Метод характеристик решения волнового уравнения. Волны. Уравнение волны

Одним из наиболее распространенных в инженерной практике уравнений с частными производными второго порядка является волновое уравнение, описывающее различные виды колебаний. Поскольку колебания - процесс нестационарный, то одной из независимых переменных является время t . Кроме того, независимыми переменными в уравнении являются также пространственные координаты х, у, z . В зависимости от их количества различают одномерное, двумерное и трехмерное волновые уравнения.

Одномерное волновое уравнение – уравнение, описывающее продольные колебания стержня, сечения которого совершают плоскопараллельные колебательные движения, а также поперечные колебания тонкого стержня (струны) и другие задачи. Двумерное волновое уравнение используют для исследования колебаний тонкой пластины (мембраны). Трехмерное волновое уравнение описывает распространение волн в пространстве (например, звуковых волн в жидкости, упругих волн в сплошной среде и т.п.).

Рассмотрим одномерное волновое уравнение, которое можно записать в виде

Для поперечных колебаний струны искомая функция U (x , t ) описывает положение струны в момент t . В этом случае а 2 = Т/ρ, где Т - натяжение струны, ρ - ее линейная (погонная) плотность. Колебания предполагаются малыми, т.е. амплитуда мала по сравнению с длиной струны. Кроме того, уравнение (2.63) записано для случая свободных колебаний. В случае вынужденных колебаний в правой части уравнения добавляют некоторую функцию f (x , t ), характеризующую внешние воздействия, при этом сопротивление среды колебательному процессу не учитывается.

Простейшей задачей для уравнения (2.63) является задача Коши: в начальный момент времени задаются два условия (количество условий равно порядку входящей в уравнение производной по t ):

Эти условия описывают начальную форму струны и скорость ее точек .

На практике чаще приходится решать не задачу Коши для бесконечной струны, а смешанную задачу для ограниченной струны некоторой длины l . В этом случае задают граничные условия на ее концах. В частности, при закрепленных концах их смещения равны нулю, и граничные условия имеют вид

Рассмотрим некоторые разностные схемы для решения задачи (2.63)-(2.65). Простейшей является явная трехслойная схема типа крест (шаблон показан на рис. 2.21). Заменим в уравнении (2.63) вторые производные искомой функции U по t и х их конечно-разностными соотношениями с помощью значений сеточной функции в узлах сетки :

Рис. 2.21. Шаблон явной схемы

Отсюда можно найти явное выражение для значения сеточной функции на (j + 1)-ом слое:

Здесь, как обычно в трехслойных схемах, для определения неизвестных значений на (j + 1)-ом слое нужно знать решения на j -ом и (j - 1)-ом слоях. Поэтому начать счет по формулам (2.66) можно лишь для второго слоя, а решения на нулевом и первом слоях должны быть известны. Их находят с помощью начальных условий (2.64). На нулевом слое имеем

Для получения решения на первом слое воспользуемся вторым начальным условием (2.64). Производную заменим конечно-разностной аппроксимацией. В простейшем случае полагают

(2.68)

Из этого соотношения можно найти значения сеточной функции на первом временном слое:

Отметим, что аппроксимация начального условия в виде (2.68) ухудшает аппроксимацию исходной дифференциальной задачи: погрешность аппроксимации становится порядка , т.е. первого порядка по τ, хотя сама схема (2.66) имеет второй порядок аппроксимации по h и τ. Положение можно исправить, если вместо (2.69) взять более точное представление:

(2.70)

Вместо нужно взять . А выражение для второй производной можно найти с использованием исходного уравнения (2.63) и первого начального условия (2.64). Получим

Тогда (2.70) примет вид:

Разностная схема (2.66) с учетом (2.71) обладает погрешностью аппроксимации порядка

При решении смешанной задачи с граничными условиями вида (2.65), т.е. когда на концах рассматриваемого отрезка заданы значения самой функции, второй порядок аппроксимации сохраняется. В этом случае для удобства крайние узлы сетки располагают в граничных точках (х0 =0, xI = l ). Однако граничные условия могут задаваться и для производной.

Например, в случае свободных продольных колебаний стержня на его незакрепленном конце задается условие

Если это условие записать в разностном виде с первым порядком аппроксимации, то погрешность аппроксимации схемы станет порядка . Поэтому для сохранения второго порядка данной схемы по h необходимо граничное условие (2.72) аппроксимировать со вторым порядком.

Рассмотренная разностная схема (2.66) решения задачи (2.63) - (2.65) условно устойчива. Необходимое и достаточное условие устойчивости:

Следовательно, при выполнении этого условия и с учетом аппроксимации схема (2.66) сходится к исходной задаче со скоростью O (h 2 + τ 2 ). Данная схема часто используется в практи-ческих расчетах. Она обеспечивает приемлемую точность получения решения U (x , t ), которое имеет непрерывные производные четвертого порядка.

Рис. 2.22. Алгоритм решения волнового уравнения

Алгоритм решения задачи (2.63)-(2.65) с помощью данной явной разностной схемы приведен на рис. 2.22. Здесь представлен простейший вариант, когда все значения сеточной функции, образующие двумерный массив, по мере вычисления хранятся в памяти компьютера, а после решения задачи выводятся результаты. Можно было бы предусмотреть хранение решения лишь на трех слоях, что сэкономило бы память. Результаты в таком случае можно выводить в процессе счета (см. рис. 2.13).

Существуют и другие разностные схемы решения волнового уравнения. В частности, иногда удобнее использовать неявные схемы, чтобы избавиться от ограничений на величину шага, налагаемых условием (2.73). Эти схемы обычно абсолютно устойчивы, однако алгоритм решения задачи и программа для компьютера усложняются.

Построим простейшую неявную схему. Вторую производную по t в уравнении (2.63) аппроксимируем, как и ранее, по трехточечному шаблону с помощью значений сеточной функции на слоях j - 1, j , j + 1. Производную до х заменяем полусуммой ее аппроксимации на (j + 1)-ом и (j - 1)-ом слоях (рис. 2.23):

Рис. 2.23. Шаблон неявной схемы

Из этого соотношения можно получить систему уравнений относительно неизвестных значений сеточной функции на (j + 1)-ом слое:

Полученная неявная схема устойчива и сходится со скоростью . Систему линейных алгебраических уравнений (2.74) можно, в частности, решать методом прогонки. К этой системе следует добавить разностные начальные и граничные условия. Так, выражения (2.67), (2.69) или (2.71) могут быть использованы для вычисления значений сеточной функции на нулевом и первом слоях по времени.

При двух или трех независимых пространственных переменных волновые уравнения принимают вид

Для них также могут быть построены разностные схемы по аналогии с одномерным волновым уравнением. Разница состоит в том, что нужно аппроксимировать производные по двум или трем пространственным переменным, что, естественно, усложняет алгоритм и требует значительно больших объемов памяти и времени счета. Подробнее двумерные задачи будут рассмотрены ниже для уравнения теплопроводности.

Механизм образования механических волн в упругой среде.

МЕХАНИЧЕСКИЕ ВОЛНЫ

1. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Волновое уравнение и его решение. Гармонические волны и их характеристики.

2. Фазовая скорость и дисперсия волн. Волновой пакет и групповая скорость.

3. Понятие о когерентности. Интерференция волн. Стоячие волны.

4. Эффект Доплера для звуковых волн.

Если в каком-либо месте упругой среды (твердой, жидкой или газообразной) возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью. Процесс распространения колебаний в пространстве называется волной. Геометрическое место точек, до которых доходят колебания к моменту времени t называется фронтом волны (волновым фронтом). В зависимости от формы фронта волна может быть сферической, плоской и др.

Волна называется продольной , если направление смещения частиц среды совпадает с направлением распространения волны.

Продольная волна распространяется в твердых, жидких и газообразных средах.

Волна называется поперечной , если смещение частиц среды перпендикулярно направлению распространения волны. Поперечная механическая волна распространяется только в твердых телах (в средах обладающих сопротивлением сдвигу, поэтому в жидкостях и газах такая волна распространиться не может).

Уравнение, позволяющее определить смещение (х,t) любой точки среды с координатой х в любой момент времени t называется уравнением волны.

Например, уравнение плоской волны, т.е. волны, распространяющейся в одном направлении, например в направлении оси х, имеет вид

Введем величину , которая называется волновым числом.

Если умножить волновое число на единичный вектор направления распространения волны , то получится вектор, называемый волновым вектором

С помощью оператора Лапласа (лапласиана) это уравнение можно записать более кратко




(Решением этого уравнения является уравнение волны (28-1), (28-2).)

Продольные волны могут распространяться как в твердых телах, так и в жидкостях или газах. Пример продольных волн - звуковые волны в жидкостях и газах. Они представляют собой колебания давления, распространяющиеся в этих средах.

Волновой процесс. Понятие волнового фронта.

МЕХАНИЧЕСКИЕ ВОЛНЫ В УПРУГОЙ СРЕДЕ

ЛЕКЦИЯ 9

Тело, колеблющееся в упругой среде, периодически воздействует на прилегающие к нему частицы среды, выводя их из положений равно­весия и заставляя совершать вынужденные колебания, возмущающие частицы среды. .

Механические возмущения (деформации), распространяющиеся в упругой среде, называются упругими волнами .

Геометрическое место точек среды, в которых фаза колебаний частиц одинакова, называется волновым фронтом или волновой поверхностью . Например, существуют сферические волны, исходящие от точечного источника колебаний, волновая поверхность которых представляет собой сферу.

Упругая волна называется продольной , если колебания частиц среды происходят в направлении распространения волны. Если же частицы среды колеблются в плоскостях, перпендикулярных направлению распространения волны, то такая волна называется поперечной .

Поперечные волны могут возникать только в такой среде, которая обладает упругостью формы, т. е. способна сопротивляться деформации сдвига. Поэтому поперечные волны могут существовать лишь в твердых телах. Таковы, например, волны, распространяющиеся вдоль струн музыкальных инструментов.

В отличие от других видов механического движения среды (например, ее течения) распространение упругих волн в среде не связано с переносом вещества.

Частицы, отстоящие друг от друга на расстоянии uT (u ‑ скорость распространения, T – период колебаний), колеблются в одинаковой фазе. Расстояние между ближайшими частицами, колеблющимися в одинаковой фазе, называется длиной волны l.

l = uT или u =λν,

где n ‑ частота колебаний.

Рассмотрим распространение продольной волны в тонком упругом стержне, которая создается источником колебаний, расположенном в некоторой точке пространства (x = 0). Выделим объем стержня длиной Δx (рис.9.1).. Под действием упругих сил, возникающих в точках x и x x, рассматриваемыйобъембудет испытывать деформации растяжения и сжатия.

Пусть s - упругое смещение границ выделенного объема от положений равновесия . Применение к данному объему закона движения центра масс приводит к дифференциальному уравнению

где t –время, ρ –плотность материала стержня, E – модуль Юнга.


Уравнение (9.1) называется дифференциальным волновым уравнением, котороезаписано в одномерном виде.

Решение уравнения (9.1) для волны, распространяющейся в направлении оси x , имеет вид:

, (9.2)

где A – амплитуда колебаний частиц среды (амплитуда волны); w – циклическая частота колебаний источника, которая равна частоте колебаний частиц среды, вызванных волной.

Можно показать, что данное уравнение имеет общий характер,. В трехмерном виде волновое уравнение имеет следующий вид:

, (9.3)

где Ñ 2 ‑ оператор Лапласа:

.

Решением этого уравнения является смещение s частиц среды от положений равновесия, как функция координат и времени. s = s (x,y,z , t ).

Определим смысл величины u в уравнениях (9.2) и (9.3), имеющей размерность скорости. Зафиксируем какое-либо значение фазы, в уравнении (9.2), положив

. (9.4)

Выражение (9.4) описывает распространение волнового фронта. Продифференцировав (9.4), получим

Скорость распространения волны u в приведенных выше уравнениях есть скорость перемещения фазы, поэтому эту скорость называют фазовой скоростью .

Из уравнения (9.1) следует

.

Т.е.фазовая скорость продольных волн в твердых телах зависит от модуля Юнга E и плотности среды r.

Можно показать, что скорость поперечных волн определяется модулем сдвига:

Скорость волн в идеальном газе для адиабатического процесса распространения зависит от абсолютной температуры :

,

где γ – показатель адиабаты (отношение изобарной и изохорной теплоемкостей газа, γ=с p /с V ), R – универсальная газовая постоянная, T - абсолютная температура, μ – молярная масса газа.

Функция (9.2) описывает плоскую волну, так как волновой фронт представляет собой плоскость.

Уравнение плоской волны можно представить в симметричном виде относительно t и х . Для этого вводится понятие волнового числа k :

Используя (9.7), получим выражение для скорости u:

Тогда уравнение волны описывается соотношением

s = A cos(wt kx ). (9.8)

Если волну рассматривать на расстоянии значительно большем, чем размеры источника, то источник можно считать точечным. В этом случае в изотропной среде волна будет сферической . Такую волну описывает решение дифференциального уравнения (9.3), представленное в сферических координатах. Уравнение сферической волны имеет вид:

. (9.9)

Из (9.9) видно, что амплитуда сферической волны изменяется обратно пропорционально расстоянию от волнового фронта до источника.

