измеряемой величины, приходящееся на одно деление шкалы прибора

    3 . Диапазон показаний - это

    область значений шкалы, ограниченная конечным и начальным значениями шкалы

    которой нормированы допускаемые погрешности средства измерений

    4 . Что такое калибровка СИ?

    совокупность операций, выполняемых с целью определения действительных значений метрологических характеристик

    совокупность операций и видов работ, направленных на обеспечение единства измерений.

    5 . Приведенная погрешность

    отношение абсолютной погрешности к действительному значению, выраженное в процентах

    отношение абсолютной погрешности к нормирующему значению, выраженное в процентах

    разность между измеренным и действительным значением величины

    ВАРИАНТ №2

    Вопросы

    1 . Какую погрешность называют относительной?

    отношение абсолютной погрешности к нормирующему значению, выраженное в процентах

    разность между измеренным и действительным значением величины

    отношение абсолютной погрешности к действительному значению, выраженное в процентах

    2.Что такое цена деления прибора?

    число единиц измеряемой величины, приходящееся на одно деление шкалы прибора

    отношение изменения

    выходного сигнала к вызвавшему его изменению измеряемой величины

    область значений шкалы, ограниченная конечным и начальным значениями шкалы

    3 . Вариация показаний прибора - это

    разность между измеренным и действительным значением величины

    наибольшая разность показаний при одном и том же значении измеряемой величины

    4 . Диапазон измерений - это

    область значений измеряемой величины, для которой нормированы допускаемые погрешности прибора

    разность между измеренным и действительным значением величины

    область значений шкалы прибора, ограниченная конечным и начальным значениями шкалы

    5 . Что такое поверка СИ?

    совокупность операций, выполняемых с целью определения действительных значений МХ.

    совокупность операций и видов работ, направленных на обеспечение единства измерений

    совокупность операций, выполняемых в целях подтверждения соответствия средств измерений метрологическим требованиям

    Раздел 2 Приборы и методы электрических измерений

    Тема 2.1 Механизмы и измерительные цепи

    электромеханических приборов

    Измерительные механизмы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической, электростатической, индукционной систем. Общий принцип создания различных электроизмерительных механизмов. Принцип действия электромеханических приборов. Понятие об измерительных цепях. Измерительная цепь электроизмерительных приборов: вольтметров, амперметров, ваттметров. Условные обозначения, наносимые на приборы.

    Основной функциональной частью магнитоэлектрического прибора является измерительный механизм. Конструктивно магнитоэлектрический механизм выполняется либо с подвижной катушкой (рамкой), либо с подвижным магнитом. Большее применение имеет первая из указанных групп.

    Принцип действия магнитоэлектрического механизма основан на взаимодействии магнитных полей постоянного магнита и катушки (рамки), по которой протекает ток. Противодействующий момент может создаваться механическим и электромагнитным способами.

    Магнитоэлектрические приборы применяют в качестве: 1) амперметров и вольтметров для измерения токов и напряжений в цепях постоянного тока (для этих целей приборы других групп используют в редких случаях); 2) омметров; 3) гальванометров постоянного тока, используемых в качестве нулевых индикаторов, а также для измерения малых токов и напряжений; 4) баллистических гальванометров, применяемых для измерений малых количеств электричества; 5) приборов для измерений в цепях переменного тока: а) осциллографических гальванометров, применяемых для наблюдения и записи быстропротекающих процессов; б) вибрационных гальванометров, используемых в основном в качестве нулевых индикаторов переменного тока; в) выпрямительных, термоэлектрических и электронных приборов, содержащих преобразователь переменного тока в постоянный.

    Достоинствами магнитоэлектрических приборов являются: 1) высокая чувствительность; 2) высокая точность; 3) малое собственное потребление мощности; 4) равномерная шкала; 5) малое влияние внешних магнитных полей.

    К недостаткам магнитоэлектрических приборов можно отнести: 1) невысокую перегрузочную способность; 2) сравнительно сложную конструкцию; 3) применение, при отсутствии преобразователей, только в цепях постоянного тока.

    Основной частью электромагнитного прибора является электромагнитный ИМ. Принцип действия электромагнитного измерительного механизма основан на взаимодействии магнитного поля, создаваемого проводником с током, и ферромагнитного сердечника.

    В настоящее время применяется большое число различных типов электромагнитных приборов, которые различаются по назначению, конструкции ИМ, форме катушек и сердечников и т. д.

    В зависимости от инерционности подвижной части или частоты ее собственных колебаний все электромагнитные приборы разделяются на две группы: резонансные и нерезонансные. Резонансные работают только на переменном токе. В нерезонансных приборах момент инерции подвижной части значителен, и смещение подвижной части пропорционально квадрату действующего значения тока.

    Обе группы приборов делятся на две подгруппы: поляризованные и неполяризованные. В поляризованных приборах кроме намагничивающей катушки имеется постоянный магнит. Поляризованные нерезонансные приборы не обладают высокой точностью. Из резонансных приборов в основном применяются язычковые герцметры.

    В зависимости от характера магнитной цепи нерезонансные приборы разделяются на приборы с магнитопроводом, условно называемым замкнутым, и без магнитопровода. Приборы с магнитопроводом имеют меньшее собственное потребление мощности, но вместе с этим и значительные погрешности из-за потерь в магнитопроводе от вихревых токов и гистерезиса. Приборы без магнитопровода имеют малое собственное магнитное поле и большую зависимость показаний от влияния внешних магнитных полей и позволяют создать приборы высокой точности для работы на постоянном и переменном токе. Эти приборы подразделяются на приборы отталкивающего и втяжного действия. В приборах первого типа расположенные внутри катушки с током ферромагнитные сердечники намагничиваются одноименно и отталкиваются друг от друга

    Электродинамический ИМ состоит из системы неподвижных и подвижных катушек (рамок), стойки, упругих элементов, успокоителя, отсчетного устройства, средств магнитной защиты. Катушки выполняют круглыми или прямоугольными. Круглые катушки дают, по сравнению с прямоугольными, увеличение чувствительности на 15-20%. Приборы с прямоугольными катушками имеют меньшие размеры прибора по вертикали.

    В основе ферродинамических приборов лежит ферродинамический измерительный механизм. Принцип действия ферродинамического измерительного механизма заключается во взаимодействии магнитных полей двух систем проводников с токами, и по существу является разновидностью электродинамического механизма. Отличие заключается в том, что для увеличения чувствительности ИМ содержит магнитопровод из магнитно-мягкого материала. Наличие магнитопровода значительно увеличивает магнитное поле в рабочем зазоре и при этом возрастает вращающий момент.

    Электростатические приборы строятся на основе электростатического измерительного механизма, который представляет собой систему подвижных и неподвижных электродов. Под действием напряжения, приложенного к электродам, подвижные электроды отклоняются относительно неподвижных. В электростатических ИМ отклонение подвижной части связано с изменением емкости.

    Электростатические приборы характеризуются: 1) весьма малым собственным потреблением мощности на постоянном токе и низких частотах. Это,объясняется тем, что оно обусловлено только кратковременным зарядным током и протеканием весьма малых токов утечки через изоляцию. На переменном токе потребление мощности также невелико ввиду малой емкости ИМ и малых диэлектрических потерь в изоляции; 2) широким частотным диапазоном (от 20 Гц до 35 МГц); 3) малой зависимостью показаний от изменений формы кривой измеряемого напряжения; 4) возможностью использования их в цепях постоянного и переменного токов для непосредственного измерения высоких напряжений (до 300 кВ) без применения измерительных трансформаторов напряжения. Наряду с этим электростатические приборы имеют и недостатки: они подвержены сильному влиянию внешних электростатических полей, обладают низкой чувствительностью к напряжению, имеют неравномерную шкалу, которую необходимо выравнивать за счет выбора формы электродов, и др.

