Метод получения зон френеля кратко. Метод зон Френеля. Дифракция на круглом отверстии и круглом диске. Каковы условия наблюдения дифракции света

Зоны Френеля - это участки, на которые разбивается поверхность звуковой или световой волны для проведения вычислений результатов или света. Впервые этот метод применил О.Френель в 1815 году.

Историческая справка

Огюстен Жан Френель (10.06.1788-14.07.1827) - французский физик. Посвятил свою жизнь изучению свойств физической оптики. Он еще в 1811 году под влиянием Э. Малюса начал самостоятельно изучать физику, вскоре увлекся экспериментальными исследованиями в области оптики. В 1814 году «переоткрыл» принцип интерференции, а в 1816-м дополнил широко известный принцип Гюйгенса, в который ввел представление о когерентности и интерференции элементарных волн. В 1818 г., опираясь на проделанную работу, разработал теорию Он ввел практику рассмотрения дифракции от края, а также от круглого отверстия. Проводил опыты, ставшие впоследствии классическими, с бипризмами и бизеркалами по интерференции света. В 1821 г. доказал факт поперечности световых волн, в 1823-м открыл круговую и эллиптическую поляризации света. Объяснил на основе волновых представлений хроматическую поляризацию, а также вращение плоскости поляризации света и двойное лучепреломление. В 1823 г. установил законы преломления и на неподвижной плоской поверхности раздела двух сред. Наряду с Юнгом считается создателем волновой оптики. Является изобретателем ряда интерференционных приборов, таких как зеркала Френеля или бипризма Френеля. Считается основателем принципиально нового способа маячного освещения.

Немного теории

Определять зоны Френеля можно как для дифракции с отверстием произвольной формы, так и вообще без него. Однако с точки зрения практической целесообразности лучше всего рассматривать его на отверстии круглой формы. При этом источник света и точка наблюдения должны находиться на прямой, которая перпендикулярна плоскости экрана и проходит через центр отверстия. По сути, на зоны Френеля можно разбивать любую поверхность, сквозь которую проходят световые волны. Например, поверхности равной фазы. Однако в данном случае будет удобнее разбить на зоны плоское отверстие. Для этого рассмотрим элементарную оптическую задачу, которая позволит нам определить не только радиус первой зоны Френеля, но и последующие с произвольными номерами.

Задача по определению размеров колец

Для начала следует представить, что поверхность плоского отверстия находится между источником света (точка С) и наблюдателем (точка Н). Она располагается перпендикулярно линии СН. Отрезок СН проходит через центр круглого отверстия (точка О). Так как наша задача имеет то зоны Френеля будут иметь вид колец. А решение будет сводиться к определению радиуса этих кругов с произвольным номером (м). При этом максимальное значение называют радиусом зоны. Для решения задачи необходимо сделать дополнительное построение, а именно: выбрать произвольную точку (А) в плоскости отверстия и соединить ее отрезками прямых линий с точкой наблюдения и с источником света. В результате получаем треугольник САН. Далее можно сделать так, что световая волна, приходящая к наблюдателю по пути САН, пройдет больший путь, чем та, которая пойдет по пути СН. Отсюда получаем, что разность хода СА+АН-СН определяет разность волновых фаз, которые прошли от вторичных источников (А и О) в точку наблюдения. От этого значения зависит результирующая интерференция волн с позиции наблюдателя, а следовательно и световая интенсивность в этой точке.

Расчет первого радиуса

Получаем, что если разность хода будет равна половине длины световой волны (λ/2), то свет придет к наблюдателю в противофазе. Отсюда можно сделать вывод, что если разность хода будет меньше чем λ/2, то свет будет приходить в одинаковой фазе. Данное условие СА+АН-СН≤ λ/2 по определению есть условие того, что точка А находится в первом кольце, то есть это первая зона Френеля. В таком случае для границы этого круга разность хода будет равна половине длины световой волны. Значит это равенство позволяет определить радиус первой зоны, обозначим его Р 1 . При разности хода, соответствующего λ/2, он будет равен отрезку ОА. В том случае, если расстояния СО значительно превосходят диаметр отверстия (обычно рассматривают именно такие варианты), то из геометрических соображений радиус первой зоны определяется по следующей формуле: Р 1 =√(λ*СО*ОН)/(СО+ОН).