Зависимость амплитуды волны от расстояния обусловлено тем, что по мере удаления фронта волны от источника за равные промежутки времени в колебательное движение вовлекаются все возрастающие объемы среды .

Посмотрим теперь, действительно ли волновое уравнение описывает основные свойства звуковых волн в среде. Прежде всего мы хотим вывести, что звуковое колебание, или возмущение, движется с постоянной скоростью. Кроме того, нам нужно доказать, что два различных колебания могут свободно проходить друг через друга, т. е. принцип суперпозиции. Мы хотим еще доказать, что звук может распространяться и вправо и влево. Все эти свойства должны содержаться в нашем одном уравнении.

Раньше мы отмечали, что любое возмущение, имеющее вид плоской волны и движущееся с постоянной скоростью, записывается в виде f( x - vt ). Посмотрим теперь, является ли f ( x - v t ) решением волнового уравнения. Вычисляя дχ /дх, получаем производную функции d χ / d x = f `( x - vt ). Дифференцируя еще раз, находим

Дифференцируя эту же функцию χ по t , получаем значение - v , умноженное на производную, или d χ / d t = - v f `( x - vt ); вторая производная по времени дает

Очевидно, что f - vt ) удовлетворяет волновому уравнению, если v равно c s .
Таким образом, из законов механики мы получаем, что любое звуковое возмущение распространяется со скоростью c s и, кроме того,


тем самым мы связали скорость звуковых волн со свойствами среды.

Легко увидеть, что звуковая волна может распространяться и в направлении отрицательных х, т. е. звуковое возмущение вида χ(х, t)=g(x+vt) также удовлетворяет волновому уравнению. Единственное отличие этой волны от той, которая распространялась слева направо, заключается в знаке v, но знак d 2 χ / d t 2 не зависит от выбора x+ vt или х - v t, потому что в эту производную входит только v 2 . Отсюда следует, что решение уравнения описывает волны, бегущие в любом направлении со скоростью c s .


Особый интерес представляет вопрос о суперпозиции решений. Допустим, мы нашли одно решение, скажем χ 1 . Это значит, что вторая производная χ 1 . по х равна второй производной χ 1 по t, умноженной на 1/с 2 s . И пусть есть второе решение χ 2 обладающее тем же свойством. Сложим эти два решения, тогда получается

Теперь мы хотим удостовериться, что χ(х, t) тоже представляет некую волну, т. е. χ тоже удовлетворяет волновому уравнению. Это очень просто доказать, так как

Отсюда следует, что d 2 χ/ d x 2 = (1/ c 2 s ) d 2 χ l d t 2 , так что справедливость принципа суперпозиции проверена. Само существование принципа суперпозиции связано с тем, что волновое уравнение линейно по χ .


Теперь естественно было бы ожидать, что плоская световая волна, распространяющаяся вдоль оси х и поляризованная так, что электрическое поле направлено по оси у , тоже удовлетворяет волновому уравнению

где с - скорость света. Волновое уравнение для световой волны есть одно из следствий уравнений Максвелла. Уравнения электродинамики приводят к волновому уравнению для света точно так же, как уравнения механики приводят к волновому уравнению для звука.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением - дифференциальным уравнением в частных производных.

, (4) где(5)-оператор Лапласа, v - фазовая скорость.

Решением уравнения (4) является уравнение любой волны (плоской, сферической и т.д.). В частности, для анализируемой здесь плоской гармонической волны (1), которая не зависит от координат y и z волновое уравнение принимает вид . (6)

Cоответствующей подстановкой можно убедится, что уравнению (6) удовлетворяет уравнение (1).

Частота, период, длина волны.

Длина волны- это расстояние, на которое распространяется волна за один период колебаний.Так как,тоили.

Свойства волн.

Генерация волн. Волны могут генерироваться различными способами.

Генерация локализованным источником колебаний (излучателем, антенной).

Спонтанная генерация волн в объёме при возникновении гидродинамических неустойчивостей. Такую природу могут иметь, например,волны на водепри достаточно большой скоростиветра, дующего над водной гладью.

Переход волн одного типа в волны другого типа. Например, при распространении электромагнитных волнв кристаллическом твёрдом теле могут генерироватьсязвуковыеволны.

Как правило, волны способны удалиться сколь угодно далеко от генератора колебаний. По этому причине иногда волнами называют «колебание, оторвавшееся от излучателя». Исключение составляют так называемые температурные волны, амплитуда которых экспоненциально спадает при удалении от излучателя.

Распространение. Большинство волн, по своей природе, являются не настоящими новыми физическими сущностями, а лишь условным названием для определённого вида коллективного движения. Так, если в объёме газа возникла звуковая волна, то это не значит, что в этом объёме появились какие-то новые физические объекты.Звук- это лишь название для особого скоординированного типа движения тех же самых молекул. Т.е. большинство волн - это колебания некоторойсреды. Вне этой среды волны данного типа (например, звук в вакууме) не существуют.

Имеются, однако, волны, которые являются не «рябью» какой-либо иной среды, а представляют собой именно новые физические сущности. Так, электромагнитные волныв современной физике - это не колебание некоторой среды (называвшейся в XIX векеэфиром), а самостоятельное, самоподдерживающееся поле, способное распространяться в вакууме. Аналогично обстоит дело и с волнами вероятности материальных частиц.

Распространение волн - это, как правило, равномерный процесс, т.е. волны обычно распространяются с некоторой определённой скоростью(которая, конечно же, может зависеть от многих параметров).

При распространении в некоторой средеамплитудаволны может затухать, что связано сдиссипативнымипроцессами внутри среды, сквозь которую проходят волны. В случае некоторых специальным образом подготовленных метастабильных сред амплитуда волны могут, наоборот, усиливаться (пример: генерациялазерного излучения).

Взаимодействие с телами и границами раздела. Наиболее «спокойным» образом волна распространяется в однородной, однотипной среде. Если же на пути волны встречается какой-либо дефект среды, тело, или граница раздела двух сред, то это приводит к нарушению нормального распространения волны. Результат этого нарушения часто проявляется в виде следующих явлений:

отражение

преломление

рассеяние

дифракция

Разумеется, конкретный вид законов, описывающих эти процессы, зависит от типа волны.

Пространственные размеры волны. Когда говорят опространственном размере волны , то имеют в виду размер той области пространства, где амплитуду колебания нельзя считать (в рамках рассматриваемой задачи) пренебрежимо малой. Большинство волн могут, теоретически, обладать сколь угодно большим размером, как в направлении движения, так и поперёк него. В реальности же все волны обладают конечными размерами. Продольный размер волны, как правило, определяется длительностью процесса излучения волны. Поперечный же размер определяется рядом параметров: размером излучателя, характером распространения волны (например, плоская, сферически расходящаяся волна и т.д.).

Некоторые виды волн, в частности, солитоны, являются ограниченными волнами по построению.

Волна ограниченного размера называется волновым пакетом, или цугом волн. В теории, волновой пакет описывается как сумма всевозможных плоских волн, взятых с определёнными весами. В случае нелинейных волн, форма огибающей волнового пакета эволюционирует с течением времени.

Поляризация. В каждой точке любой волны можно ввести некоторойвекторное поле. Так, если волна есть колебание некоторой среды, то этим вектором будет векторскоростичастицы этой среды в данной точке; если это электромагнитная волна, то этим вектором будетэлектрическое полеи т.д. Направление этого вектора задаёт поляризацию волны. Если этот вектор параллелен направлению движения волны (т.е. если среда колеблется вдоль направления движения), то волна называетсяпродольной . Если вектор перпендикулярен направлению движения волны (т.е. если среда колеблется поперёк направления движения), то волна называетсяпоперечной .

Поперечность или продольность волны определяется её природой. Так, например, плоские электромагнитные и гравитационные волны поперечны, звуковая волна в газе - продольна, а упругие волны в твёрдом теле могут быть как продольными, так и поперечными.

Фазовая когерентность.Когерентностьволны означает, что в различных точках волны осцилляции происходят синхронно, т.е. разность фаз между двумя точками не зависит от времени. Отсутствие когерентности, следовательно, это ситуация, когда разность фаз между двумя точками не константа, а почти случайно «скачет» со временем (сбои фаз). Такая ситуация может иметь место, если волна была сгенерирована не единым излучателем, а совокупностью одинаковых, но независимых (т.е. нескорелированных) излучателей.

Изучение когерентности световых волн приводит к понятиям временнойипространственной когерентности. При распространении электромагнитных волн вволноводахмогут иметь местофазовые сингулярности. В случае волн на воде когерентность волны определяет так называемаявторая периодичность.