Площадь бок пов. Площадь боковой поверхности правильной четырехугольной пирамиды: формулы и примеры задач. Задача с известной площадью поверхности

Типичными геометрическими задачами на плоскости и в трехмерном пространстве являются проблемы определения площадей поверхностей разных фигур. В данной статье приведем формулу площади боковой поверхности правильной пирамиды четырехугольной.

Что собой представляет пирамида?

Приведем строгое геометрическое определение пирамиды. Предположим, что имеется некоторый многоугольник с n сторонами и с n углами. Выберем произвольную точку пространства, которая не будет находиться в плоскости указанного n-угольника, и соединим ее с каждой вершиной многоугольника. Мы получим фигуру, имеющую некоторый объем, которая называется n-угольной пирамидой. Для примера покажем на рисунке ниже, как выглядит пятиугольная пирамида.

Два важных элемента любой пирамиды - это ее основание (n-угольник) и вершина. Эти элементы соединены друг с другом n треугольниками, которые в общем случае не равны друг другу. Перпендикуляр, опущенный из вершины к основанию, называется высотой фигуры. Если он пересекает основание в геометрическом центре (совпадает с центром масс многоугольника), то такую пирамиду называют прямой. Если помимо этого условия основание является правильным многоугольником, то и вся пирамида называется правильной. Рисунок ниже показывает, как выглядят правильные пирамиды с треугольным, четырехугольным, пятиугольным и шестиугольным основаниями.

Поверхность пирамиды

Прежде чем переходить к вопросу о площади боковой поверхности правильной пирамиды четырехугольной, следует подробнее остановиться на понятии самой поверхности.

Как было сказано выше и показано на рисунках, любая пирамида образована набором граней или сторон. Одна сторона является основанием, и n сторон представляют собой треугольники. Поверхность всей фигуры - это сумма площадей каждой ее стороны.

Поверхность удобно изучать на примере развертки фигуры. Развертка для правильной четырехугольной пирамиды приведена на рисунки ниже.

Видим, что площадь ее поверхности равна сумме четырех площадей одинаковых равнобедренных треугольников и площади квадрата.

Общую площадь всех треугольников, которые образуют боковые стороны фигуры, принято называть площадью боковой поверхности. Далее покажем, как ее рассчитать для четырехугольной пирамиды правильной.

Площадь боковой поверхности четырехугольной правильной пирамиды

Чтобы вычислить площадь боковой поверхности указанной фигуры, снова обратимся к приведенной выше развертке. Предположим, что нам известна сторона квадратного основания. Обозначим ее символом a. Видно, что каждый из четырех одинаковых треугольников, имеет основание длиной a. Чтобы вычислить их суммарную площадь, необходимо знать эту величину для одного треугольника. Из курса геометрии известно, что треугольника площадь S t равна произведению основания на высоту, которое следует поделить пополам. То есть:

Где h b - высота равнобедренного треугольника, проведенная к основанию a. Для пирамиды эта высота является апотемой. Теперь остается умножить полученное выражение на 4, чтобы получить площадь S b поверхности боковой для рассматриваемой пирамиды:

S b = 4*S t = 2*h b *a.

Эта формула содержит два параметра: апотему и сторону основания. Если последняя в большинстве условий задач известна, то первую приходится вычислять, зная другие величины. Приведем формулы для расчета апотемы h b для двух случаев:

  • когда известна длина бокового ребра;
  • когда известна высота пирамиды.

Если обозначить длину ребра бокового (сторона равнобедренного треугольника) символом L, тогда апотема h b определиться по формуле:

h b = √(L 2 - a 2 /4).

Это выражения является результатом применения теоремы Пифагора для треугольника боковой поверхности.

Если известна высота h пирамиды, тогда апотему h b можно рассчитать так:

h b = √(h 2 + a 2 /4).

Получить это выражение также не сложно, если рассмотреть внутри пирамиды прямоугольный треугольник, образованный катетами h и a/2 и гипотенузой h b .

Покажем, как применять эти формулы, решив две интересные задачи.

Задача с известной площадью поверхности

Известно, что площадь боковой поверхности четырехугольной равна 108 см 2 . Необходимо вычислить значение длины ее апотемы h b , если высота пирамиды равна 7 см.