Расчет радиуса зоны Френеля

Формулы для определения последующих значений радиусов колец идентичны рассмотренной выше, только в числитель добавляется номер искомой зоны. В таком случае равенство разности хода будет иметь вид: СА+АН-СН≤ м*λ/2 или СА+АН-СО-ОН≤ м*λ/2. Отсюда следует, что радиус искомой зоны с номером «м» определяет следующая формула: Р м =√(м*λ*СО*ОН)/(СО+ОН)=Р 1 √м

Подведение промежуточных результатов

Можно отметить, что разбитие на зоны - это разделение вторичного светового источника на источники, имеющие одинаковую площадь, так как П м =π* Р м 2 - π*Р м-1 2 = π*Р 1 2 =П 1 . Свет от соседних зон Френеля приходит в противоположной фазе, так как разность хода соседнего кольца по определению будет равна половине длины световой волны. Обобщая этот результат, получаем, что разбитие отверстия на круги (такие, что свет от соседних приходит к наблюдателю с фиксированной разностью фаз) будет означать разбитие на кольца с одинаковой площадью. Данное утверждение легко доказывается с помощью задачи.

Зоны Френеля для плоской волны

Рассмотрим разбивку площади отверстия на более тонкие кольца с равной площадью. Эти круги являются вторичными источниками света. Амплитуда световой волны, пришедшей от каждого кольца к наблюдателю, примерно одинакова. Кроме того, разность фаз от соседнего круга в точке Н также одинакова. В таком случае комплексные амплитуды в точке наблюдателя при сложении на единой комплексной плоскости образуют часть окружности - дугу. Суммарная же амплитуда - это хорда. Теперь рассмотрим, каким образом меняется картина суммирования комплексных амплитуд в случае изменения радиуса отверстия при условии сохранения остальных параметров задачи. В том случае, если отверстие открывает для наблюдателя всего одну зону, картина сложения будет представлена частью окружности. Амплитуда от последнего кольца будет повернута на угол π относительно центральной части, т. к. разность хода первой зоны, согласно определению, равна λ/2. Данный угол π будет означать, что амплитуды составят половину окружности. В таком случае сумма этих значений в точке наблюдения будет равна нулю - нулевая Если будет открыто три кольца, то картина представит собой полторы окружности и так далее. Амплитуда в точке наблюдателя для четного количества колец равна нулю. А в случае когда используют кругов, она будет максимальной и равной значению длины диаметра на комплексной плоскости сложения амплитуд. Рассмотренные задачи в полной мере раскрывают метод зон Френеля.

Кратко о частных случаях

Рассмотрим редкие условия. Иногда при решении задачи говорится, что используется дробное число зон Френеля. В таком случае под половиной кольца понимают четверть окружности картины, что и будет соответствовать половине площади первой зоны. Аналогично высчитывается любое другое дробное значение. Иногда условие предполагает, что некое дробное число колец закрыто, а столько-то открыто. В таком случае суммарная амплитуда поля находится как векторная разность амплитуд двух задач. Когда открыты все зоны, то есть нет препятствий на пути прохождения световых волн, картинка будет иметь вид спирали. Она получается, потому что при открытии большого числа колец следует учитывать зависимость излученного вторичным источником света до точки наблюдателя и от направления вторичного источника. Получаем, что свет от зоны с большим номером имеет малую амплитуду. Центр полученной спирали находится в середине окружности первого и второго колец. Поэтому амплитуда поля в том случае, когда открыты все зоны, вдвое меньше, нежели при открытом одном первом круге, а интенсивность отличается в четыре раза.

Дифракция света зоны Френеля

Давайте рассмотрим, что подразумевают под этим термином. Дифракцией Френеля называют условие, когда сквозь отверстие открывается сразу несколько зон. Если же будет открыто много колец, то этим параметром можно пренебречь, то есть оказываемся в приближении к геометрической оптике. В том случае, когда через отверстие для наблюдателя открывается существенно меньше одной зоны, такое условие называют Его считают выполненным, если источник света и точка наблюдателя находятся на достаточном расстоянии от отверстия.

Сравнение линзы и зонной пластинки

Если закрыть все нечетные или все четные зоны Френеля, тогда в точке наблюдателя будет световая волна с большей амплитудой. Каждое кольцо дает на комплексной плоскости половину окружности. Так что, если оставить открытыми нечетные зоны, тогда от общей спирали останутся только половинки этих окружностей, которые дают вклад в суммарную амплитуду «снизу вверх». Препятствие на пути прохождения световой волны, при котором открыт только один тип колец, называют зонной пластиной. Интенсивность света в точке наблюдателя многократно превысит интенсивность света на пластинке. Это объясняется тем, что световая волна от каждого открытого кольца попадает к наблюдателю в одинаковой фазе.

Подобная ситуация наблюдается и с фокусировкой света с помощью линзы. Она, в отличие от пластинки, никакие кольца не закрывает, а сдвигает свет по фазе на π*(+2 π*м) от тех кругов, которые закрыты зонной пластиной. В результате амплитуда световой волны удваивается. Более того, линза устраняет так называемые взаимные сдвиги фаз, которые проходят внутри одного кольца. Она разворачивает на комплексной плоскости половину окружности для каждой зоны в отрезок прямой линии. В результате амплитуда возрастает в π раз, и всю спираль на комплексной плоскости линза развернет в прямую линию.

ДИФРАКЦИЯ ВОЛН

ОСНОВНЫЕ СВЕДЕНИЯ

Дифракция – это совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями и связанных с отклонением от законов геометрической оптики. Дифракция приводит к огибанию световыми волнами препятствий и проникновению света в область геометрической тени.

Между интерференцией и дифракцией нет существенного различия. Оба этих явления состоят в перераспределение светового потока в результате суперпозиции волн. Перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным числом дискретных источников, принято называть интерференцией волн.

Перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых конечным числом источников, расположенных непрерывно, называют дифракцией.

Различают два вида дифракции. Если источник света S и точка наблюдения Р расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку Р , образуют практически параллельные пучки, то говорят о дифракции Фраунгофера. В противном случае говорят о дифракции Френеля – дифракция расходящихся волн.

ПРИНЦИП ГЮЙГЕНСА-ФРЕНЕЛЯ. МЕТОД ЗОН ФРЕНЕЛЯ. АМПЛИТУДНЫЕ И ФАЗОВЫЕ ЗОННЫЕ ПЛАСТИНКИ ФРЕНЕЛЯ

Проникновение световых волн в область геометрической тени можно объяснить с помощью принципа Гюйгенса. Однако этот принцип не дает сведений об амплитуде, а значит, и об интенсивности волн, распространяющихся в различных направлениях. Френель дополнил принцип Гюйгенса представлением об интерференции вторичных волн. Учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в любой точке пространства. Развитый таким образом принцип Гюйгенса получил название принципа Гюйгенса- Френеля.

Френель разработал следующие основные положения, являющиеся дальнейшим развитием теории Гюйгенса.

1) Френель считал, что при распространении волн, возбуждаемых источником S 0 , источник S 0 можно заменить системой фиктивных (виртуальных) источников и возбуждаемых ими вторичных волн. В качестве этих источников можно выбрать малые участки любой замкнутой поверхности S , охватывающей S 0 .



2) Вторичные источники, эквивалентные одному и тому же источнику S 0 , когерентны между собой, следовательно, в любой точке вне вспомогательной замкнутой поверхности S волны, реально распространяющиеся от источника S 0 , являющегося результатом интерференции всех вторичных волн.

3) Для поверхности S , совпадающей с волновой поверхностью, мощности вторичного излучения равных по площади участков одинаковы. Каждый вторичный источник излучает свет преимущественно в направлении внешней нормали к волновой поверхности в этой точке – амплитуда вторичных волн в направлении, составляющем с угол αтем меньше, чем больше α, и равна нулю при . Френель исключил возможность возникновения «обратных» вторичных волн, распространяющихся от вторичных источников внутрь области, ограниченной поверхностью S .

4) В том случае, когда часть поверхности S прикрыта непрозрачными экранами, вторичные волны излучаются только открытыми участками поверхности S . Излучение этих участков не зависит от материала, формы и размеров экранов, т.е. осуществляется так, как если бы экранов не было совсем.

Исходя из принципа Гюйгенса – Френеля, можно получить закон прямолинейного распространения света в свободной от препятствий однородной среде. Пусть S – точечный источник света, Р – произвольная точка, в которой нужно найти амплитуду колебаний. Построим сферическую волновую поверхность радиуса а , наименьшее расстояние от поверхности до точки Р равно b , a+b >>λ (λ – длина волны света). Амплитуда А зависит от результата интерференции вторичных волн, излучаемых всеми участками dS волновой поверхности. Для решения этой задачи Френель предложил разбить волновую поверхность на зоны – метод зон Франеля. Границей первой зоны служат точки поверхности, находящиеся на расстоянии b + λ/2 от точки Р . Точки сферы, находящиеся на расстояниях b + 2λ /2 от точки Р образуют границы второй зоны Френеля и так далее. Расстояние внешнего края т -ной зоны до точки Р равно (рис.3.3.1)

Колебания, возбуждаемые в точке Р двумя соседними зонами, противоположны по фазе, так как разность хода между ними λ/2. Поэтому при наложении эти колебания ослабляют друг друга:

А = А 1 – А 2 + А 3 – А 4 + … . (3.3.1)

А 1 , А 2 – колебания, возбуждаемые каждой зоной порознь. Величина A i зависит от площади ϭ i i – той зоны и угла между внешней нормалью к поверхности зоны в какой – либо ее точке и прямой, направленной из этой точки в точку Р . Можно показать, что площади всех зон Франеля одинаковы: .

Радиус внешней границы т -ной зоны равен

Радиусы зон возрастают пропорционально . В случае плоской волны и .

С увеличением номера зоны возрастает угол , и следовательно уменьшается интенсивность излучения зоны в направлении точки Р , т.е. уменьшается амплитуда , т.е. А 1 > А 2 >…> А i >…

(3.3.2)

Подставив (3.3.2) в (3.3.1), имеем

-результирующее действие в точке Р полностью открытого фронта световых волн, возбуждаемых источником S , равно половине действия одной только центральной зоны Френеля, радиус которой мал, следовательно, с достаточно большой точностью можно считать, что в свободном пространстве свет от источника S в точку Р распространяется прямолинейно.

Теперь решим задачу о распространении света от источника к точке методом графического сложения амплитуд. Разобьем волновую поверхность на кольцевые зоны, аналогичные зонам Френеля, но гораздо меньшие по ширине (разность хода от краев зоны до точки составляет одинаковую для всех зон малую до­лю ). Колебание, создаваемое в точке каждой из зон, изобразим в виде вектора, длина которого равна амплитуде колебания, а угол, образуемый вектором с направлением, принятым за начало отсчета, дает начальную фазу колебания. Амплитуда колебаний, создаваемых такими зонами в точке , мед­ленно убывает при переходе от зоны к зоне. Каждое следующее ко­лебание отстает от предыдущего по фазе на одну и ту же величину. Следовательно, векторная диаграмма, получающаяся при сложе­нии колебаний, возбуждаемых отдельными зонами, имеет вид, по­казанный на рис.3.3.2.

Если бы амплитуды, создаваемые отдельными зонами, были одинаковыми, конец последнего из изображенных на рис. 3.3.2 векторов совпал бы с началом первого вектора. В действительно­сти значение амплитуды, хотя и очень слабо, но убывает, вслед­ствие чего векторы образуют не замкнутую фигуру, а ломаную спиралевидную линию.

В пределе при стремлении ширины кольцевых зон к нулю (коли­чество их будет при этом неограниченно возрастать) векторная диаграмма примет вид спирали, закручивающейся к точке (рис. 3.3.3). Фазы колебаний в точках 0и 1 отличаются на (бесконечно малые векторы, образующие спираль, направлены в этих точках в проти­воположные стороны). Следовательно, участок спирали 0 - 1 со­ответствует первой зоне Френеля. Вектор, проведенный из точки 0 в точку 1 (рис. 3.3.4, а), изображает колебание, возбуждаемое в точке этой зоны.

Аналогично, вектор, проведенный из точки 1 в точку 2 (рис. 3.3.4, б), изображает колебание, возбуждаемое вто­рой зоной Френеля. Колебания от первой и второй зон находятся в противофазе; в соответствии с этим векторы 01 и 12 направлены в проти­воположные стороны.

Колебание, возбуждаемое в точке всей волновой поверхностью, изоб­ражается вектором (рис. 3.3.4, в). Из рисунка видно, что амплитуда в этом случае равна половине амплиту­ды, создаваемой первой зоной. Этот результат мы получили ранее алгеб­раически. Заметим, что колебание, возбуж­даемое внутренней половиной первой зоны Френеля, изображается вектором (рис. 3.3.4, г). Таким образом, действие внутренней половины первой зоны Френеля не эквивалентно половине действия первой зоны. Вектор в раз больше вектора . Следова­тельно, интенсивность света, создаваемая внутренней половиной первой зоны Френеля, в два раза превышает интенсивность, созда­ваемую всей волновой поверхностью.

Колебания от четных и нечетных зон Френеля находятся в про­тивофазе и, следовательно, взаимно ослабляют друг друга. Если поставить на пути световой волны пластинку, которая перекрывала бы все четные или нечетные зоны, то интенсивность света в точке резко возрастает. Такая пластинка, называемая амплитудной зонной, дей­ствует подобно собирающей линзе. На рис. 3.3.5 изображена пластинка, перекрывающая четные зоны. Еще большего эффекта можно достичь, не перекрывая четные (или нечетные) зоны, а изменяя фазу их колебаний на . Это можно осуществить с помощью прозрачной пластинки, толщина которой в местах, соответствую­щих четным или нечетным зонам, отличается на надлежащим образом подобранную величину. Такая пластинка называется фазовой зонной пластинкой. По сравнению с перекрывающей зоны амплитудной зонной пластинкой фазовая дает дополнительное увеличение амплитуды в два раза, а ин­тенсивности света - в четыре раза.

Вычисление интеграла в пункте в общем случае - трудная задача.

В случаях, если в задаче существует симметрия, амплитуду результирующего колебания можно найти методом зон Френеля, не прибегая к вычислению интеграла.

Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP. Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на λ/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.

Что дает такое разбиение для расчета интенсивности в точке P? Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна λ/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Из геометрических соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.

Происходит это из-за увеличения с ростом m угла между нормалью к волновой поверхности и направлением на точку P. Значит гашение колебаний соседних зон будет не совсем полным.

Дифракция Френеля.

Пусть на пути сферической световой волны, испускаемой источником S, расположен непрозрачный экран с круглым отверстием радиуса r 0 . Если отверстие открывает четное число зон Френеля, то в точке P будет наблюдаться минимум, так как все открытые зоны можно объединить в соседние пары, колебания которых в точке P приблизительно гасят друг друга.

При нечетном числе зон в точке P будет максимум, так как колебания одной зоны останутся не погашенными.

Можно показать, что радиус зоны Френеля с номером m при не очень больших m:

.

Расстояние "a" примерно равно расстоянию от источника до преграды, расстояние "b" - от преграды до точки наблюдения P.

Если отверстие оставляет открытым целое число зон Френеля, то, приравняв r 0 и r m , получим формулу для подсчета числа открытых зон Френеля:

.

При m четном в точке P будет минимум интенсивности, при нечетном - максимум.

Пятно Пуассона.

e s

С помощью спирали Френеля можно получить еще один замечательный результат. Действительно, если на пути сферической волны находится непрозрачное круглое отверстие (любого размера), то оказывается закрытым какое-то число внутренних зон Френеля. Но вклад в колебания в точке наблюдения, находящегося в центре геометрической тени,будут давать остальные зоны. В результате в этой точке должен наблюдаться свет.

Этот результат показался в свое время Пуассону столь невероятным, что он выдвинул его как возражение против рассуждений и расчетов Френеля при рассмотрении дифракции. Однако, когда был проведен соответствующий опыт, такое светлое пятнышко в центра геометрической тени было обнаружено. С тех пор оно носит название пятна Пуассона, хотя он не допускал и самой возможности его существования.

Пятно Пуассона – светлое пятно в центре геометрической тени от непрозрачного объекта. Пятно Пуассона обусловлено загибанием света в область геометрической тени.

Дифракция Волн - явление огибания волнами препятствий и проникновение их в область геометрической тени. Явление дифракции можно качественно объяснить применением принципа Гюйгенса к распространению волн в среде при наличии преград.

Рассмотрим плоскую преграду ab (рис. 69). На рисунке показаны построенные по принципу Гюйгенса волновые поверхности позади преграды. Видно, что волны действи-

тельно загибаются в область тени. Но принцип Гюйгенса ничего не говорит об амплитуде колебаний в волне за преградой. Ее можно найти, рассматривая интерференцию волн, приходящих в область геометрической тени. Распределение амплитуд колебаний позади преграды называетсядифракционной картиной . Полный вид дифракционной картины позади преграды зависит от соотношения между длиной волны Л, размером преграды d и расстоянием L от преграды до точки наблюдения. Если длина волны Л больше размеров преграды d, то волна его почти не замечает. Если длина волны Л одного порядка с размером преграды d, то дифракция проявляется даже на очень малом расстоянии L, и волны за преградой лишь чуть-чуть слабее, чем в свободном волновом поле с обеих сторон. Если, наконец, длины волн много меньше размеров препятствия, то дифракционную картину можно наблюдать только на большом расстоянии от преграды, величина которой зависит от Л и d.

Принцип Гюйгенса - Френеля является развитием принципа, который ввёл Христиан Гюйгенс в 1678 году: каждая точка фронта (поверхности, достигнутой волной) является вторичным (т.е. новым) источником сферических волн. Огибающая фронтов волн всех вторичных источников становится фронтом волны в следующий момент времени.

Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса - Френеля и дифракционные явления.



Принцип Гюйгенса - Френеля формулируется следующим образом:

Густав Кирхгоф придал принципу Гюйгенса строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа.

Фронтом волны точечного источника в однородном изотропном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.

Дальнейшим обобщением и развитием принципа Гюйгенса является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.

Метод зон Френеля Френель предложил метод разбиения фронта волны на кольцевые зоны, который впоследствии получил название метод зон Френеля .

Пусть от источника света S распространяется монохроматическая сферическая волна, P - точка наблюдения. Через точку O проходит сферическая волновая поверхность. Она симметрична относительно прямой SP.

Разобьем эту поверхность на кольцевые зоны I, II, III и т.д. так, чтобы расстояния от краев зоны до точки P отличались на l/2 - половину длины световой волны. Это разбиение было предложено O. Френелем и зоны называют зонами Френеля.

Возьмем произвольную точку 1 в первой зоне Френеля. В зоне II найдется, в силу правила построения зон, такая соответствующая ей точка, что разность хода лучей, идущих в точку P от точек 1 и 2 будет равна l/2. Вследствие этого колебания от точек 1 и 2 погасят друг друга в точке P.

Из геометрических соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.

Дифракция света (от лат. diffractus - разломанный, преломлённый) - отклонение при распространении света от законов геометрической оптики, выражающееся в огибании лучами света границы непрозрачных тел, проникновение света в область геометрической тени, огибание светом малых препятствий. Дифракция наблюдается при распространении света в среде с резко выраженными неоднородностями. Дифракция света - проявление волновых свойств света в предельных условиях перехода от волновой оптики к геометрической. Явление дифракции света можно объяснить на основании принципа Гюйгенса.

Принцип Гюйгенса - принцип, согласно которому каждая точка волнового фронта в данный момент времени является центром вторичных элементарных волн, огибающая которых дает положение волнового фронта в следующий момент времени. Принцип Гюйгенса позволяет объяснить законы отражения и преломления света, однако он недостаточен для объяснения дифракционных явлений, Френелем, который дополнил принцип Гюйгенса представлением об интерференции вторичных волн.

Гюйгенса-Френеля принцип - дальнейшее развитие принципа Х. Гюйгенса О. Френелем, введшего представление о когерентности и интерференции вторичных элементарных волн. Согласно принципу Гюйгенса-Френеля волновое возмущение в некоторой точке может быть представлено как результат интерференции когерентных вторичных элементарных волн, излучаемых каждым элементом некоторой волновой поверхности (волнового фронта). Принцип Гюйгенса-Френеля позволяет объяснить и дифракционные явления. Каждый элемент волновой поверхности площадью является источником вторичной сферической волны, амплитуда которой пропорциональна площади элемента. В точку наблюдения от этого элемента приходит колебание

(6.37.21)

где - коэффициент, зависящий от угла между нормалью к поверхности и направлением на точку наблюдения; - расстояние от элемента поверхности до точки наблюдения; - фаза колебания в месте расположения элемента .

Результирующее колебание в точке наблюдения представляет собой суперпозицию когерентных колебаний от всех элементов волновой поверхности, пришедших в точку наблюдения. Для расчета амплитуды результирующего колебания для случаев, отличающихся симметрией, Френель предложил метод, получивший название метода зон Френеля. Различают два вида дифракции: дифракция Фраунгофера и дифракция Френеля.

Дифракция Фраунгофера (в параллельных лучах) - дифракция плоских волн на препятствии (источник света удалён от препятствия на бесконечно большое расстояние).

Дифракция Френеля - дифракция сферической световой волны на неоднородности (например, отверстии в экране). Дифракция Френеля осуществляется в тех случаях, когда источник света и экран, служащий для наблюдения дифракционной картины, находятся на конечных расстояниях от препятствия, вызвавшего дифракцию.


Метод зон Френеля.

Зоны Френеля - кольцевые участки, на которые разбивают сферическую поверхность фронта световой волны при рассмотрении задач о дифракции волн в соответствии с принципом Гюйгенса - Френеля для упрощения вычислений при определении амплитуды волны в заданной точке пространства. Пусть монохроматическая волна распространяется из точки в точку наблюдения . Положение волнового фронта в определенный момент времени указано на рисунке. Согласно принципу Гюйгенса - Френеля действие источника заменяют действием вторичных (воображаемых) источников, расположенных на поверхности фронта сферической волны, которую разбивают на кольцевые зоны так, чтобы расстояния от краёв соседних зон до точки наблюдения отличались на где - длина волны. (На рисунке - точка пересечения фронта волны с линией , расстояние = , = ). Тогда расстояние от края -й зоны до точки наблюдения равно

(6.37.22)

Внешний радиус -й зоны Френеля

(6.37.23)

площадь -й зоны

(6.37.24)

при не слишком больших площади зон Френеля одинаковы.

Так как колебания от соседних зон проходят до точки расстояния, отличающиеся на то в точку они приходят в противофазе. При вычислении амплитуды результирующего колебания в точке методом зон Френеля необходимо также учесть, что с ростом номера зоны амплитуды колебаний, приходящих в точку , монотонноубывают: А 1 > А 2 > А 3 > А 4 > …. Можно положить, что амплитуда колебания А m равна среднему арифметическому амплитуд примыкающих к ней зон: Поэтому амплитуда результирующего светового колебания, приходящего от всего волнового фронта в точку будет равна:

А = А 1 - А 2 + А 3 - А 4 + …….. А к.

Это выражение можно представить в следующем виде:

так как выражения в скобках равны нулю, а амплитуда от последней зоны Френеля бесконечно мала. Следовательно, амплитуда, создаваемая в точке всем сферическим волновым фронтом, равна половине амплитуды, создаваемой центральной зоной Френеля. Если 1м, 0,5 мкм, то радиус первой зоны Френеля равен 0,5 мм. Следовательно, свет от источника к точке наблюдения распространяется как бы в пределах узкого прямого канала, т.е. практически прямолинейно.

Колебания от четных и нечетных зон Френеля находятся в противофазе и взаимно ослабляют друг друга. Если какое-либо препятствие перекрывает часть сферического волнового фронта, то при расчете амплитуды результирующего колебания в точке наблюдения методом зон Френеля учитываются только открытые зоны Френеля. Если поставить на пути световой волны пластинку, которая перекрывала бы все четные или нечетные зоны Френеля, то амплитуда колебания в точке наблюдения резко возрастает. Такая пластинка называется зонной . Зонная пластинка во много раз увеличивает интенсивность света в точке , действуя подобно собирающей линзе.