Кто нашел электричество. Кто изобрёл электричество? Электрические явления в природе

Добавить сайт в закладки

История электричества

Электричество, совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля (в случае неподвижных электрических зарядов - электростатического поля).

Движущиеся заряды (электрический ток) наряду с электрическим возбуждают и магнитное поле, т. е. порождают электромагнитное поле, посредством которого осуществляется электромагнитное взаимодействие (учение о магнетизме является составной частью общего учения об электричестве). Электромагнитные явления описываются классической электродинамикой, в основе которой лежат Максвелла уравнения

Законы классической теории электричества охватывают огромную совокупность электромагнитных процессов. Среди 4 типов взаимодействий (электромагнитных, гравитационных, сильных и слабых), существующих в природе, электромагнитные занимают первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных частиц противоположных знаков, взаимодействия между которыми, с одной стороны, на много порядков интенсивнее гравитационных и слабых, а с другой - являются дальнодействующими в отличие от сильных взаимодействий. Строение атомных оболочек, сцепление атомов в молекулы (химические силы) и образование конденсированного вещества определяются электромагнитным взаимодействием.

Простейшие электрические и магнитные явления известны ещё с глубокой древности. Были найдены минералы, притягивающие кусочки железа, а также обнаружено, что янтарь (греч. электрон, elektron, отсюда термин электричество), потёртый о шерсть, притягивает лёгкие предметы (электризация трением). Однако лишь в 1600 У. Гильберт впервые установил различие между электрическими и магнитными явлениями. Он открыл существование магнитных полюсов и неотделимость их друг от друга, а также установил, что земной шар - гигантский магнит.

В XVII - 1-й половине XVIII вв. проводились многочисленные опыты с наэлектризованными телами, были построены первые электростатические машины, основанные на электризации трением, установлено существование электрических зарядов двух родов (Ш. Дюфе), обнаружена электропроводность металлов (английский учёный С. Грей). С изобретением первого конденсатора - лейденской банки (1745) - появилась возможность накапливать большие электрические заряды. В 1747-53 Франклин изложил первую последовательную теорию электрических явлений, окончательно установил электрическую природу молнии и изобрёл молниеотвод.

Во 2-й половине XVIII в. началось количественное изучение электрических и магнитных явлений. Появились первые измерительные приборы - электроскопы различных конструкций, электрометры. Г. Кавендиш (1773) и Ш.Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрических зарядов (работы Кавендиша были опубликованы лишь в 1879).

Этот основной закон электростатики (Кулона закон) впервые позволил создать метод измерения электрических зарядов по силам взаимодействия между ними. Кулон установил также закон взаимодействия между полюсами длинных магнитов и ввёл понятие о магнитных зарядах, сосредоточенных на концах магнитов.

Следующий этап в развитии науки об электричестве связан с открытием в конце XVIII в. Л.Гальвани "животного электричества" и работами А.Вольты , который изобрёл первый источник электрического тока - гальванический элемент (т. н. вольтов столб, 1800), создающий непрерывный (постоянный) ток в течение длительного времени. В 1802 В.В.Петров, построив гальванический элемент значительно большей мощности, открыл электрическую дугу, исследовал её свойства и указал на возможность применений её для освещения, а также для плавления и сварки металлов. Г. Дэви электролизом водных растворов щелочей получил (1807) неизвестные ранее металлы - натрий и калий. Дж,П.Джоуль установил (1841), что количество теплоты, выделяемой в проводнике электрическим током, пропорционально квадрату силы тока; этот закон был обоснован (1842) точными экспериментами Э.Х.Ленца (закон Джоуля - Ленца).

Г.Ом установил (1826) количественную зависимость электрического тока от напряжения в цепи. К.Ф.Гаусс сформулировал (1830) основную теорему электростатики.

Наиболее фундаментальное открытие было сделано Х.Эрстедом в 1820; он обнаружил действие электрического тока на магнитную стрелку - явление, свидетельствовавшее о связи между электричеством и магнетизмом. Вслед за этим в том же году А.М.Ампер установил закон взаимодействия электрических токов (Ампера закон). Он показал также, что свойства постоянных магнитов могут быть объяснены на основе предположения о том, что в молекулах намагниченных тел циркулируют постоянные электрические токи (молекулярные токи). Т. о., согласно Амперу, все магнитные явления сводятся к взаимодействиям токов, магнитных же зарядов не существует. Со времени открытий Эрстеда и Ампера учение о магнетизме сделалось составной частью учения об электричестве.