Запишем формулу площади S b поверхности боковой через высоту. Имеем:

S b = 2*√(h 2 + a 2 /4) *a.

Здесь мы просто подставили соответствующую формулу апотемы в выражение для S b . Возведем обе части равенства в квадрат:

S b 2 = 4*a 2 *h 2 + a 4 .

Чтобы найти значение a, сделаем замену переменных:

t 2 + 4*h 2 *t - S b 2 = 0.

Подставляем теперь известные значения и решаем квадратное уравнение:

t 2 + 196*t - 11664 = 0.

Мы выписали только положительный корень этого уравнения. Тогда стороны основания пирамиды будет равна:

a = √t = √47,8355 ≈ 6,916 см.

Чтобы получить длину апотемы, достаточно воспользоваться формулой:

h b = √(h 2 + a 2 /4) = √(7 2 + 6,916 2 /4) ≈ 7,808 см.

Боковая поверхность пирамиды Хеопса

Определим значение боковой для самой большой египетской пирамиды. Известно, что в ее основании лежит квадрат с длиной стороны 230,363 метра. Высота сооружения изначально составляла 146,5 метра. Подставим эти цифры в соответствующую формулу для S b , получим:

S b = 2*√(h 2 + a 2 /4) *a = 2*√(146,5 2 +230,363 2 /4)*230,363 ≈ 85860 м 2 .

Найденное значение немного больше площади 17 футбольных полей.

Инструкция

Прежде всего, стоит понять, что боковая поверхность пирамиды представлена несколькими треугольниками, площади которых можно найти с помощью самых различных формул, в зависимости от известных данных:

S = (a*h)/2, где h - высота, опущенная на сторону a;

S = a*b*sinβ, где a, b - стороны треугольника, а β - угол между этими сторонами;

S = (r*(a + b + c))/2, где a, b, c - стороны треугольника, а r - радиус вписанной в этот треугольник окружности;

S = (a*b*c)/4*R, где R - радиус описанной вокруг окружности треугольника;

S = (a*b)/2 = r² + 2*r*R (если треугольник - прямоугольный);

S = S = (a²*√3)/4 (если треугольник - равносторонний).

На самом деле, это лишь самые основные из известных формул для нахождения площади треугольника.

Рассчитав при помощи указанных выше формул площади всех треугольников, являющихся гранями пирамиды, можно приступить к исчислению площади данной пирамиды. Делается это предельно просто: необходимо сложить площади всех треугольников, образующих боковую поверхность пирамиды. Формулой это можно выразить так:

Sп = ΣSi, где Sп - площадь боковой , Si - площадь i-ого треугольника, являющегося частью ее боковой поверхности.

Для большей ясности можно рассмотреть небольшой пример: дана правильная пирамида, боковые грани которой образованы равносторонними треугольникам, а в основании ее лежит квадрат. Длина ребра данной пирамиды составляет 17 см. Требуется найти площадь боковой поверхности данной пирамиды.

Решение: известна длина ребра данной пирамиды, известно, что грани ее - равносторонние треугольники. Таким образом, можно сказать, что все стороны всех треугольников боковой поверхности равны 17 см. Поэтому для того, чтобы рассчитать площадь любого из этих треугольников, потребуется применить формулу:

S = (17²*√3)/4 = (289*1.732)/4 = 125.137 см²

Известно, что в основании пирамиды лежит квадрат. Таким образом, понятно, что данных равносторонних треугольников четыре. Тогда площадь боковой поверхности пирамиды рассчитывается так:

125.137 см² * 4 = 500.548 см²

Ответ: площадь боковой поверхности пирамиды составляет 500.548 см²

Сначала вычислим площадь боковой поверхности пирамиды. Под боковой поверхностью подразумевается сумма площадей всех боковых граней. Если вы имеете дело с правильной пирамидой (то есть такой, в основании которой лежит правильный многоугольник, а вершина проецируется в центр этого многоугольника), то для вычисления всей боковой поверхности достаточно умножить периметр основания (то есть сумму длин всех сторон многоугольника, лежащего в основании пирамиды) на высоту боковой грани (иначе называемой апофемой) и разделить полученное значение на 2: Sб=1/2P*h, где Sб - это площадь боковой поверхности, P - периметр основания, h - высота боковой грани (апофема).

Если же перед вами произвольная пирамида, то придется отдельно вычислять площади всех граней, а затем их складывать. Поскольку боковыми гранями пирамиды являются треугольники, воспользуйтесь формулой площади треугольника: S=1/2b*h, где b - это основание треугольника, а h - высота. Когда площади всех граней вычислены, остается только сложить их, чтобы получить площадь боковой поверхности пирамиды.

Затем необходимо вычислить площадь основания пирамиды. Выбор формулы для расчета зависит от того, какой многоугольник лежит в основании пирамида: правильный (то есть такой, все стороны которого имеют одинаковую длину) или неправильный. Площадь правильного многоугольника можно вычислить, умножив периметр на радиус вписанной в многоугольник окружности и поделив полученное значение на 2: Sn=1/2P*r, где Sn - это площадь многоугольника, P - это периметр, а r - это радиус вписанной в многоугольник окружности.

Усеченная пирамида – это многогранник, который образовывается пирамидой и ее сечением, параллельным основанию. Найти площадь боковой поверхности пирамиды совсем несложно. Ее очень проста: площадь равняется произведению половины суммы оснований по апофему. Рассмотрим пример расчета площади боковой поверхности усеченной пирамиды. Допустим, дана правильная четырехугольная пирамида. Длины основания равны b=5 см, c = 3 см. Апофема a = 4 см. Чтобы найти площадь боковой поверхности пирамиды, нужно сначала найти периметр оснований. В большом основании он будет равен p1=4b=4*5=20 см. В меньшем основании формула будет следующей: p2=4c=4*3=12 см. Следовательно, площадь будет равна: s=1/2(20+12)*4=32/2*4=64 см.

Пирамида – это многогранник, одна из граней которого (основание) – произвольный многоугольник, а остальные грани (боковые) – треугольники, имеющие общую вершину. По числу углов основания пирамиды бывают треугольные (тетраэдр), четырехугольные и так далее.

Пирамида является многогранником, имеющим основание в виде многоугольника, а остальные грани являются треугольниками с общей вершиной. Апофемой называется высота боковой грани правильной пирамиды, которая проведена из её вершины.

Площадь боковой поверхности произвольной пирамиды равна сумме площадей её боковых граней. Специальную формулу для выражения этой площади имеет смысл дать в случае правильной пирамиды. Так, пусть дана правильная пирамида, в основании которой лежит правильный n-угольник со стороной, равной а. Пусть h - высота боковой грани, называется также апофемой пирамиды. Площадь одной боковой грани равна 1/2ah, а вся боковая поверхность пирамиды имеет площадь, равную n/2ha.Так как na - периметр основания пирамиды, то можно написать найденную формулу в виде:

Площадь боковой поверхности правильной пирамиды равна произведению её апофемы на половину периметра основания.

Что касается площади полной поверхности , то просто к боковой прибавляем площадь основания.

Вписанные и описанные сфера и шар . Нужно отметить, что центр вписанной в пирамиду сферы лежит на пересечении биссекторных плоскостей внутренних двугранных углов пирамиды. Центр описанной около пирамиды сферы лежит на пересечении плоскостей, проходящих через середины ребер пирамиды и перпендикулярных им.

Усеченная пирамида. Если пирамиду рассеч плоскостью, параллельной её основанию, то часть, заключенная между секущей плоскостью и основанием, называется усеченной пирамидой. На рисунке показана пирамида, отбрасывая её часть, лежащую выше секущей плоскости, получаем усеченную пирамиду. Ясно, что малая отбрасываемая пирамида гомотетична большой пирамиде с центром гомотетии в вершине. Коэффициент подобия равен отношению высот: k=h 2 /h 1 , или боковых ребер, или других соответствующих линейных размеров обеих пирамид. Мы знаем, что площади подобных фигур относятся, как квадраты линейных размеров; так площади оснований обеих пирамид (т.е. пощади оснований усеченной пирамиды) относятся, как

Здесь S 1 - площадь нижнего основания, а S 2 - площадь верхнего основания усеченной пирамиды. В таком же отношении находятся и боковые поверхности пирамид. Сходное правило имеется и для объемов.