    Точность электростатических приборов можно получить высокой за счет применения специальных конструктивно-технологических мероприятий по снижению погрешностей. В настоящее время разработаны переносные приборы классов точности 0,2; 0,1 и 0,05.

    Конструктивно индукционный измерительный механизм состоит из одного или нескольких неподвижных электромагнитов и подвижной части, которая обычно выполняется в виде алюминиевого диска, укрепленного на оси. Переменные магнитные потоки, направленные перпендикулярно плоскости диска, пронизывая последний, индуктируют в нем вихревые токи. Взаимодействие потоков с токами в диске вызывают перемещение подвижной части.

    По числу магнитных потоков, пересекающих подвижную часть, они могут быть однопоточными и многопоточными. Однопоточные индукционные механизмы в измерительной технике в настоящее время не применяются.

    Изучая приборы электромагнитной, электродинамической и ферродинамической систем, необходимо обратить внимание на то, что по принципу действия эти приборы пригодны для измерений в цепях как постоянного, так и переменного тока.

    Вопросы для самопроверки

    1. Напишите и объясните условие статического равновесия подвижной части показывающего прибора и уравнение его шкалы.

    2. Каким путем создаются противодействующие моменты в показывающих приборах?

    3. Что такое собственное потребление энергии прибором, какое влияние оно может оказывать на результаты измерения?

    4. Каковы принцип действия и устройство прибора магнитоэлектрической системы?

    5. Каковы принцип действия и устройство приборов электромагнитной, электродинамической и электростатической систем?

    6. Как устроены и каков принцип действия логометров магнитоэлектрической системы?

    7. Какие применяются способы расширения пределов измерения приборов различных систем?

    Тема 2.2 Приборы и методы измерения тока

    Методы измерения тока. Устройство, принцип действия, технические характеристики, разновидности, область применения основных типов амперметров, токоизмерительных клещей. Расширение пределов измерения с помощью трансформаторов тока и шунтов. Применение комбинированных приборов для измерения тока. Выбор прибора для измерения тока, включение в цепь, измерение, обработка результата измерения.

    Перед измерением тока нужно иметь представление о его частоте, форме, ожидаемом значении, требуемой точности измерения и сопротивлении цепи,в которой производится измерение. Эти предварительные сведения позволят

    выбрать наиболее подходящий метод измерения и измерительный прибор. Для измерения тока и напряжения применяют метод непосредственной оценки и метод сравнения. Для измерения тока в какой-либо цепи последовательно в цепь включают амперметр.

    Амперметр был разработан так, чтобы внутреннее сопротивление было как можно меньше. Поэтому, если вы включите не последовательно, а параллельно нагрузке обстоятельства могут быть непредсказуемые. Именно в последствии малого сопротивления внутри через амперметр потечет большой ток, что приведет к тому, что прибор сгорит или погорят провода.

    Амперметр – измерительный прибор для определения силы постоянного и переменного тока в электрической цепи. Показания амперметра всецело зависят от величины протекающего через него тока, в связи, с чем сопротивление амперметра по сравнению с сопротивлением нагрузки должно быть как можно меньшим. По своим конструктивным особенностям амперметры подразделяются на магнитоэлектрические, электромагнитные, термоэлектрические, электродинамические, ферродинамические и выпрямительные.

    Магнитоэлектрические амперметры служат для измерения силы тока малой величины в цепях постоянного тока. Они состоят из магнитоэлектрического измерительного механизма и шкалы с нанесенными делениями, соответствующими различным значениям измеряемого тока.

    Электромагнитные амперметры предназначены для измерения силы протекающего тока в цепях постоянного и переменного тока. Чаще всего используются для измерения силы в цепях переменного тока промышленной частоты (50 Гц). Состоят из измерительного механизма, шкала которого размечена в единицах силы тока, протекающего по катушке прибора. Для изготовления катушки можно использовать провод большого сечения и, следовательно, измерять ток большой величины (свыше 200 А).

    Термоэлектрические амперметры применяются для измерения в цепях переменного тока высокой частоты. Они состоят из магнитоэлектрического прибора с контактным или бесконтактным преобразователем, который представляет собой проводник (нагреватель), к которому приварена термопара (она может находиться на некотором расстоянии от нагревателя и не иметь с ним непосредственного контакта). Ток, проходя по нагревателю, вызывает его нагрев (за счет активных потерь), который регистрируется термопарой. Возникающее термическое излучение воздействует на рамку магнитоэлектрического измерителя тока, которая отклоняется на угол, пропорциональный силе тока в цепи.

    Электродинамические амперметры служат для измерения силы тока в цепях постоянного и переменного токов повышенной (до 200 Гц) частот. Приборы очень чувствительны к перегрузкам и внешним магнитным полям. Применяются в качестве контрольных приборов для проверки рабочих измерителей силы тока. Состоят из электродинамического измерительного механизма, катушки которого в зависимости от величины максимально измеряемого тока соединены последовательно или параллельно, и градуированной шкалы. При измерении токов малой силы катушки соединяются последовательно, а большой – параллельно.

    Ферродинамические амперметры прочны и надежны по конструкции, малочувствительны к воздействию внешних магнитных полей. Они состоят из ферродинамического измерительного аппарата и применяются главным образом в системах автоматических контроллеров в качестве самопишущих амперметров.

    Каждый амперметр рассчитывается на некоторое определенное максимальное значение измеряемой величины. Но, часто, возникают ситуации, когда необходимо выполнить измерение некоторой величины, значение которой больше пределов измерения прибора. Тем не менее, всегда оказывается возможным расширить пределы измерения данным прибором. Для этого параллельно амперметру присоединяют проводник, по которому проходит часть измеряемого тока. Значение сопротивления этого проводника рассчитывается так, чтобы сила тока, проходящего через амперметр, не превышала его максимально допустимого значения. Такое сопротивление называется шунтирующим. Результатом подобных действий станет то, что если амперметром, рассчитанным, например, на силу тока до 1 А, необходимо выполнить измерение тока в 10 раз больше, то сопротивление шунта должно быть в 9 раз меньше сопротивления амперметра. Разумеется, при этом цена градуировки увеличивается в 10 раз, а точность во столько же раз уменьшается.

    Для расширения предела измерения амперметра (в k раз) в цепях постоянного тока служат шунты-резисторы, включаемые параллельно амперметру.

    Шкалы амперметров обычно градуируют непосредственно в единицах силы тока:

    амперах, миллиамперах или микроамперах. Нередко в лабораторной практике применяет многопредельные амперметры. Внутри корпуса таких приборов размещают несколько различных шунтов, которые подключаются параллельно индикатору с помощью переключателя пределов измерений. На лицевой панели многопредельных приборов указывают максимальные значения силы тока, которые могут быть измерены при том или ином положении переключателя пределов измерений. Цена деления шкалы (если у прибора имеется единственная шкала) будет разной для каждого предела измерений. Часто многопредельные приборы имеют несколько шкал, каждая из которых соответствует определенному пределу измерений.

    Вопросы для самопроверки

      Как измерить силу тока?

      Что такое амперметр?

      Основные типы амперметров

      Как подключается амперметр?

      Назначение шунтов

    Решение задач по теме « Приборы и методы измерения тока»

    ВАРИАНТ 1

    Задача 1.