Со 2-й четверти XIX в. началось быстрое проникновение электричества в технику. В 20-х гг. появились первые электромагниты. Одним из первых применений электричества был телеграфный аппарат, в 30-40-х гг. построены электродвигатели и генераторы тока, а в 40-х гг.- электрические осветительные устройства и т. д. Практическое применение электричества в дальнейшем всё более возрастало, что в свою очередь оказало существенное, влияние на учение об электричестве.

В 30-40-х гг. XIX в. в развитие науки об электричестве внёс большой вклад М.Фарадей - творец общего учения об электромагнитных явлениях, в котором все электрические и магнитные явления рассматриваются с единой точки зрения. С помощью опытов он доказал, что действия электрических зарядов и токов не зависят от способа их получения [до Фарадея различали "обыкновенное" (полученное при электризации трением), атмосферное, "гальваническое", магнитное, термоэлектрическое, "животное" и другие виды Э.].

Опыт Араго ("магнетизм вращения").

В 1831 Фарадей открыл индукцию электромагнитную - возбуждение электрического тока в контуре, находящемся в переменном магнитном поле. Это явление (наблюдавшееся в 1832 также Дж. Генри) составляет фундамент электротехники. В 1833-34 Фарадей установил законы электролиза; эти его работы положили начало электрохимии. В дальнейшем он, пытаясь найти взаимосвязь электрических и магнитных явлений с оптическими, открыл поляризацию диэлектриков (1837), явления парамагнетизма и диамагнетизма (1845), магнитное вращение плоскости поляризации света (1845) и др.

Фарадей впервые ввёл представление об электрическом и магнитном полях. Он отрицал концепцию дальнодействия, сторонники которой считали, что тела непосредственно (через пустоту) на расстоянии действуют друг на друга.

Согласно идеям Фарадея, взаимодействие между зарядами и токами осуществляется посредством промежуточных агентов: заряды и токи создают в окружающем пространстве электрическое или (соответственно) магнитное поля, с помощью которых взаимодействие передаётся от точки к точке (концепция близкодействия). В основе его представлений об электрическом и магнитном полях лежало понятие силовых линий, которые он рассматривал как механические образования в гипотетической среде - эфире, подобные растянутым упругим нитям или шнурам.

Идеи Фарадея о реальности электромагнитного поля не сразу получили признание. Первая математическая формулировка законов электромагнитной индукции была дана ф. Нейманом в 1845 на языке концепции дальнодействия.

Им же были введены важные понятия коэффициентов само- и взаимоиндукции токов. Значение этих понятий полностью раскрылось позднее, когда У. Томсон (лорд Кельвин) развил (1853) теорию электрических колебаний в контуре, состоящем из конденсатора (электроёмкость) и катушки (индуктивность).
Большое значение для развития учения об электричестве имело создание новых приборов и методов электрических измерений, а также единая система электрических и магнитных единиц измерений, созданная Гауссом и В.Вебером.

В 1846 Вебер указал на связь силы тока с плотностью электрических зарядов в проводнике и скоростью их упорядоченного перемещения. Он установил также закон взаимодействия движущихся точечных зарядов, который содержал новую универсальную электродинамическую постоянную, представляющую собой отношение электростатических и электромагнитных единиц заряда и имеющую размерность скорости.

При экспериментальном определении (Вебер и ф. Кольрауш, 1856) этой постоянной было получено значение, близкое к скорости света; это явилось определённым указанием на связь электромагнитных явлений с оптическими.

В 1861-73 учение об электричестве получило своё развитие и завершение в работах Дж. К. Максвелла. Опираясь на эмпирические законы электромагнитных явлений и введя гипотезу о порождении магнитного поля переменным электрическим полем, Максвелл сформулировал фундаментальные уравнения классической электродинамики, названные его именем. При этом он, подобно Фарадею, рассматривал электромагнитные явления как некоторую форму механических процессов в эфире.

Главное новое следствие, вытекающее из этих уравнений, - существование электромагнитных волн, распространяющихся со скоростью света. Уравнения Максвелла легли в основу электромагнитной теории света. Решающее подтверждение теория Максвелла нашла в 1886-89, когда Г.Герц экспериментально установил существование электромагнитных волн. После его открытия были предприняты попытки установить связь с помощью электромагнитных волн, завершившиеся созданием радио, и начались интенсивные исследования в области радиотехники.

В конце XIX - начале XX вв. начался новый этап в развитии теории электричества. Исследования электрических разрядов увенчались открытием Дж. Дж. Томсоном дискретности электрических зарядов. В 1897 он измерил отношение заряда электрона к его массе, а в 1898 определил абсолютную величину заряда электрона. Х. Лоренц, опираясь на открытие Томсона и выводы молекулярно-кинетической теории, заложил основы электронной теории строения вещества. В классической электронной теории вещество рассматривается как совокупность электрически заряженных частиц, движение которых подчинено законам классической механики. Уравнения Максвелла получаются из уравнений электронной теории статистическим усреднением.

Попытки применения законов классической электродинамики к исследованию электромагнитных процессов в движущихся средах натолкнулись на существенные трудности. Стремясь разрешить их, А. Эйнштейн пришёл (1905) к относительности теории. Эта теория окончательно опровергла идею существования эфира, наделённого механическими свойствами. После создания теории относительности стало очевидно, что законы электродинамики не могут быть сведены к законам классической механики.

На малых пространственно-временных интервалах становятся существенными квантовые свойства электромагнитного поля, не учитываемые классической теорией электричества. Квантовая теория электромагнитных процессов - квантовая электродинамика - была создана во 2-й четверти XX в. Квантовая теория вещества и поля уже выходит за пределы учения об электричестве, изучает более фундаментальные проблемы, касающиеся законов движения элементарных частиц и их строения.

С открытием новых фактов и созданием новых теорий значение классического учения об электричестве не уменьшилось, были определены лишь границы применимости классической электродинамики. В этих пределах уравнения Максвелла и классическая электронная теория сохраняют силу, являясь фундаментом современной теории электричества.

Классическая электродинамика составляет основу большинства разделов электротехники, радиотехники, электроники и оптики (исключение составляет квантовая электроника). С помощью её уравнений было решено огромное число задач теоретического и прикладного характера. В частности, многочисленные проблемы поведения плазмы в лабораторных условиях и в космосе решаются с помощью уравнений Максвелла.

Открытие электричества полностью изменило жизнь человека. Это физическое явление постоянно участвует в повседневной жизни. Освещение дома и улицы, работа всевозможных приборов, наше быстрое передвижение - все это было бы невозможно без электроэнергии. Это стало доступно благодаря многочисленным исследованиям и опытам. Рассмотрим главные этапы истории электрической энергии.

Древнее время

Термин «электричество» происходит от древнегреческого слова «электрон», что в переводе означает «янтарь». Первое упоминание об этом явлении связано с античными временами. Древнегреческий математик и философ Фалес Милетский в VII веке до н. э. обнаружил, что если произвести трение янтаря о шерсть, то у камня появляется способность притягивать мелкие предметы.

Фактически это был опыт изучения возможности производства электроэнергии. В современном мире такой метод известен, как трибоэлектрический эффект, который дает возможность извлекать искры и притягивать предметы с легким весом. Несмотря на низкую эффективность такого метода, можно говорить о Фалесе, как о первооткрывателе электричества.

В древнее время было сделано еще несколько робких шагов на пути к открытию электричества:

  • древнегреческий философ Аристотель в IV веке до н. э. изучал разновидности угрей, способных атаковать противника разрядом тока;
  • древнеримский писатель Плиний в 70 году нашей эры исследовал электрические свойства смолы.

Все эти эксперименты вряд ли помогут нам разобраться в том, кто открыл электричество. Эти единичные опыты не получили развития. Следующие события в истории электричества состоялись много веков спустя.

Этапы создания теории

XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.

Появление термина

Английский физик и придворный врач в 1600 году издал книгу «О магните и магнитных телах», в которой он давал определение «электрический». Оно объясняло свойства многих твердых тел после натирания притягивать небольшие предметы. Рассматривая это событие надо понимать, что речь идет не об изобретении электричества, а лишь о научном определении.

Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:

  • стекло;
  • алмаз;
  • сапфир;
  • аметист;
  • опал;
  • сланцы;
  • карборунд.

В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.

В марте 1672 года известный немецкий ученый Готфрид Вильгельм Лейбниц в письме к Герике упоминал, что при работе с его машиной он зафиксировал электрическую искру. Это стало первым свидетельством загадочного на тот момент явления. Герике создал прибор, послуживший прототипом всех будущих электрических открытий.

В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.

Два вида зарядов

Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:

  • «стеклянный», который теперь именуется положительным;
  • «смоляной», называющийся отрицательным.

Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно - отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.

В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.

11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.

Бенджамин Франклин

В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.

В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:

  1. Известное сегодня обозначение электрических состояний (-) и (+).
  2. Франклин доказал электрическую природу молнии.
  3. Он смог придумать и представить в 1752 году проект громоотвода.
  4. Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.

Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.

От теории к точной науке

Проведенные исследования и опыты позволили изучению электричества перейти в категорию точной науки. Первым в череде научных достижений стало открытие закона Кулона.

Закон взаимодействия зарядов

Французский инженер и физик Шарль Огюстен де Кулон в 1785 году открыл закон, который отображал силу взаимодействия между статичными точечными зарядами. Кулон до этого изобрел крутильные весы. Появление закона состоялось благодаря опытам Кулона с этими весами. С их помощью он измерял силу взаимодействия заряженных металлических шариков.

Закон Кулона являлся первым фундаментальным законом, объясняющим электромагнитные явления, с которых началась наука об электромагнетизме. В честь Кулона в 1881 году была названа единица электрического заряда.

Изобретение батареи

В 1791 году итальянский врач, физиолог и физик написал «Трактат о силах электричества при мышечном движении». В нем он фиксировал наличие электрических импульсов в мышечных тканях животных. А также он обнаружил разность потенциалов при взаимодействии двух видов металла и электролита.

Открытие Луиджи Гальвани получило свое развитие в работе итальянского химика, физика и физиолога Алессандро Вольты. В 1800 году он изобретает «Вольтов столб» - источник непрерывного тока. Он представлял собой стопку серебряных и цинковых пластин, которые были разделены между собой смоченными в соленом растворе бумажными кусочками. «Вольтов столб» стал прототипом гальванических элементов, в которых химическая энергия преобразовывалась в электрическую.

В 1861 году в его честь было введено название «вольт» - единица измерения напряжения.

Гальвани и Вольта являются одними из основоположников учения об электрических явлениях. Изобретение батареи спровоцировало бурное развитие и последующий рост научных открытий. Конец XVIII века и начало XIX века можно характеризовать как время, когда изобрели электричество.

Появление понятия тока

В 1821 году французский математик, физик и естествоиспытатель Андре-Мари Ампер в собственном трактате установил связь магнитных и электрических явлений, которая отсутствует в статичности электричества. Тем самым он впервые ввел понятие «электрический ток».

Ампер сконструировал катушку с множественными витками из медных проводов, которую можно классифицировать как усилитель электромагнитного поля. Это изобретение послужило созданию в 30-х годах 19 века электромагнитного телеграфа.

Благодаря исследованиям Ампера стало возможным рождение электротехники. В 1881 в его честь единица силы тока была названа «ампером», а приборы, измеряющие силу - «амперметрами».

Закон электрической цепи

Физик из Германии Георг Симон Ом в 1826 году представил закон, который доказывал связь между сопротивлением, напряжением и силой тока в цепи. Благодаря Ому возникли новые термины:

  • падение напряжения в сети;
  • проводимость;
  • электродвижущая сила.

Его именем в 1960 году названа единица электросопротивления, а Ом, несомненно, входит в список тех, кто изобрел электричество.

Английский химик и физик Майкл Фарадей совершил в 1831 году открытие электромагнитной индукции, которая лежит в основе массового производства электроэнергии. На основе этого явления он создает первый электродвигатель. В 1834 году Фарадей открывает законы электролиза, которые привели его к выводу, что носителем электрических сил можно считать атомы. Исследования электролиза сыграли существенную роль в возникновении электронной теории.

Фарадей является создателем учения об электромагнитном поле. Он сумел предсказать наличие электромагнитных волн.

Общедоступное применение

Все эти открытия не стали бы легендарными без практического использования. Первым из возможных способов применения явился электрический свет, который стал доступен после изобретения в 70-х годах 19 века лампы накаливания. Ее создателем стал российский электротехник Александр Николаевич Лодыгин .

Первая лампа являлась замкнутым стеклянным сосудом, в котором находился угольный стержень. В 1872 году была подана заявка на изобретение, а в 1874 году Лодыгину выдали патент на изобретение лампы накаливания. Если пытаться ответить на вопрос, в каком году появилось электричество, то этот год можно считать одним из правильных ответов, поскольку появление лампочки стало очевидным признаком доступности.

Появление электроэнергии в России

Будет интересно выяснить, в каком году появилось электричество в России. Освещение впервые появилось в 1879 году в Санкт-Петербурге. Тогда фонари установили на Литейном мосту. Затем в 1883 году начала работу первая электростанция у Полицейского (Народного) моста.

В Москве освещение впервые появилось 1881 году. Первая городская электростанция заработала в Москве в 1888 году.

Днем основания энергетических систем России считается 4 июля 1886 года, когда Александр III подписал устав «Общества электрического освещения 1886 года». Оно было основано Карлом Фридрихом Сименсом, который являлся братом организатора всемирно известного концерна Siemens.

Невозможно точно сказать, когда появилось электричество в мире. Слишком много разбросанных во времени событий, которые являются одинаково важными. Поэтому вариантов ответа может быть много, и все они будут правильными.

В жизни современного человека огромную роль играет электричество. До сих пор многие не понимают, как когда-то люди жили без электрического тока. В наших домах есть свет, вся бытовая техника, начиная от телефона и заканчивая компьютером, работает от электрического напряжения. Кто изобрёл электричество и в каком году это произошло, знают далеко не все. А вместе с тем это открытие положило начало новому периоду в истории человечества.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество» . С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта , который придумал и изобрел гальванический элемент - источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ - двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

В 1870-х годах русским ученым А. Н. Лодыгиным была изобретена лампа накаливания. Он, предварительно откачав из сосуда воздух, заставил светиться угольный стержень. Чуть позже он предложил заменить угольный стержень на вольфрамовый. Однако запустить лампочку в массовое производство смог другой ученый - американец Томас Эдисон. Поначалу в качестве нити в лампе он использовал обугленную стружку, полученную из китайского бамбука. Его модель получилась недорогой, качественной и могла прослужить относительно долгое время. Значительно позже Эдисон заменил нить на вольфрамовую.

Никто не знает, в каком году изобрели электричество, но начиная с XIX века оно активно вошло в жизнь человека. Поначалу это было просто освещение, затем электрический ток начали применять и для других сфер жизни (транспорта, средств передачи информации, бытовой техники).

Использование освещения в России

Пытаясь выяснить, в каком году появилось электричество в России, учёные склоняются к мнению, что это случилось в 1879 году . Именно тогда был освещен Литейный мост в Петербурге. 30 января 1880 года был создан электротехнический отдел в Русском техническом обществе. Это общество и занималось развитием электричества в Российской империи. В 1883 году произошло знаковое в истории электричества событие - было выполнено освещение Кремля, когда к власти пришел Александр III. По его указу образовывается специальное общество, которое занимается разработкой генерального плана по электрификации Петербурга и Москвы.

Переменный и постоянный ток

Когда открыли электричество, между Томасом Эдисоном и Никола Теслой разгорелся спор, какой ток использовать в качестве основного, переменный или постоянный. Противостояние между учёными даже было прозвано «Войной токов». В этой борьбе победил переменный ток , так как он:

  • легко передается на большие расстояния;
  • не несет огромных потерь, передаваясь на расстоянии.

Основные области потребления

В повседневной жизни постоянный ток применяется довольно часто. От него работают различные бытовые приборы, генераторы и зарядные устройства. В промышленности его используют в аккумуляторах и двигателях. В некоторых странах им оснащаются линии электропередач.

Переменный ток способен меняться по направлению и величине в течение определенного промежутка времени. Он применяется чаще постоянного. В наших домах его источником служат розетки, к ним подключают различные бытовые приборы под разным напряжением. Переменный ток часто применяется в промышленности и при освещении улиц.

Сейчас электричество в наши дома поступает благодаря электрическим станциям . На них установлены специальные генераторы, которые работают от источника энергии. В основном эта энергия тепловая, которая получается при нагревании воды. Для нагревания воды используют нефть, газ, ядерное топливо или уголь. Пар, образовывающийся при нагревании воды, приводит в действие огромные лопасти турбин, которые, в свою очередь, запускают генератор. В качестве питания генератора можно использовать энергию воды, падающую с высоты (с водопадов или плотин). Реже используется сила ветра или энергия солнца.

Затем генератор при помощи магнита создает поток электрических зарядов, проходящих по медным проводам. Для того чтобы передавать ток на большие расстояния, необходимо повысить напряжение. Для этой роли используется трансформатор, который повышает и понижает напряжение. Потом электричество с большой мощностью передается по кабелям к месту его применения. Но перед попаданием в дом необходимо понизить напряжение с помощью другого трансформатора. Теперь оно готово к использованию.

Когда заводят разговор об электричестве в природе , первыми на ум приходят молнии, но это далеко не единственный его источник. Даже наши с вами тела имеют электрический заряд, он существует в тканях человека и передает нервные импульсы по всему организму. Но не только человек содержит в себе электрический ток. Многие обитатели подводного мира также способны выделять электричество, например, скат содержит в себе заряд мощностью 500 Ватт, а угорь может создать напряжение до 0,5 киловольт.

В наше время жизнь без электричества просто остановится. Однако, так было не всегда – раньше люди и слова такого не слышали. На протяжении веков, благодаря усилиям поколений талантливых ученых и исследователей, человечество продвигалось к открытию и использованию этого чудесного природного явления. Освоение электрического тока можно смело считать одним из главных достижений человечества.

Открытие электричества: первые шаги

Точного ответа на вопрос, когда появилось электричество, не существует. Как природная сила оно существовало всегда, а вот долгий путь к изобретению и использованию электричества был начат еще в 8 веке до н.э. История даже сохранила имя человека, давшего название этому явлению. Философ Фалес Миллетский, проживавший в Древней Греции обратил внимание на то, что натертый шерстью янтарь может притянуть к себе небольшие предметы за счет какой-то силы. «Янтарь» по-гречески означает «электрон», отсюда и пошло «электричество».

Настоящее зарождение исследований в этой области история электричества относит к середине 17 века, и связано оно с именем бургомистра из немецкого Магдебурга Отто ф.Герике (по совместительству ученый-физик и изобретатель). Он в 1663 году, после изучения трудов Фалеса, создал особую машину для исследования эффектов электрического притяжения и отталкивания, это и был первый в мире электрический механизм. Аппарат состоял из серного шарика, который крутился на металлическом стержне и, подобно янтарю, притягивал и отталкивал различные предметы.

Среди первопроходцев, способствовавших появлению в нашей жизни электричества, можно назвать англичанина У. Гилберта, который служил физиком и медиком при дворе. Он считается основоположником электротехники (науки о свойствах и применении электричества), изобрел электроскоп и сделал несколько замечательных открытий в этой области.

Новые открытия

В 1729 году англичане Стивен Грей и Грэнвилл Уилер впервые обнаружили, что электрический ток свободно проходит через некоторые тела (названные проводниками) и не проходит через другие (непроводники), это было первым шагом к использованию электроэнергии в промышленных целях.

В Англии же впервые в мире пытаются передать электричество на какое-то расстояние, занимался этим ученый С. Грей, в процессе опытов он также столкнулся с разной степенью проводимости тел.

Профессора математики Голландца П.ван Мушенбрука называют тем, кто изобрел первый конденсатор для электричества – это знаменитая «лейденская банка» (названа по имени родного города изобретателя). Прибор представлял собой обычную стеклянную банку, с обоих концов запаянную тонкими листами сплава олова со свинцом. Таким образом, появляется возможность накапливать электричество.

Известный американский политический деятель Бенджамин Франклин также был среди тех, кто открыл электричество для широкого применения в жизни. Он опытным путем определил, что электрические заряды делятся на положительные и отрицательные, а также изучил электрическую природу молний.

На основе открытий Франклина в России ученые Рихман и великий Михайло Васильевич Ломоносов изобрели громоотвод, доказав на практике, что молнии получаются из разности потенциалов атмосферного электричества. Ломоносов вообще оказал огромное влияние на изучение электрических явлений (особенно атмосферных).

Молодая наука об электричестве продолжает стремительно развиваться – на протяжении 18-19 веков появлялись все новые открытия и изобретения, писались новые научные трактаты, главным предметом которых был электрический ток.

Так, в 1791 году выпущена в свет книга об электричестве в мышцах человека и животных, возникающая при их сокращении, автором был итальянский физик Гальвани. Другой итальянец – Алессандро Вольта, был тем, кто создал в 1800 году доселе неизвестный источник тока, названный «гальванический элемент» (в честь того самого Гальвани), который через несколько сотен лет предстает в виде всем известной батарейки.

«Вольтов столб» был выполнен в виде собственно столба, отлитого из цинка и серебра, между слоями которых была проложена просоленная бумага.

Через несколько лет в России профессор физики из Санкт-Петербурга В. Петров представляет научному миру мощную электрическую дугу, назвав ее «Вольтова дуга». Он тот, кто придумал использовать свет от электричества для освещения внутри помещений. Были продемонстрированы возможности для использования электрических явлений в хозяйственной жизни. Собранная ученым батарея была действительно гигантской (длина – 12, а высота – около 3 метров), напряжение ее было постоянным и составляло 1700 вольт. Это изобретение положило начало опытам по созданию ламп накаливания и методов электрической сварки металлов.

Великие открытия в области электричества

Опыты Петрова в России способствовали тому, что в 1809 году ученый Деларю в Англии сконструировал первую в мире лампу накаливания. А сто лет спустя американский химик и Нобелевский лауреат И. Ленгмюр выпустил первую лампочку, у которой была светящаяся спираль из вольфрама, помещенная в запаянную колбу с инертным газом. Это дало старт новой эпохе. Многие ученые и в Европе, и в США, и в России проводили многочисленные опыты и исследования, чтобы лучше понять природу электричества и поставить его на службу человеку.

Так, в 1820 году датчанин Эрстред выявил взаимодействие электрических частиц, а в 1821 знаменитый Ампер выдвинул и доказал теорию о связи магнетизма и электрических явлений. Свойства электромагнитного поля углубленно исследовал англичанин М. Фарадей, он же открыл закон электромагнитной индукции, гласящий, что в замкнутом проводящем контуре при временном изменении магнитного потока возникают электрические импульсы, а также сконструировал первый электрогенератор. Работы этих ученых и десятков других менее известных привели к появлению новой науки, которой немецкий инженер Вернер фон Сименс дал название «электротехника».

В 1826 году Г.С.Ом после многочисленных опытов выдвинул закон электроцепи (известный также, как «закон Ома»), а также новые термины: «проводимость», «электрическая движущая сила», «напряжение электротока». Его последователь, А-М. Ампер, вывел знаменитое правило «правой руки», т.е. определение направлений течения электротока с помощью магнитной стрелки. Он же изобрел прибор для усиления электрополя – катушки медных проводов вокруг железных сердечников. Эти наработки стали предвестниками одного из главных изобретений в области электротехники (электромагнитного телеграфа) немецким учёным Самуилом Томасом Земмерингом.

В России изобретатель Александр Лодыгин придумал лампочку, максимально напоминающую современные аналоги: вакуумная колба, внутри которой помещена спиралевидная нить накаливания, сделанная из тугоплавкого вольфрама. Ученый продал права на это изобретение американской корпорации «Дженерал Электрик», которая запустила их в массовое производство. Поэтому справедливо было бы считать первооткрывателем лампочек именно россиянина, хотя во всех американских учебниках физики «отцом лампочки» значится их ученый Т.Эдисон, который тоже внес немалый вклад в изобретение электричества.

Современный виток исследований

Недавние грандиозные открытия в области электричества связаны с именем великого Николы Теслы, значение и масштабы которых до сих пор не оценены по достоинству. Этот гениальный человек изобрел такие вещи, которые еще только предстоит использовать:

  • синхронный генератор и асинхронный электродвигатель, совершившие промышленную революцию в современном мире;
  • флюоресцентные лампы для освещения больших пространств;
  • концепция радио была представлена Теслой на несколько лет раньше «официального отца» радио – Маркони;
  • дистанционно управляемые приборы (первой была лодка на больших батареях, управляемая с помощью радио);
  • двигатель с вращающимися магнито-полями (на этой основе сейчас производят новейшие автомобили, не нуждающиеся в бензине);
  • промышленные лазеры;
  • «Лазер Башня» – первый в мире прибор для беспроводного коммуникацирования, прообраз всемирной сети Интернет;
  • множество бытовых и промышленных электроприборов.

Оцените статью:

Или электрическим током называют направленно движущийся поток заряженных частиц, например электронов. Также электричеством называется энергия, получаемая в результате такого движения заряженных частиц, и освещение, которое получают на основе этой энергии. Термин «электричество» был введён английским учёным Уильямом Гилбертом в 1600 году в его сочинении «О магните, магнитных телах и о большом магните-Земле».

Гилберт проводил опыты с янтарём, который в результате трения о сукно получил возможность притягивать другие лёгкие тела, то есть приобрёл некий заряд. А так как янтарь переводится с греческого как электрон, то наблюдаемое ученым явление получило название «электричество».

Электрический ток

Немного теории об электричестве

Электричество способно создавать вокруг проводников электрического тока или заряженных тел электрическое поле. Посредством электрического поля можно оказывать воздействие на другие тела, обладающие электрическим зарядом.fv

Электрические заряды, как всем известно, делятся на положительные и отрицательные. Этот выбор является условным, однако из-за того, что он уже давно сделан исторически, то только поэтому за каждым зарядом закреплён определённый знак.

Тела, которые заряжены одним видом знака, отталкиваются друг от друга, а которые имеют разные заряды-наоборот притягиваются.

Во время движения заряженных частиц, то есть существования электричества, также помимо электрического поля возникает и магнитное поле. Это позволяет установить родство между электричеством и магнетизмом .

Интересно, что существуют тела, которые проводят электрический ток или тела с очень большим сопротивлением.. Это было открыто английским учёным Стивеном Греем в 1729 году.

Изучением электричества, наиболее полно и фундаментально, занимается такая наука, как термодинамика. Однако квантовые свойства электромагнитных полей и заряженных частиц изучаются уже совсем другой наукойm – квантовой термодинамикой, однако некоторую часть квантовых явлений можно довольно просто объяснить обычными квантовыми теориями.

Основы электричества

История открытия электричества

Для начала необходимо сказать, что нет такого учёного, который может считаться открывателем электричества, так как с древнейших времен до наших дней многие учёные изучают его свойства и узнают что-то новое об электричестве.

  • Первым, кто заинтересовался электричеством, был древнегреческий философ Фалес. Он обнаружил, что янтарь, который потереть о шерсть приобретает свойство притягивать другие лёгкие тела.
  • Затем другой древнегреческий ученый Аристотель занимался изучением некоторых угрей, которые поражали врагов, как мы теперь знаем, электрическим разрядом.
  • В 70 году нашей эры римский писатель Плиний изучал электрические свойства смолы.
  • Однако затем долгое время об электричестве не было получено никаких знаний.
  • И только в 16 веке придворный врач английской королевы Елизаветы 1 Вильям Жильбер занялся изучением электрических свойств и сделал ряд интересных открытий. После этого началось буквально «электрическое помешательство».
  • Только в 1600 году появился термин «электричество», введённый английским ученым Уильямом Гилбертом.
  • В 1650 году, благодаря бургомистру Магдебурга Отто фон Герике, который изобрёл электростатическую машину, появилась возможность наблюдать эффект отталкивания тел под действием электричества.
  • В 1729 году английский учёный Стивен Грей, проводя опыты по передачи электрического тока на расстояние, случайно обнаружил, что не все материалы обладают свойством одинаково передавать электричество.
  • В 1733 году французский ученый Шарль Дюфе открыл существование двух типов электричества, которые он назвал стеклянным и смоляным. Эти названия они получили из-за того, что выявлялись при трении стекла о шёлк и смолы о шерсть.
  • Первый конденсатор, то есть накопитель электричества, изобрёл голландец Питер ванн Мушенбрук в 1745 году. Этот конденсатор получил название Лейденская банка.
  • В 1747 году американец Б.Франклин создал первую в мире теорию электричества. По франклину электричество – это нематериальная жидкость или флюид. Другая заслуга Франклина перед наукой заключается в том, что он изобрёл громоотвод и с помощью него доказал, что молния имеет электрическую природу возникновения. Также он ввёл такие понятия как положительный и отрицательный заряды, но не открывал заряды. