Относительная частота случайного события ее устойчивость. Относительная частота. Устойчивость относительной частоты. Классическое определение вероятности

При классическом определении вероятность события определяется равенством Р(А)=m/n, где m-число элементарных исходов испытания, благоприятствующих появлению события А; n – общее число возможных элементарных исходов испытания.

Предполагается, что элементарные исходы образуют полную группу и равновозможны.

Относительная частота события А: W(A)=m/n, где m – число испытаний, в которых событие А наступило; n-общее число произведенных испытаний.

При статистическом определении в качестве вероятности события принимают его относительную частоту.

Пример: брошены две игральные кости. Найти вероятность того, что сумма очков на выпавших гранях – четная, причем на грани хотя бы одной из костей появится шестерка.

Решение: на выпавшей грани «первой» игральной кости может появиться одно очко,…,шесть очков. аналогичные шесть элементарных исходов возможны при бросании «второй»кости. Каждый из исходов бросания «первой»может сочетаться с каждым из исходов бросания «второй».Т.о. общее число элементарных исходов испытания 6*6=36.эти исходы образуют полную группу и в силу симметрии костей равновозможны. Благоприятствующими событию являются 5 ходов:1)6,2;2)6,4;3)6,6;4)2,6;5)4,6;

Искомая вероятность: Р(А)=5/36

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 3. Относительная частота. Устойчивость относительных частот. Статистическое определение вероятности.:

  1. 4. Классическое определение вероятности. Относительная частота наступления события. Статистическая вероятность. Геометрическая вероятность.
  2. 27. Статистическое определение выборки. Вариационные ряды и их графическое изображение. Полигон и гистограмма частот (относительных частот).
  3. 39. Построение интервального вариационного ряда. Гистограмма частот и относительных частот.
  4. 4.Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях

называется относительной частотой (или частостью) события А в рассматриваемой серии опытов.

Относительная частота события обладает следующими свойствами :

1. Частость любого события заключена между нулем и единицей, т.е.

2. Частость невозможного события равна нулю, т.е.

3. Частость достоверного события равна 1, т.е.

4. Частость суммы двух несовместных событий равна сумме частоты
этих событий, т.е. если , то

Частость обладает еще одним фундаментальным свойством, называемым свойством статистической устойчивости : с увеличением числа опытов (т.е. n ) она принимает значения, близкие к некоторому постоянному числу (говорят: частость стабилизируется, приближаясь к некоторому числу, частость колеблется около некоторого числа, или ее значения группируются около некоторого числа).

Так, например, в опыте (К. Пирсон) бросание монеты – относительная частота появления герба при 12000 и 24000 бросаниях оказалась равной 0,5015 и 0,5005 соответственно, т.е. частость приближается к числу . Частость рождения мальчика, как показывают наблюдения, колеблется около числа 0,515.

Отметим, что теория вероятностей изучает только те массовые случайные явления с неопределенным исходом, для которых предполагается наличие устойчивости относительной частоты.

Статистическое определение вероятности

Для математического изучения случайного события необходимо ввести какую-либо количественную оценку события. Понятно, что одни события имеют больше шансов («более вероятны») наступить, чем другие. Такой оценкой является вероятность события , т.е. число, выражающее степень возможности его появления в рассматриваемом опыте. Математических определений вероятности существует несколько, все они дополняют и обобщают друг друга.

Рассмотрим опыт, который можно повторять любое число раз (говорят: «проводятся повторные испытания»), в котором наблюдается некоторое событие А .



Статистической вероятностью события А называется число, около которого колеблется относительная частота события Апри достаточно большом числе испытаний (опытов).

Вероятность события А обозначается символом Р (А ). Согласно данному определению:

. (1.2)

Математическим обоснованием близости относительной частоты и вероятности Р (А ) некоторого события А служит теорема Я. Бернулли.

Вероятности Р (А ) приписываются свойства 1-4 относительной частоты:

1. Статистическая вероятность любого события заключена между нулем и единицей, т.е.

2. Статистическая вероятность невозможного события равна нулю, т.е.

3. Статистическая вероятность достоверного события равна 1, т.е.

4. Статистическая вероятность суммы двух несовместных событий равна сумме частоты этих событий, т.е. если , то

Статистический способ определения вероятности, опирающийся на реальный опыт, достаточно полно выявляет содержание этого понятия. Недостатком статистического определения является неоднозначность статистической вероятности; так в примере с бросанием монеты в качестве вероятности можно принять не только число 0,5, но и 0,49 или 0,51 и т.д. Для надежного определения вероятности нужно проделать большое число испытаний, что не всегда просто или дешево.