Объемы подобных тел относятся, как кубы их линейных размеров; например, объемы пирамид относятся, как произведения их высот на площади оснований, откуда наше правило получается сразу. Оно имеет совершенно общий характер и прямо следует из того, что объем всегда имеет размерность третей степени длины. Пользуясь этим правилом, выведем формулу, выражающую объем усеченной пирамиды через высоту и площади оснований.

Пусть дана усеченная пирамида с высотой h и площадями оснований S 1 и S 2 . Если представить себе, что она продолжена до полной пирамиды, то коэффициент подобия полнорй пирамиды и малой пирамиды легко найти, как корень из отношения S 2 /S 1 . Высота усеченной пирамиды выражается как h = h 1 - h 2 = h 1 (1 - k). Теперь имеем для объема усеченной пирамиды (через V 1 и V 2 обозначены объемы полной и малой пирамид)

формула объема усеченной пирамиды

Выведем формулу площади S боковой поверхности правильной усеченной пирамиды через периметры Р 1 и Р 2 оснований и длину апофемы а. Рассуждаем точно так же, как и при выводе формулы для объема. Дополняем пирамиду верхней частью, имеем P 2 = kP 1 , S 2 =k 2 S 1 , где k - коэффициент подобия, P 1 и P 2 - периметры оснований, а S 1 и S 2 - лощади боковых поверхностей всей полученной пирамиды и её верхней части соответственно. Для боковой поверхности найдем (а 1 и а 2 - апофемы пирамид, а = а 1 - а 2 = а 1 (1-k))

формула площади боковой поверхности правильной усеченной пирамиды

При подготовке к ЕГЭ по математике учащимся приходится систематизировать знания по алгебре и геометрии. Хочется объединить все известные сведения, например, о том, как вычислить площадь пирамиды. Причем начиная от основания и боковых граней до площади всей поверхности. Если с боковыми гранями ситуация ясна, так как они являются треугольниками, то основание всегда разное.

Как быть при нахождении площади основания пирамиды?

Оно может быть совершенно любой фигурой: от произвольного треугольника до n-угольника. И это основание, кроме различия в количестве углов, может являться правильной фигурой или неправильной. В интересующих школьников заданиях по ЕГЭ встречаются только задания с правильными фигурами в основании. Поэтому речь будет идти только о них.

Правильный треугольник

То есть равносторонний. Тот, у которого все стороны равны и обозначены буквой «а». В этом случае площадь основания пирамиды вычисляется по формуле:

S = (а 2 * √3) / 4.

Квадрат

Формула для вычисления его площади самая простая, здесь «а» - снова сторона:

Произвольный правильный n-угольник

У стороны многоугольника то же обозначение. Для количества углов используется латинская буква n.

S = (n * а 2) / (4 * tg (180º/n)).

Как поступить при вычислении площади боковой и полной поверхности?

Поскольку в основании лежит правильная фигура, то все грани пирамиды оказываются равными. Причем каждая из них является равнобедренным треугольником, поскольку боковые ребра равны. Тогда для того, чтобы вычислить боковую площадь пирамиды, потребуется формула, состоящая из суммы одинаковых одночленов. Число слагаемых определяется количеством сторон основания.

Площадь равнобедренного треугольника вычисляется по формуле, в которой половина произведения основания умножается на высоту. Эта высота в пирамиде называется апофемой. Ее обозначение - «А». Общая формула для площади боковой поверхности выглядит так:

S = ½ Р*А, где Р — периметр основания пирамиды.

Бывают ситуации, когда не известны стороны основания, но даны боковые ребра (в) и плоский угол при ее вершине (α). Тогда полагается использовать такую формулу, чтобы вычислить боковую площадь пирамиды:

S = n/2 * в 2 sin α.

Задача № 1

Условие. Найти общую площадь пирамиды, если в его основании лежит со стороной 4 см, а апофема имеет значение √3 см.

Решение. Его начинать нужно с расчета периметра основания. Поскольку это правильный треугольник, то Р = 3*4 = 12 см. Поскольку апофема известна, то можно сразу вычислить площадь всей боковой поверхности: ½*12*√3 = 6√3 см 2 .

Для треугольника в основании получится такое значение площади: (4 2 *√3) / 4 = 4√3 см 2 .

Для определения всей площади потребуется сложить два получившихся значения: 6√3 + 4√3 = 10√3 см 2 .

Ответ. 10√3 см 2 .

Задача № 2

Условие . Имеется правильная четырехугольная пирамида. Длина стороны основания равна 7 мм, боковое ребро — 16 мм. Необходимо узнать площадь ее поверхности.

Решение. Поскольку многогранник — четырехугольный и правильный, то в его основании лежит квадрат. Узнав площади основания и боковых граней, удастся сосчитать площадь пирамиды. Формула для квадрата дана выше. А у боковых граней известны все стороны треугольника. Поэтому можно использовать формулу Герона для вычисления их площадей.

Первые расчеты просты и приводят к такому числу: 49 мм 2 . Для второго значения потребуется вычислить полупериметр: (7 + 16*2):2 = 19,5 мм. Теперь можно вычислять площадь равнобедренного треугольника: √(19,5*(19,5-7)*(19,5-16) 2) = √2985,9375 = 54,644 мм 2 . Таких треугольников всего четыре, поэтому при подсчете итогового числа потребуется его умножить на 4.

Получается: 49 + 4*54,644 = 267,576 мм 2 .

Ответ . Искомое значение 267,576 мм 2 .

Задача № 3

Условие . У правильной четырехугольной пирамиды необходимо вычислить площадь. В ней известна сторона квадрата — 6 см и высота — 4 см.

Решение. Проще всего воспользоваться формулой с произведением периметра и апофемы. Первое значение найти просто. Второе немного сложнее.

Придется вспомнить теорему Пифагора и рассмотреть Он образован высотой пирамиды и апофемой, которая является гипотенузой. Второй катет равен половине стороны квадрата, поскольку высота многогранника падает в его середину.

Искомая апофема (гипотенуза прямоугольного треугольника) равна √(3 2 + 4 2) = 5 (см).

Теперь можно вычислять искомую величину: ½*(4*6)*5+6 2 = 96 (см 2).

Ответ. 96 см 2 .

Задача № 4

Условие. Дана правильная Стороны ее основания равны 22 мм, боковые ребра — 61 мм. Чему равна площадь боковой поверхности этого многогранника?

Решение. Рассуждения в ней такие же, как были описаны в задаче №2. Только там была дана пирамида с квадратом в основании, а теперь это шестиугольник.

Первым делом вычисляется площадь основания по указанной выше формуле: (6*22 2) / (4*tg (180º/6)) = 726/(tg30º) = 726√3 см 2 .

Теперь необходимо узнать полупериметр равнобедренного треугольника, который является боковой гранью. (22+61*2):2 = 72 см. Осталось по формуле Герона сосчитать площадь каждого такого треугольника, а потом умножить ее на шесть и сложить с той, что получилась для основания.

Расчеты по формуле Герона: √(72*(72-22)*(72-61) 2)=√435600=660 см 2 . Вычисления, которые дадут площадь боковой поверхности: 660*6 = 3960 см 2 . Осталось их сложить, чтобы узнать всю поверхность: 5217,47≈5217 см 2 .

Ответ. Основания - 726√3 см 2 , боковой поверхности - 3960 см 2 , вся площадь - 5217 см 2 .


Определение. Боковая грань - это треугольник, у которого один угол лежит в вершине пирамиды, а противоположная ему сторона совпадает со стороной основания (многоугольника).

Определение. Боковые ребра - это общие стороны боковых граней. У пирамиды столько ребер сколько углов у многоугольника.

Определение. Высота пирамиды - это перпендикуляр, опущенный из вершины на основание пирамиды.

Определение. Апофема - это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания.

Определение. Диагональное сечение - это сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания.

Определение. Правильная пирамида - это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания.


Объём и площадь поверхности пирамиды

Формула. Объём пирамиды через площадь основы и высоту:


Свойства пирамиды

Если все боковые ребра равны, то вокруг основания пирамиды можно описать окружность, а центр основания совпадает с центром окружности. Также перпендикуляр, опущенный из вершины, проходит через центр основания (круга).

Если все боковые ребра равны, то они наклонены к плоскости основания под одинаковыми углами.

Боковые ребра равны тогда, когда они образуют с плоскостью основания равные углы или если вокруг основания пирамиды можно описать окружность.

Если боковые грани наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проектируется в ее центр.

Если боковые грани наклонены к плоскости основания под одним углом, то апофемы боковых граней равны.


Свойства правильной пирамиды

1. Вершина пирамиды равноудалена от всех углов основания.

2. Все боковые ребра равны.

3. Все боковые ребра наклонены под одинаковыми углами к основанию.

4. Апофемы всех боковых граней равны.

5. Площади всех боковых граней равны.

6. Все грани имеют одинаковые двугранные (плоские) углы.

7. Вокруг пирамиды можно описать сферу. Центром описанной сферы будет точка пересечения перпендикуляров, которые проходят через середину ребер.

8. В пирамиду можно вписать сферу. Центром вписанной сферы будет точка пересечения биссектрис, исходящие из угла между ребром и основанием.

9. Если центр вписанной сферы совпадает с центром описанной сферы, то сумма плоских углов при вершине равна π или наоборот, один угол равен π/n , где n - это количество углов в основании пирамиды.


Связь пирамиды со сферой

Вокруг пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многогранник вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих перпендикулярно через середины боковых ребер пирамиды.

Вокруг любой треугольной или правильной пирамиды всегда можно описать сферу.

В пирамиду можно вписать сферу, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.


Связь пирамиды с конусом

Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.


Связь пирамиды с цилиндром

Пирамида называется вписанной в цилиндр, если вершина пирамиды лежит на одной основе цилиндра, а основание пирамиды вписано в другую основу цилиндра.

Цилиндр можно описать вокруг пирамиды если вокруг основания пирамиды можно описать окружность.


Определение. Усеченная пирамида (пирамидальная призма) - это многогранник, который находится между основанием пирамиды и плоскостью сечения, параллельной основанию. Таким образом пирамида имеет большую основу и меньшую основу, которая подобна большей. Боковые грани представляют собой трапеции.

Определение. Треугольная пирамида (четырехгранник) - это пирамида в которой три грани и основание являются произвольными треугольниками.

В четырехгранник четыре грани и четыре вершины и шесть ребер, где любые два ребра не имеют общих вершин но не соприкасаются.

Каждая вершина состоит из трех граней и ребер, которые образуют трехгранный угол .

Отрезок, соединяющий вершину четырехгранника с центром противоположной грани называется медианой четырехгранника (GM).

Бимедианой называется отрезок, соединяющий середины противоположных ребер, которые не соприкасаются (KL).

Все бимедианы и медианы четырехгранника пересекаются в одной точке (S). При этом бимедианы делятся пополам, а медианы в отношении 3:1 начиная с вершины.

Определение. Наклонная пирамида - это пирамида в которой одно из ребер образует тупой угол (β) с основанием.

Определение. Прямоугольная пирамида - это пирамида в которой одна из боковых граней перпендикулярна к основанию.

Определение. Остроугольная пирамида - это пирамида в которой апофема больше половины длины стороны основания.

Определение. Тупоугольная пирамида - это пирамида в которой апофема меньше половины длины стороны основания.

Определение. Правильный тетраэдр - четырехгранник у которого все четыре грани - равносторонние треугольники. Он является одним из пяти правильных многоугольников. В правильного тетраэдра все двугранные углы (между гранями) и трехгранные углы (при вершине) равны.

Определение. Прямоугольный тетраэдр называется четырехгранник у которого прямой угол между тремя ребрами при вершине (ребра перпендикулярны). Три грани образуют прямоугольный трехгранный угол и грани являются прямоугольными треугольниками, а основа произвольным треугольником. Апофема любой грани равна половине стороны основы, на которую падает апофема.

Определение. Равногранный тетраэдр называется четырехгранник у которого боковые грани равны между собой, а основание - правильный треугольник. У такого тетраэдра грани это равнобедренные треугольники.

Определение. Ортоцентричный тетраэдр называется четырехгранник у которого все высоты (перпендикуляры), что опущены с вершины до противоположной грани, пересекаются в одной точке.

Определение. Звездная пирамида называется многогранник у которого основой является звезда.

Определение. Бипирамида - многогранник, состоящий из двух различных пирамид (также могут быть срезаны пирамиды), имеющих общую основу, а вершины лежат по разные стороны от плоскости основания.