    Амперметр с внутренним сопротивлением 0,28 Ом имеет шкалу на 50 дел. с ценой деления 0,01 А /дел. Определить цену деления и предельную величину измеряемого тока при подключении шунта с сопротивлением 0,02Ом.

    Задача 2.

    Шкала ИМ с сопротивлением 5Ом разбита на 100дел. Цена деления

    0,2 мА/дел. Из этого механизма необходимо сделать амперметр на 10А. Как это сделать? Какой ток в цепи измерит амперметр, если стрелка отклонилась на 35дел.

    Задача 3.

    Определить значение сопротивления шунта, необходимого для расширения предела измерения амперметра с внутренним сопротивлением 5Ом, от номинального его значения 4мА до значения 15А.

    ВАРИАНТ 2

    Задача 1.

    Шкала ИМ с внутренним сопротивлением 2Ом разбита на 150дел. Цена деления 0,2мА/дел. Из этого механизма необходимо сделать амперметр на 15А. Как это сделать?

    Какой ток измерит амперметр, если стрелка отклонилась на 20дел.

    Задача 2.

    Определить значение сопротивления шунта для расширения предела измерения амперметра с внутренним сопротивлением 0,58Ом, от номинального значения 5А до значения 150А.

    Задача 3.

    К амперметру, рассчитанному на 5А с внутренним сопротивлением 0,6Ом и шкалой на 10дел. подключен шунт с сопротивлением 0,025Ом. При измерении тока стрелка отклонилась на 8дел. Определить ток в цепи, измеренный амперметром.

    Тема 2.3 Приборы и методы измерения напряжения

    Методы измерений напряжения. Устройство, принцип действия, технические характеристики, разновидности, область применения: электромеханических вольтметров, электронных вольтметров, цифровых вольтметров, компенсаторов. Применение комбинированных приборов для измерения напряжения. Выбор прибора для измерения напряжения, включения в цепь, измерение, обработка результата измерения.

    Для измерения напряжения используются вольтметры. Вольтметры включаются параллельно тому участку цепи, где необходимо измерить напряжение. Чтобы прибор не потреблял большой ток и не влиял на величину напряжения цепи, обмотка его должна иметь большое сопротивление. Чем больше внутреннее сопротивление вольтметра, тем точнее он будет измерять величину напряжения. Для этого обмотка вольтметра изготовляется из большого числа витков тонкой проволоки. Для расширения пределов измерения вольтметров употребляются добавочные сопротивления, включаемые последовательно с вольтметрами. В этом случае напряжение сети распределяется между вольтметром и добавочным сопротивлением. Величину добавочного сопротивления необходимо подбирать с таким расчетом, чтобы в цепи с повышенным напряжением по обмотке вольтметра проходил тот же ток, что и при номинальном напряжении.

    Большая часть применяемых сейчас стационарных измерительных устройств - это классические аналоговые электромеханические приборы. Их эксплуатационные и метрологические характеристики могут считаться достаточными для решения основных задач технических измерений. Классы точности данных устройств лежат в диапазоне от 0,1 до 4 %.

    Принцип действия электромеханических измерительных приборов базируется на преобразовании электрической энергии входного сигнала в механическую энергию углового движения подвижной части отсчетного устройства. Кроме того электромеханические приборы, помимо автономного применения, могут использоваться и в качестве выходных устройств для других электронных аналоговых устройств.

    В электромеханических приборах реализованы разные физические принципы, позволяющие преобразовать значение измеряемой характеристики в пропорциональное ей отклонение указателя. Конструкцию же электромеханического прибора любого типа можно представить в виде последовательного соединения входной цепи, измерительного устройства и отсчетного прибора.

    Из всего разнообразия систем, конструкций и схем электромеханических измерительных приборов можно отметить следующие основные классы: магнитоэлектрические, выпрямительные, термоэлектрические, электромагнитные, электродинамические, электростатические, индукционные.

    Электронные вольтметры представляют собой сочетание электронного преобразователя и измерительного прибора. В отличие от вольтметров электромеханической группы электронные вольтметры постоянного и переменного токов имеют высокие входное сопротивление и чувствительность, широкие пределы измерения и частотный диапазон (от 20Гц до 1000 МГц), малое потребление тока из измерительной цепи.

    Классифицируют электронные вольтметры по ряду признаков:

    по назначению – вольтметры постоянного, переменного и импульсного напряжений; универсальные, фазочувствительные, селективные;

    по способу измерения - приборы непосредственной оценки и приборы сравнения;

    по характеру измеряемого значения напряжения - амплитудные (пиковые), среднего квадратического значения средневыпрямленного значения;

    по частотному диапазону - низкочастотные, высокочастотные, сверхвысокочастотные.

    Кроме того, все электронные приборы можно разделить на две большие группы: аналоговые электронные со стрелочным отсчетом и приборы дискретного типа с цифровым отсчетом.

    Измерители напряжения независимо от их назначения должны при включении не нарушать режима работы цепи измеряемого объекта; обеспечивать малую погрешность измерений, исключив при этом влияние внешних факторов на работу прибора, высокую чувствительность измерения на оптимальном пределе, быструю готовность к работе и высокую надежность.

    Выбор приборов, выполняющих измерения напряжения, определяется совокупностью многих факторов, важнейшие из которых: род измеряемого напряжения; примерные диапазон частот измеряемой величины и амплитудный диапазон; форма кривой измеряемого напряжения; мощность цепи, в которой осуществляется измерение; мощность потребления прибора; возможная погрешность измерения.

    В маломощных цепях постоянного и переменного токов для измерения напряжения обычно пользуются цифровыми и аналоговыми электронными вольтметрами. Если необходимо измерить напряжения с более высокой точностью, следует использовать приборы, действие которых основано на методах сравнения, в частности на методе противопоставления.

    Современные цифровые вольтметры содержат микропроцессорные блоки и снабжены клавиатурой, что позволяет автоматизировать процесс измерения, проводить его в соответствии с заданной программой, осуществлять требуемую обработку результатов измерений, расширять функциональные возможности прибора. Превратить его в мультиметр, позволяющий измерять не только напряжение постоянного тока, но и многие другие величины: напряжение переменного тока, сопротивление, емкость конденсатора, частоту и др.

    Вопросы для самопроверки

      Как можно измерить напряжение?

      Как классифицируются электронные вольтметры?

      Перечислите основные блоки цифровых вольтметров

      Как производится выбор приборов для измерения напряжения?

      Каковы значения коэффициентов амплитуды и формы при синусоидальном напряжении?

      Нарисуйте принципиальные схемы вольтметров с линейным, пиковым и квадратичным детекторами.

      Каковы разновидности структурных схем цифровых вольтметров?

    Тема 2.4 Приборы и методы измерения мощности и энергии

    Методы измерения мощности и электроэнергии. Устройство, принцип действия, технические характеристики, разновидности, область применения: ваттметров и электросчётчиков. Выбор приборов для измерения мощности и электроэнергии, включение их в цепь, измерение, обработка результатов измерения. Расширение пределов измерения.

    Из выражения для мощности на постоянном токе Р = IU видно, что мощность можно измерить с помощью амперметра и вольтметра косвенным методом. Однако в этом случае необходимо производить одновременный отсчет по двум приборам и вычисления, усложняющие измерения и снижающие его точность.

    Для измерения мощности в цепях постоянного и однофазного переменного тока применяют приборы, называемые ваттметрами, для которых используют электродинамические и ферродинамические измерительные механизмы.

    Мощность в электрических цепях измеряют прямым и косвенным способами. При прямом измерении используют ваттметры, при косвенном - амперметры и вольтметры.

    В системах электроснабжения применяются измерительные приборы электрических величин. Наиболее применимыми являются амперметры, вольтметры, измерители мощности (ваттметры и варметры), счетчики активной и реактивной энергии. При выборе приборов измерения электрических величин следует учитывать род тока – постоянный или переменный.

    Для измерения активной мощности применятся ваттметры. Ваттметры имеют две измерительные катушки, тока и напряжения. Момент вращения, создаваемый этими катушками, пропорционален протекающим через них токам.

    Для измерения потребляемой электроэнергии применяют однофазные или трехфазные счетчики электрической энергии. Эти приборы имеют индукционные измерительные механизмы.

    Ваттметр – измерительный прибор, имеющий назначение определять работу совершаемую электрическим током в единицу времени для прохождения тока через какой-либо проводник (определение мощности электрического тока или электромагнитного сигнала).

    Ваттметр может определить количество ваттов необходимых для получения некоторой силы электрического света в каждую секунду времени или определить величину выполняемой работы в единицу времени каким-либо электрическим прибором. Работа совершаемая электрическим прибором в единицу времени (его мощность) определяется в ваттах и является произведением числа амперов (сила тока) потребляемых данным видом электрических потребителей на разность потенциалов (+ -) концов этой части цепи измеряемой в вольтах.

    Для определения мощности электрического тока и используются ваттметры , представляющие собой не что иное, как электродинамометр. Проходящий ток распределяется на две части, одна из которых является, по сути, контролем, а вторая опытом, изменяя сопротивление на опытной части и измеряя разность потенциалов на выходе и определяется мощность электрического тока.

    По назначению и диапазону частот ваттметры можно разделить на три основные категории:
    – низкочастотные (и постоянного тока);
    – радиочастотные;
    – оптические.

    Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа функционального преобразования измерительной информации и ее вывода пользователю ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

    Низкочастотные ваттметры используются преимущественно в сетях электропитания промышленной частоты для измерения потребляемой мощности, могут быть однофазные и трехфазные. Отдельную подгруппу составляют варметры - измерители реактивной мощности. Цифровые приборы обычно совмещают в себе возможность измерения активной и реактивной мощности.

    Радиочастотные ваттметры образуют весьма большую и широко используемую подгруппу ваттметров радиодиапазона. Деление этой подгруппы связано в основном с применением различных типов первичных преобразователей. Выпускаемые ваттметры используют преобразователи на базе термистора, термопары или пикового детектора; значительно реже, применяются датчики, основанные на других принципах. При работе с ваттметрами поглощаемой мощности следует помнить, что из-за несогласования входного сопротивления приемных датчиков с волновым сопротивлением линии, часть энергии отражается и реально ваттметр измеряет не реальную мощность линии, а поглощенную, которая отличается от действительной.

    Принцип действия термисторного преобразователя состоит в зависимости сопротивления термистора от температуры его нагрева, которая, в свою очередь зависит от рассеиваемой мощности сигнала, подаваемого на него. Измерение осуществляется методом сравнения мощности измеряемого сигнала, рассеиваемой в термисторе и разогревающей его, с мощностью тока низкой частоты, вызывающей такой же нагрев термистора. К недостаткам термисторных ваттметров относится их малый диапазон регистрации – несколько милливатт.

    Расширение пределов измерения на постоянном токе по напряжению производится с помощью добавочных сопротивлений - шунтов. При измерениях на переменном токе расширение пределов производится с помощью трансформаторов тока и напряжения. При этом необходимо соблюдать правильность включения генераторных клемм ваттметра.
    Измерение мощности в трехфазных трехпроводных сетях производится с помощью двух однофазных ваттметров, включенных в две фазы.

    Расширение пределов измерения производится с помощью трансформаторов тока и напряжения. В этих же сетях для измерения мощности применяется трехфазный ваттметр.

    В трехфазных четырехпроводных сетях измерение активной мощности производят с помощью трех однофазных ваттметров или одним трехэлементным ваттметром.

    Реактивная мощность в однофазных сетях измеряется с помощью одного ваттметра, включенного по схеме, а в трехфазных - с помощью трех ваттметров.

    Вопросы для самопроверки

      Дайте определения и аналитические выражения активной и реактивной мощности.

      Каковы методы измерения активной мощности в цепях постоянного и однофазного переменного тока?

      Нарисуйте схему измерителя реактивной мощности.

      Какие методы используются для измерения актив-
      ной мощности и энергии в трехфазных цепях?

    Тема 2.5 Приборы и методы измерения параметров электрических цепей.

    Измерение сопротивлений. Омметры. Метод вольтметра и амперметра: схемы включения, их достоинства и недостатки. Погрешности метода. Мостовые схемы. Теория одинарного моста постоянного тока. Двойной мост.

    Измерение параметров конденсаторов и индуктивностей. Мостовые схемы. Резонансные схемы. Измерения методом замещения. Погрешности измерений.

    Для измерения сопротивлений применяют различные методы в зависимости от характера объектов и условий измерения (например, твердые и жидкие проводники, заземлители, электроизоляция); от требований к точности и быстроте измерения; от величины измеряемых сопротивлений. При изучении теории мостов необходимо уяснить причины, препятствующие применению одинарного моста постоянного тока для измерения малых сопротивлений. Рассмотреть теорию двойного моста. В теории мостов перешитого тока необходимо рассмотреть условия равновесия, отличающиеся от условий равновесия мостов постоянного тока.

    Методы измерения малых сопротивлений существенно отличаются от методов измерения больших сопротивлений, так как в первом случае надо принимать меры для исключения влияния на результаты измерений сопротивления соединительных проводов, переходных контактов.

    Основными методами измерения сопротивления постоянному току являются: косвенный метод; метод непосредственной оценки и мостовой метод. Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности. Наиболее универсальным из косвенных методов является метод амперметра-вольтметра.

    Метод амперметра-вольтметра - о снован на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений и измерение малых сопротивлений. По результатам измерения тока и напряжения определяют искомое сопротивление.

    Метод непосредственной оценки - п редполагает измерение сопротивления постоянному току с помощью омметра. Измерения омметром дают существенные неточности. По этой причине данный метод используют для приближенных предварительных измерений сопротивлений и для проверки цепей коммутации.

    Мостовой метод - п рименяют две схемы измерения - схема одинарного моста и схема двойного моста. Одинарный мост постоянного тока состоит из трех образцовых резисторов (обычно регулируемых) ,которые включают последовательно с измеряемым сопротивлением Rx в мостовую схему. Для измерения сопротивлений ниже 1 Ом используется д войной мост Томсона.

    Рассмотреть возможные методы измерения индуктивностей и емкостей. Достоинства и недостатки резонансных схем измерения. Источники погрешностей. Схемы замещения, разобраться, в чем заключается их преимущество перед другими методами измерения. Приборы непосредственной оценки и сравнения - к измерительным приборам непосредственной оценки значения измеряемой емкости относятся микрофарадметры , действие которых базируется на зависимости тока или напряжения в цепи переменного тока от значения включенной в нее . Значение емкости определяют по шкале стрелочного измерителя.

    Более широко для измерения и индуктивностей применяют уравновешенные мосты переменного тока , позволяющие получить малую погрешность измерения (до 1 %). Питание моста осуществляется от генераторов, работающих на фиксированной частоте 400-1000 Гц. В качестве индикаторов применяют выпрямительные или электронные милливольтметры, а также осциллографические индикаторы.

    Вопросы для самопроверки

      Как можно измерить сопротивление в сетях постоянного и переменного тока?

      Как измеряют сопротивление изоляции проводов?

      Какова структурная схема прибора для измерения неэлектричёских величин?

      Рассмотрите принцип действия, устройство и основы теории отдельных типов преобразователей.

      Какие существуют варианты схем включения амперметров и вольтметров для измерения сопротивления?

      Нарисуйте схему одинарного моста и укажите элементы, являющиеся источником погрешностей при измерении малых сопротивлений.

      Какие электрические величины могут быть измерены с помощью моста переменного тока?

      Какие существуют источники погрешностей в резонансных схемах измерения?

      Каковы достоинства измерительных схем замещения?

    Тема 2.6 Универсальные и специальные электроизмерительные

    приборы

    Основные параметры и типы универсальных и специальных электроизмерительных приборов, краткая техническая характеристика. Мультиметры, вольтамперметры, комбинированные приборы. Схема измерительных цепей комбинированного прибора. Цифровые мультиметры, блок-схема, переключатели рода измерений и пределов измерений. Единицы измерений. Входное сопротивление мультиметра. Измерение сопротивлений, токов, напряжений, электрических емкостей, параметров полупроводниковых приборов.

    Существует большое число измерительных приборов, используемых для выполнения строго определенных работ: обслуживания, тестирования кабельных линий, измерения параметров питающей сети. Каждый из них идеально подходит для выполнения специфического набора измерений, но не более того. Поэтому ремонт или наладка различных устройств невозможны без обычных измерительных приборов: мультиметров, осциллографов, универсальных и специальных генераторов, частотомеров, измерителей RLC, логических анализаторов. С егодня большинство из этих приборов выпускается в настольной, переносной и носимой модификациях. Поэтому такой прибор всегда можно подобрать в соответствии с любыми предполагаемыми условиями работы: от лабораторных до полевых, с питанием от сети переменного тока, бортовой сети или батарей. А принципиальные отличия приборов различного исполнения касаются, пожалуй, всего двух моментов: класса точности и возможности интеграции в измерительные комплексы. Обычно носимые модификации имеют и точность похуже, и набор сервисных функций попроще, но внедрение цифровой обработки сигналов меняет эту ситуацию. область применения измерительных комплексов с компьютерным управлением ограничена, как правило, научными экспериментами и различными серийными испытаниями. Именно там важное значение имеет автоматизация процесса сбора и обработки результатов измерений . Мультиметр и осциллографы - одни из самых распространенных приборов. С каждым днем число интегрированных в них основных и дополнительных функций растет. Более того, с точки зрения своих возможностей эти приборы становятся все ближе. Осциллограф может иметь встроенный мультиметр, а мультиметр - возможность отображения измеряемого сигнала. Мультиме́тр (от multimeter , те́стер - от test - испытание, аво́метр - от АмперВольтОмметр) - комбинированный , объединяющий в себе несколько функций. В минимальном наборе это , и . Существуют и мультиметры.

    Мультиметр может быть как лёгким переносным устройством, используемым для базовых и поиска неисправностей, так и сложным стационарным прибором со множеством возможностей.

    Наиболее простые цифровые мультиметры имеют 2,5 цифровых разряда ( обычно около 10 %). Наиболее распространены приборы с разрядностью 3,5 (точность обычно около 1,0 %). Выпускаются также чуть более дорогие приборы с разрядностью 4,5 (точность обычно около 0,1 %) и существенно более дорогие приборы с разрядностью 5 и выше. Точность последних сильно зависит от диапазона измерения и вида измеряемой величины, поэтому оговаривается отдельно для каждого поддиапазона. В общем случае точность таких приборов может превышать 0,01 %, несмотря на портативное исполнение.

    Разрядность цифрового измерительного прибора, например, «3,5» означает, что дисплей прибора показывает 3 полноценных разряда, с диапазоном от 0 до 9, и 1 разряд - с ограниченным диапазоном. Так, прибор типа «3,5 разряда» может, например, давать показания в пределах от 0,000 до 1,999 , при выходе измеряемой величины за эти пределы требуется переключение на другой диапазон (ручное или автоматическое).

    Количество разрядов не определяет точность прибора. Точность измерений зависит от точности , от точности, термо- и временной стабильности применённых радиоэлементов, от качества защиты от внешних наводок, от качества проведённой .

    Аналоговый мультиметр состоит из стрелочного магнитоэлектрического измерительного прибора, набора добавочных для измерения напряжения и набора для измерения тока. Измерение сопротивления производится с использованием встроенного или от внешнего источника. В аналоговом мультиметре результаты измерений наблюдается по движению стрелки (как на часах) по измерительной шкале, на которой подписаны значения: напряжение, ток, сопротивление. Популярность аналоговых мультиметров объясняется их доступностью и ценой, а основным недостатком является некоторая погрешность в результатах измерений. Для более точной подстройки в аналоговых мультиметрах имеется специальный построечный резистор, манипулируя которым можно добиться немного большей точности. Тем не менее, в случаях когда желательны более точные измерения, лучшим будет использование цифрового мультиметра.
    Главный отличием цифрового от аналогового является то, что результаты измерения отображаются на специальном экране. К тому же цифровые мультиметры обладают более высокой точностью и отличаются простотой использования, так как не приходится разбираться во всех тонкостях градуирования измерительной шкалы, как в стрелочных вариантах.

    Вопросы для самопроверки

      Какой прибор называется мультиметром?

      Разновидности муьтиметров

      Характеристики аналогового мальтиметра

      Характеристики цифрового мультиметра

    Раздел 3 Исследование формы сигналов

    Тема 3.1 Осциллографы

    Общие сведения и классификация электронно-лучевых осциллографов. Устройство, принцип действия, назначение, технические характеристики, структурная схема электронно-лучевого осциллографа. Использование электронно-лучевого осциллографа для наблюдения электрического сигнала, для измерения амплитуды, частоты и периода периодического сигнала. Типы осциллографов. Блок-схема электронного осциллографа. Подготовка, калибровка и измерение различных сигналов. Особенности подготовки, калибровки и измерений двухлучевыми, осциллографами-мультиметрами и осциллографами с запоминанием информации. Особенности измерения электронными осциллографами неэлектрических величин Аналоговые осциллографы, цифровые запоминающие осциллографы, цифровые люминофорные осциллографы, цифровые стробоскопические осциллографы, виртуальные осциллографы, портативные осциллографы

    Электромеханические осциллографы широко применяются для наблюдения и регистрации быстро изменяющихся во времени величин. Что такое осциллограф? Это прибор, который предназначен для исследования всевозможных электрических сигналов путём визуального наблюдения специального сигнала, записанного на фотоленте либо на экране именно графика, а также для измерения амплитудных и временных параметров сигнала по форме графика.

    Все электронно-лучевые осциллографы имеют экраны, на которых отображаются графики сигналов входных. В виде сетки на экран нанесена специальная разметка. Если применяется , то у него изображения в виде готовой картинки выводятся на дисплей, который бывает монохромным или же цветным. У аналоговых осциллографов используется в качестве экрана электронно-лучевая трубка с, так называемым, электростатическим отклонением.

    Все используемые сегодня осциллографы различаются по своему назначению, а также по способу вывода измерительной информации и, конечно, по тому, какой способ обработки входного сигнала используется.

    Осциллографы для наблюдения на экране формы сигнала с периодической развёрткой. Экран может быть как электронно-лучевым, так и жидкокристаллическим. С непрерывной развёрткой осциллографы для регистрации на фотоленте кривой. Они еще называются шлейфовые осциллографы. Так же выделяют цифровые и аналоговые осциллографы

    При их изучении необходимо уяснить причины, вследствие которых электромеханические осциллографы применяются лишь для исследования процессов с частотой, не превышающей нескольких тысяч герц.

    Вопросы для самопроверки

      Области применения электромеханических осциллографов?

      Каким способом достигается развертка кривой исследуемого напряжения в электронном осциллографе?

      От чего зависят амплитудные и фазовые погрешности электронного и электромеханического осциллографов?

    Тема 3.2 Приборы и методы измерения частоты и интервала времени

    Методы измерения частоты и интервала времени. Устройство, принцип действия, технические характеристики, разновидности, область применения частотомеров. Измерение интервалов времени. Измерительные генераторы. Блок-схема. Генераторы R - C , L - C , на биениях, шума, стандартных сигналов, импульсные. Характеристики сигналов. Правила настройки и подключения. Согласующие устройства. Правила техники безопасности.

    Непосредственное измерение частоты производят частотомерами , в основу которых положены различные методы измерения в зависимости от диапазона измеряемых частот и требуемой точности измерения. Наиболее распространенными методами измерения частоты являются: метод перезаряда конденсатора, резонансный метод, метод дискретного счета , метод сравнения измеряемой частоты с эталонной. Частотомеры используются нечасто. По большей части функции встроенного в мультиметр частотомера оказывается достаточно. Но в тех случаях, когда нужен точный результат или внешнее управление, без специального прибора не обойтись. Такие частотомеры могут измерять частоту, период и скважность периодических сигналов, определять длительность интервалов, осуществлять эталонный отсчет времени. Сложные модели предусматривают возможность вычислительной обработки результатов совокупности измерений и несколько каналов для реализации сложных алгоритмов запуска счета, обработки сигналов с разными параметрами или выполнения относительных измерений.

    Генераторы используется гораздо реже и, в основном, при отладке и испытаниях различных устройств. Генераторы делятся на низкочастотные, высокочастотные и функциональные. Первые формируют синусоидальный сигнал или меандр с частотой от нескольких герц до сотен килогерц, вторые - с частотами до сотен мегагерц с возможностью модулирования сигнала по заданному закону внешним или внутренним сигналом. Функциональные генераторы формируют сигналы сложной формы (синус, прямоугольник, треугольник, пила, трапеция) в диапазоне частот до десятков мегагерц с заданной скважностью, а также цифровые сигналы с уровнями ТТЛ и КМОП. Некоторые модели могут работать как генераторы качающейся частоты (по заданному закону) или формировать простейший амплитудно- или частотно-модулированный сигнал.

    Метод перезаряда конденсатора за каждый период измеряемой частоты - с реднее значение тока перезаряда пропорционально частоте и измеряется магнитоэлектрическим амперметром, шкала которого проградуирована в единицах частоты. Выпускают конденсаторные частотомеры с пределом измерения 10 Гц - 1 МГц и погрешностью измерения ±2%.

    Резонансный метод , основанный на явлении электрического резонанса в контуре с подстраиваемыми элементами в резонанс с измеряемой частотой. Измеряемая частота определяется по шкале механизма подстройки. Метод применяется на частотах более 50 кГц. Погрешность измерения можно уменьшить до сотых долей процента.

    Метод дискретного счета лежит в основе работы электронно-счетных цифровых частотомеров . Он основан на счете импульсов измеряемой частоты за известный промежуток времени. Обеспечивает высокую точность измерения в любом диапазоне частот.

    Метод сравнения измеряемой частоты с эталонной - электрические колебания неизвестной и образцовой частот смешиваются таким образом, чтобы возникли биения некоторой частоты. При частоте биений, равной нулю, измеряемая частота равна образцовой. Смешение частот осуществляют гетеродинным способом (способ нулевых биений) или осциллографическим.

    Решение многих радиотехнических задач связано с измерением интервалов времени. Обычно приходится измерять как очень малые (единицы пикосекунд) так и очень большие (сотни секунд) интервалы времени. Интервалы времени могут также быть не только повторяющимися, но и однократными.

    Различают два основных способа измерения интервалов времени: осциллографический и цифровой.

    Измерение интервалов времени с помощью осциллографа проводится по осциллограмме исследуемого напряжения с использованием «линейной» развертки. Из-за нелинейности развертки, а также больших погрешностей отсчета начала и конца интервала общая погрешность измерения составляет единицы процентов. В последние годы интервалы времени в основном измеряются цифровыми методами.

    Измерения интервалов времени с помощью цифрового частотомера - измерение интервала времени Тх цифровым методом основано на заполнении его импульсами, следующими с образцовым периодом Т0, и подсчете числа Mx этих импульсов за время Тх.

    Вопросы для самопроверки

      Каковы наиболее распространенные методы измерения временных интервалов?

      Нарисуйте структурную схему цифрового измерителя временных интервалов.

      Какие существуют методы уменьшения погрешности?

      Какие методы измерения частоты вы знаете?

      Нарисуйте функциональную схему осциллографического частотомера.

    Тема 3.3 Приборы и методы измерения фазового сдвига

    Методы измерения фазового сдвига. Устройство, принцип действия, технические характеристики, разновидности, область применения фазометров.

    Решение многих задач радиотехники невозможно без измерения наряду с амплитудой и частотой также фазового сдвига (ФС) сигналов. Фазовые методы измерений позволяют решать многие задачи, связанные с измерением дальности, координат, помехоустойчивой передачи информации и т. д.

    Например, фазовые радиотехнические системы ближней навигации обеспечивают измерение дальности и координат с погрешностью 0.1–1 м, спутниковые системы глобальной навигации позволяют определять расстояние с точностью до нескольких миллиметров, угловое положение – с точностью до единиц угловых минут. Устройства на основе фазовых методов с использованием лазерной техники могут измерять малые расстояния с погрешностью 10 -9 м и менее.

    Понятие фазового сдвига введено только для гармонических сигналов с одинаковой частотой:
    U 1 = U m 1 sin ( w t + j 1 ) y = w t + j 0 – фаза колебания
    U 2 = U m 2 sin ( w t + j 2 ) j 0 – начальная фаза
    j = y 1 - y 2 =( w t + j 1 )- ( w t + j 2 )= ê j 1 - j 2 ê
    Фазовый сдвиг – модуль разности начальных фаз.
    Знание фазового сдвига позволяет выявить причины искажения сигнала.
    Условие неискаженной передачи – фазовая характеристика должна быть линейной.
    Для измерения фазового сдвига применяют следующие методы: осциллографический, компенсационный, преобразования фазового сдвига в импульсы тока, метод дискретного счета и др. Измерение фазового сдвига осциллографическим методом можно реализовать способами линейной, синусоидальной и круговой разверток. Для измерения фазового сдвига компенсационным методом с осциллографической индикацией собирают измерительную установку, состоящую из однолучевого осциллографа, образцового
    φ обр и вспомогательного φ в фазовращателей.

    Измерение фазового сдвига методом дискретного счета основано на формуле, в которую следует подставить вместо интервалов времени ∆ T и Т соответствующее им число импульсов с постоянной частотой повторения. Прямо-показывающие фазометры такого типа называют электронно-счетными, или цифровыми, фазометрами. Имеется несколько схем цифровых фазометров, но преимущественное распространение получили интегрирующие фазометры, в которых результат измерения представляет собой среднее значение фазового сдвига за большое число периодов измеряемого напряжения. В таких фазометрах обеспечивается хорошая помехозащищенность.

    Микропроцессорный фазометр - значительное расширение функциональных возможностей, повышение надежности и некоторых других характеристик фазометров обеспечиваются при их построении на основе микропроцессора, работающего совместно с измерительными преобразователями. Такие фазометры позволяют измерять фазовый сдвиг между двумя периодическими сигналами за любой выбранный период, наблюдать флюктуации подобных сдвигов и оценивать их статистические характеристики: математическое ожидание, дисперсию, среднее квадратическое отклонение. Возможно также, как и в рассмотренных выше цифровых фазометрах, выполненных по схемам с жесткой логикой работы, измерение среднего значения фазового сдвига.

    Фазовый сдвиг между двумя гармоническими сигналами одной частоты можно измерить фазовым детектором.

    Фазовращателем называется устройство, с помощью которого вводится в электрическую цепь известный и регулируемый фазовый сдвиг. Конструкция фазовращателя зависит от диапазона рабочих частот, для которого он предназначен.

    Вопросы для самопроверки

    1. Какой смысл вложен в понятие «фаза» сигнала?

    2. Что называется фазовым сдвигом двух сигналов?

    3. Перечислите основные методы измерения фазового сдвига.

    4. В чем состоит метод линейной развертки измерения фазового сдвига?

    5. На каком принципе работают компенсационные фазометры?

    6. Как работает цифровой фазометр на основе микропроцессора?

    1Вариант

      Магнитоэлектрический миллиамперметр имеет верхний предел измерения 100 мА. Изменению измеряемого тока на 12 мА соответствует перемещение стрелки на 6 делений. Определить число делений, цену деления и чувствительность шкалы.

      После ремонта амперметра с классом точности 1,5 и пределом измерения 5 А произвели его поверку. Наибольшая абсолютная погрешность составила 0,07 А. Сохранил ли амперметр свой класс точности после ремонта?

      Вольтметр с внутренним сопротивлением 5 кОм включен с добавочным резистором, имеющим сопротивление 45 кОм. Определить во сколько раз увеличился предел измерения вольтметра. Нарисовать схему включения вольтметра с добавочным резистором.

    Контрольная работа по дисциплине «Электротехнические измерения»

    2Вариант

      Вольтметр с верхним пределом измерения 600 В имеет чувствительность 0,25 дел/В. При измерении напряжения стрелка вольтметра отклонилась на 50 делений. Определить число делений шкалы, цену деления и измеренное вольтметром напряжение.

      Амперметр с внутренним сопротивлением 1,2 Ом включен с шунтом, имеющим сопротивление 0,3 Ом. Определить во сколько раз увеличился предел измерения амперметра. Нарисовать схему включения амперметра с шунтом.

      Амперметр с классом точности 2,5 и верхним пределом измерения 20А показал значение тока 11,5 А. Определить в каких пределах находится действительное значение тока.

      При измерении тока в цепи указатель магнитоэлектрического миллиамперметра переместился на 10 делений с отметки 10 мА на отметку 20 мА. Шкала миллиамперметра имеет 100 делений. Определить верхний предел измерения прибора, цену деления и чувствительность шкалы.

    Контрольная работа по дисциплине «Электротехнические измерения»

    3Вариант

      Амперметр, имеющий шкалу на 10 делений и верхний предел измерения 20 А, показал ток в цепи 15А. Определить цену деления, чувствительность шкалы и количество делений, на которое отклонилась стрелка при измерении тока.

      При калибровке вольтметра, имеющего верхний предел измерения

    50В, наибольшая абсолютная погрешность составила 1,1 В. Какой класс точности присвоен вольтметру?

      Вольтметр, имеющий внутреннее сопротивление 200 Ом и верхний предел измерения 50 В, необходимо использовать для измерения напряжения до 450 В. Каким образом это можно сделать? Нарисовать схему и выполнить необходимые расчеты.

      Действительное значение тока в цепи 5,23 А. Амперметр с верхним пределом измерения 10 А показал ток 5,3 А. Определить абсолютную, относительную и приведенную погрешности измерения .

    Контрольная работа по дисциплине «Электротехнические измерения»

    4Вариант

      Миллиамперметр рассчитан на ток 200 мА и имеет чувствительность по току 0,5 дел/мА. Стрелка миллиамперметра отклонилась на 30 делений. Определить число делений шкалы, цену деления и измеренный ток.

      Классы точности двух вольтметров одинаковы и равны 1. Верхний предел измерения первого вольтметра равен 50 В, а второго вольтметра равен 10 В. Определить в каком соотношении находятся наибольшие допустимые абсолютные погрешности вольтметров.

      Магнитоэлектрический амперметр имеет внутреннее сопротивление 0,05 Ом и верхний предел измерения 5 А. Каким образом можно расширить предел измерения амперметра до 125 А? Нарисовать схему и произвести необходимые расчеты.

      Через резистор с сопротивлением 8 Ом проходит действительный ток 2,4 А. При измерении напряжения на этом резисторе вольтметр показал напряжение 19,3 В. Определить абсолютную и относительную погрешности измерения напряжения.

    Содержание статьи

    ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ, измерение электрических величин, таких, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств – измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).

    ЭТАЛОНЫ ЕДИНИЦ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

    Электрическое измерение – это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах (например, 3 А, 4 В). Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики и единицами механических величин. Поскольку «поддержание» единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют «практическими» эталонами единиц электрических величин. Такие эталоны поддерживаются государственными метрологическими лабораториями разных стран. Например, в США юридическую ответственность за поддержание эталонов единиц электрических величин несет Национальный институт стандартов и технологии. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин.

    Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин.

    ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

    Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока. Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые.

    ЦИФРОВЫЕ ПРИБОРЫ

    Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.

    Аналого-цифровые преобразователи.

    Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1–0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4–0,002%), но зато время преобразования – от ~10мкс до ~1 мс. Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

    Методы дискретизации.

    Сигнал дискретизируется по времени путем быстрого измерения его в отдельные моменты времени и удержания (сохранения) измеренных значений на время преобразования их в цифровую форму. Последовательность полученных дискретных значений может выводиться на дисплей в виде кривой, имеющей форму сигнала; возводя эти значения в квадрат и суммируя, можно вычислять среднеквадратическое значение сигнала; их можно использовать также для вычисления времени нарастания, максимального значения, среднего по времени, частотного спектра и т.д. Дискретизация по времени может производиться либо за один период сигнала («в реальном времени»), либо (с последовательной или произвольной выборкой) за ряд повторяющихся периодов.

    Цифровые вольтметры и мультиметры.

    Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. «Полуцелый» знак (разряд) – это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1–2 В может показывать напряжение до 1,999 В.

    Измерители полных сопротивлений.

    Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.

    АНАЛОГОВЫЕ ПРИБОРЫ

    Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример – автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.

    Магнитоэлектрические приборы.

    В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 3ґ 5 до 25ґ 35 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части.

    Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.

    Гальванометры.

    К магнитоэлектрическим приборам относятся и гальванометры – высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.

    РЕГИСТРИРУЮЩИЕ ПРИБОРЫ

    Регистрирующие приборы записывают «историю» изменения значения измеряемой величины. К таким приборам наиболее распространенных типов относятся ленточные самописцы, записывающие пером кривую изменения величины на диаграммной бумажной ленте, аналоговые электронные осциллографы, развертывающие кривую процесса на экране электронно-лучевой трубки, и цифровые осциллографы, запоминающие однократные или редко повторяющиеся сигналы. Основное различие между этими приборами – в скорости записи. Ленточные самописцы с их движущимися механическими частями наиболее подходят для регистрации сигналов, изменяющихся за секунды, минуты и еще медленнее. Электронные осциллографы же способны регистрировать сигналы, изменяющиеся за время от миллионных долей секунды до нескольких секунд.

    ИЗМЕРИТЕЛЬНЫЕ МОСТЫ

    Измерительный мост – это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой – нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется наивысшая точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%. Простейший мост для измерения сопротивления носит имя своего изобретателя Ч.Уитстона.

    Двойной измерительный мост постоянного тока.

    К резистору трудно подсоединить медные провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом ошибка будет составлять 10%. Двойной измерительный мост (мост Томсона), схема которого представлена на рис. 2, предназначен для измерения сопротивления эталонных резисторов малого номинала. Сопротивление таких четырехполюсных эталонных резисторов определяют как отношение напряжения на их потенциальных зажимах (р 1 , р 2 резистора R s и р 3 , p 4 резистора R x на рис. 2) к току через их токовые зажимы (с 1 , с 2 и с 3 , с 4). При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча m и n исключают влияние соединительного провода 1 между зажимами с 2 и с 3 . Сопротивления m и n этих плеч подбирают так, чтобы выполнялось равенство M /m = N /n . Затем, изменяя сопротивление R s , сводят разбаланс к нулю и находят

    R x = R s (N /M ).

    Измерительные мосты переменного тока.

    Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50–60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц. Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла – Вина.

    Измерительный мост Максвелла – Вина.

    Такой измерительный мост позволяет сравнивать эталоны индуктивности (L ) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Условия равновесия этого измерительного моста таковы: L x = R 2 R 3 C 1 и R x = (R 2 R 3) /R 1 (рис. 3). Мост уравновешивается даже в случае «нечистого» источника питания (т.е. источника сигнала, содержащего гармоники основной частоты), если величина L x не зависит от частоты.

    Трансформаторный измерительный мост.

    Одно из преимуществ измерительных мостов переменного тока – простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки. На рис. 4 представлена схема трансформаторного измерительного моста для сравнения двух однотипных полных сопротивлений. К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.

    Заземление и экранирование.

    Типичные нуль-детекторы.

    В измерительных мостах переменного тока чаще всего применяются нуль-детекторы двух типов. Нуль-детектор одного из них представляет собой резонансный усилитель с аналоговым выходным прибором, показывающим уровень сигнала. Нуль-детектор другого типа – это фазочувствительный детектор, который разделяет сигнал разбаланса на активную и реактивную составляющие и пригоден в тех случаях, когда требуется точно уравновешивать только одну из неизвестных составляющих (скажем, индуктивность L , но не сопротивление R катушки индуктивности).

    ИЗМЕРЕНИЕ СИГНАЛОВ ПЕРЕМЕННОГО ТОКА

    В случае изменяющихся во времени сигналов переменного тока обычно требуется измерять некоторые их характеристики, связанные с мгновенными значениями сигнала. Чаще всего желательно знать среднеквадратические (эффективные) значения электрических величин переменного тока, поскольку мощности нагревания при напряжении 1 В постоянного тока соответствует мощность нагревания при напряжении 1 В (эфф.) переменного тока. Наряду с этим могут представлять интерес и другие величины, например максимальное или среднее абсолютное значение. Среднеквадратическое (эффективное) значение напряжения (или силы) переменного тока определяется как корень квадратный из усредненного по времени квадрата напряжения (или силы тока):

    где Т – период сигнала Y (t ). Максимальное значение Y макс – это наибольшее мгновенное значение сигнала, а среднее абсолютное значение Y AA – абсолютное значение, усредненное по времени. При синусоидальной форме колебаний Y эфф = 0,707Y макс и Y AA = 0,637Y макс.

    Измерение напряжения и силы переменного тока.

    Почти все приборы для измерения напряжения и силы переменного тока показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное эффективное значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы – на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.

    Электронное умножение.

    Возведение в квадрат и усреднение по времени входного сигнала в некотором приближении осуществляются электронными схемами с усилителями и нелинейными элементами для выполнения таких математических операций, как нахождение логарифма и антилогарифма аналоговых сигналов. Приборы такого типа могут иметь погрешность порядка всего лишь 0,009%.

    Дискретизация сигнала.

    Сигнал переменного тока преобразуется в цифровую форму с помощью быстродействующего АЦП. Дискретизированные значения сигнала возводятся в квадрат, суммируются и делятся на число дискретных значений в одном периоде сигнала. Погрешность таких приборов составляет 0,01–0,1%.

    Тепловые электроизмерительные приборы.

    Наивысшую точность измерения эффективных значений напряжения и тока обеспечивают тепловые электроизмерительные приборы. В них используется тепловой преобразователь тока в виде небольшого откачанного стеклянного баллончика с нагревательной проволочкой (длиной 0,5–1 см), к средней части которой крохотной бусинкой прикреплен горячий спай термопары. Бусинка обеспечивает тепловой контакт и одновременно электроизоляцию. При повышении температуры, прямо связанном с эффективным значением тока в нагревательной проволочке, на выходе термопары возникает термо-ЭДС (напряжение постоянного тока). Такие преобразователи пригодны для измерения силы переменного тока с частотой от 20 Гц до 10 МГц.

    На рис. 5 показана принципиальная схема теплового электроизмерительного прибора с двумя подобранными по параметрам тепловыми преобразователями тока. При подаче на вход схемы напряжения переменного тока V ас на выходе термопары преобразователя ТС 1 возникает напряжение постоянного тока, усилитель А создает постоянный ток в нагревательной проволочке преобразователя ТС 2 , при котором термопара последнего дает такое же напряжение постоянного тока, и обычный прибор постоянного тока измеряет выходной ток.

    С помощью добавочного резистора описанный измеритель тока можно превратить в вольтметр. Поскольку тепловые электроизмерительные приборы непосредственно измеряют токи лишь от 2 до 500 мА, для измерения токов большей силы необходимы резисторные шунты.

    Измерение мощности и энергии переменного тока.

    Мощность, потребляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = EI cosj , где Е и I – эффективные значения напряжения и тока, а j – фазовый угол (угол сдвига) синусоид напряжения и тока. Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cosj , называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока.

    С экономической точки зрения, самая важная электрическая величина – энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так:

    Если время (t 1 - t 2) измеряется в секундах, напряжение е – в вольтах, а ток i – в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 ВтЧ с). Если же время измеряется в часах, то энергия – в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВтЧ ч = 1000 ВтЧ ч).

    Счетчики электроэнергии с разделением времени.

    В счетчиках электроэнергии с разделением времени используется весьма своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал - Y ) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов «закрыто»/«открыто», пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой – току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой. Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных – порядка всего лишь 0,0001% при 60 Гц). Как приборы высокой точности они применяются в качестве образцовых счетчиков для поверки рабочих средств измерения.

    Дискретизирующие ваттметры и счетчики электроэнергии.

    Такие приборы основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение e (k ), представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение i (k ) сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:

    Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.

    Индукционные счетчики электроэнергии.

    Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.

    Литература:

    Атамалян Э.Г. и др. Приборы и методы измерения электрических величин . М., 1982
    Малиновский В.Н. и др. Электрические измерения . М., 1985
    Авдеев Б.Я. и др. Основы метрологии и электрические измерения . Л., 1987