Классическое определение вероятности

Существует простой способ определения вероятности события, основанный на равновозможности любого из конечного числа исходов опыта. Пусть проводится опыт с n исходами, которые можно представить в виде полной группы несовместных равновозможных событий. Такие исходы называются случаями, шансами, элементарными событиями , опыт - классическим . Про такой опыт говорят, что он сводится к схеме случаев или схеме урн (т.к. вероятностную задачу для такого опыта можно заменить эквивалентной ей задачей с урнами, содержащими шары разных цветов).

Случай w, который приводит к наступлению события А , называется благоприятным (или благоприятствующим) ему, т.е. случай w влечет событие A : .

Вероятностью события А называется отношение числа m случаев, благоприятствующих этому событию, к общему числу n случаев, т.е.

. (1.3)

Наряду с обозначением Р (А ) для вероятности события А используется обозначение р , т.е. р=Р (А ).

Из классического определения вероятности вытекают следующие свойства :

1. Вероятность любого события заключена между нулем и единицей, т.е.

2. Вероятность невозможного события равна нулю, т.е.

3. Вероятность достоверного события равна 1, т.е.

4. Вероятность суммы несовместных событий равна сумме частоты этих событий, т.е. если , то

Пример 1.3. В урне находятся 12 белых и 8 черных шаров. Какова вероятность того, что наудачу вынутый шар будет белым?

Решение :

Пусть А – событие, состоящее в том, что вынут белый шар. Ясно, что – число всех равновозможных случаев. Число случаев, благоприятствующих событию А , равно 12, т.е. . Следовательно, по формуле (1.3) имеем: , т.е. .

Геометрическое определение вероятностей

Геометрическое определение вероятности применяется в случае, когда исходы опыта равновозможны, а ПЭС есть бесконечное несчетное множество. Рассмотрим на плоскости некоторую область Ω, имеющую площадь , и внутри области Ω, область D с площадью S D (см. рис. 6).

В области Ω случайно выбирается точка X . Этот выбор можно интерпретировать как бросание точки X в область Ω. При этом попадание точки в область Ω - достоверное событие, в D - случайное. Предполагается, что все точки области Ω равноправны (все элементарные события равновозможны), т.е. что брошенная точка может попасть в любую точку области Ω и вероятность попасть в область D пропорциональна площади этой области и не зависит от ее расположения и формы. Пусть событие , т.е. брошенная точка попадет в область D .

Предмет теории вероятностей. Испытание. Классификация событий.

Теория вероятностей – это раздел математики, который изучает закономерности, имеющие место в массовых однородных испытаниях (МОИ).

Испытание – это комплекс каких-либо условий, действий.

МОИ – это такие испытания, которые теоретически могут быть продолжены до бесконечности (учёба, соц.опросы, подбрасывание монеты).

Исход испытания – возможный результат испытания.

Событие – это абстракция исхода испытания (произошло явление в МОИ или нет).

НАПР., подбрасывание монеты – испытание, а появление «орла» - событие.

Событие принято обозначать большими лат. буквами A, B, C.

ВИДЫ СОБЫТИЙ:

1. Достоверным называется событие, которое произойдёт при любом исходе испытания.

2. Невозможное – не произойдет ни при каком исходе испытания.

3. Случайное – может произойти в результате испытания или нет.

НАПР., Подбрасывается игральный кубик.

Событие А – число очков не > 6: достоверное.

Событие В – число очков > 6: невозможное.

Событие С – от 1 до 6: случайное.

СЛУЧАЙНЫЕ СОБЫТИЯ

1. Равновозможные – такие, для которых сущ-вуют равноправие отдельных исходов испытания.

НАПР., извлечение короля, туза, дамы, валета из колоды карт.

2. Единственновозможные - такие, если в испытании обязательно наступит хотя бы одно из них.

НАПР., В семье 2 детей: А – 2 мальчика, В – 2 девочки, С – 1 м. и 1 д.


Комбинаторика. Основные формулы комбинаторики.

Комбинаторика – наука о соединениях. Под соединением понимают любую совокупность элементов некоторого множ-ва.

НАПР., множ-во студентов, сидящих в аудитории.

Все соединения делятся на 3 группы:

1)Размещения. Р-ми из n эл-тов по m () называются такие соед-я, которые отличаются друг от друга либо составом эл-тов, либо порядком соединения эл-тов, либо тем и другим вместе.

Аnm = n!/(n-m)!

Задача. Сколько различных 2значных чисел можно составить из множ-ва цифр {1;2;3;4}, причем так, чтобы цифры числа были различными.

А из 4 по 2 = 4!/(4-2)! = 24/2=12

2) Сочетания. Сочетаниями из n эл-тов по m называются такие соединения, которые отличаются друг от друга только составом эл-тов (порядок следования не важен)

С из n по m = n!/m!*(n-m)!

Задача. Скольким числом способов можно в группе из 30 человек распределить путевки в санаторий Уссури.

C из 30 по 3 = 30!/3!*(30-3)! = 28*29*30/1*2*3 = 4060.

3) Перестановки (Pn). Перестановками из n эл-тов называются такие соединения, которые включают в себя все n эл-тов и отличаются друг от друга только порядком их соединения.

Задача. Скольким числом способов можно расставить в шеренгу 6 курсантов на плацу.

ПРАВИЛО СУММЫ – если объект а может быть выбран из множ-ва различными s способами, а объект b – различными r способами, тогда выбор одного из эл-тов a или bar может быть осуществлен различными r+s способами.

ПРАВИЛО ПРОИЗВЕДЕНИЯ – если объект а может быть выбран различными s способами и после каждого такого выбора объект b может быть выбран различными r способами, тогда выбор пары эл-тов может быть осуществлен различными r*s способами (а и b = r*s).


Классическое определение вероятности. Свойства вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу (P(A)=m/n).

СВОЙСТВА В-ТИ:

1) В-ть достоверного события = 1.

Т.к. D – достоверное событие, то каждый возможный исход испытания благоприятствует событию, т.е. m=n.

P(D) = m/n = n/n = 1/

2) В-ть невозможного события равна нулю. Т.к. событие N невозможно, то ни один из элементарных исходов не благоприятствует событию, т.е. m=0.

P(D) = m/n = 0/n = 0/

3) В-ть случайного события есть положительное число, заключенное между 0 и 1. Случайному событию S благоприятствует лишь из общего числа элемент. исходов испытания, т.е. 0

0

Таким образом, в-ть любого события удовлетворяет двойному неравенству: 0<=P(A)<=1.

Относительная частота. Устойчивость относительных частот. Статистическое определение вероятности.

Относительной частотой события называется отношение числа испытаний, в которых событие произошло, к общему числу фактически произведенных испытаний.

W(A)=m/n, где m – число появления события, n – общее число испытаний.

В-ть предполагает, а относительная частота – фиксирует. В-ть не требует, чтобы события проводились, а относительная частота – требует. Другими словами, в-ть события вычисляют до проведения опытов, а отн. частоту – после.

УСТОЙЧИВОСТЬ относительной частоты.

Длительные наблюдения показали, что если в одинаковых условиях производятся опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости.

Это свойство состоит в том, что в различных опытах относительная частота изменяется мало, колеблясь около некоторого постоянного числа.

Оказалось, что это постоянное число есть в-ть появления события W(A) = P(A).

СТАТИСТИЧЕСКОЙ в-тью события называется число, вокруг которого группируются относительные частоты этого события, причем при неизменных условиях и неограниченном возрастании числа испытаний относительная частота незначительно отличается от этого числа.

Относительная частота. Устойчивость относительной частоты

Относительная частота наряду с вероятностью принадлежит к основным понятиям теории вероятностей.

Относительной частотой события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведённых испытаний. Таким образом, относительная частота события А определяется формулой

где m – число появлений события, n – общее число испытаний.

Сопоставляя определения вероятности и относитель­ной частоты, заключаем: определение вероятности не требует, чтобы испытания производились в действитель­ности; определение же относительной частоты предпола­гает, что испытания были произведены фактически. Дру­гими словами, вероятность вычисляют до опыта, а относительную частоту-после опыта.

Пример 1 . Отдел технического контроля обнаружил 3 нестандартных детали в партии из 80 случайно отобранных деталей. Относительная частота появления нестандартных деталей

Пример 2. По цели произвели 24 выстрела, причем было зарегистрировано 19 попаданий. Относительная частота поражения цели

Длительные наблюдения показали, что если в одина­ковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свой­ство состоит в том, что в различных опытах относитель­ная частота изменяется мало (тем меньше, чем больше произведено испытаний), колеблясь около некоторого постоянного числа . Оказалось, что это постоянное число есть вероятность появления события.

Таким образом, если опытным путем установлена от­носительная частота, то полученное число можно принять за приближенное значение вероятности.

Подробнее и точнее связь между относительной часто­той и вероятностью будет изложена далее. Теперь же проиллюстрируем свойство устойчивости на примерах.

Пример 3. По данным шведской статистики, относительная час­тота рождения девочек за 1935 г. по месяцам характеризуется следующими числами (числа расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0.462; 0,484; 0,485; 0,491; 0,482; 0,473.

Относительная частота колеблется около числа 0,482, которое можно принять за приближенное значение вероятности рождении девочек.

Заметим, что статистические данные различных стран дают при­мерно то же значение относительной частоты.

Пример 4 . Многократно проводились опыты бросания монеты, которых подсчитывали число появления «герба». Результаты не­скольких опытов приведены в табл. 1.

Здесь относительные частоты незначительно отклоняются от чис­ла 0,5, причем тек меньше, чем больше число испытаний. Напри­мер, при 4040 испытаниях отклонение равно 0, 0069, а при 24 000 испытаний - лишь 0, 0005. Приняв во внимание, что вероятность появления «герба» при бросании монеты равна 0,5, мы вновь убеж­даемся, что относительная частота колеблется около вероятности.

Существует несколько определений понятия вероятности. Приведем классическое определение. Оно связано с понятием благоприятствующего исхода. Те элементарные исходы (э.и.), в кот. интересующее нас событие наступает назовем благоприятствующими этому событию. Опр. : Вер.ю события А назыв. отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных э. и., образующих полную группу. P(A) = m/n, где m – число э. и., благоприятствующих событию А; n – число всех возможных э. и. испытания. Из определения вероятности вытекают ее св-ва :1)вер.(в) достоверного события всегда равна 1. Т.к. событие достоверно, то все э. и. испытания благоприятствуют этому событию, т.е. m=n. P(A)=n/n = 1; 2) В. невозможного соб. равна 0. Т.к. событие невозможно, то нет ни одного э. и., благоприятствующего этому событию, значит m=0. P(A) = 0/n = 0; 3) В. случайного события есть неотрицательная вел-на, заключенная между 0 и 1, т.е. 0

4. Относительная частота. Устойчивость относительной частоты.

Относительной частотой (ОЧ) события называют отношение числа испытаний, в которых событие появилось, к общему числу фактически произведенных испытаний. (НЕ омега!!!). W(A) = m/n, где m – число появления события А, n – общее число испытаний. Определение вероятности не требует, чтобы испытания проводились в действительности. Определение ОЧ предполагает, что испытания были произведены фактически, т.е. вер. вычисляют до опыта, а ОЧ после опыта. Если в одинаковых условиях производят опыты, в каждом из кот. число испытаний достаточно велико, то ОЧ обнаруживает св-во устойчивости. Это св-во состоит в том, что в различных опытах ОЧ изменяется мало, тем меньше, чем больше произведено испытаний, колеблаясь около некоторого постоянного числа. Это число есть вер. появления события. Т.о. опытным путем установлено, что ОЧ можно принять за приближенное значение вероятности.

5.Статистическая вероятность.

Классическое определение вероятности предполагает, что число элементарных исходов испытания конечно. На практике часто встречаются испытания, число возможных исходов кот. бесконечно. В таких случаях классическое определение неприменимо. Наряду с классич. опр. используют статистическое. Опр.: стат. вер. (ст.в.) события – относительная частота (ОЧ) или число близкое к ней. Св-ва вероятности, вытекающие из классич. определения, сохраняются и при статистическом. Если событие достоверно, то его ОЧ =1, т.е. ст.в. также =1. Если событие невозможно, то ОЧ = 0, т.е. ст.в. тоже = 0. Для любого события 0W(A) 1, сл-но. ст.в. заключена между 0 и 1. Для существования ст.в. требуется: 1) возможность хотя бы принципиально проводить неограничен. число испытаний, в каждом из кот. событие наступает или не наступает; 2) устойчивость ОЧ появления события в различных сериях достаточно большого числа испытаний. Недостатком статистич. определения является неоднозначность ст.в. Например, если в рез-те достаточно большого числа испытаний оказалось, что ОЧ весьма близка к 0,6, то это число можно принять за ст.в. Но в кач-ве вероятности события можно принять не только 0,6, но и 0,59 и 0,61.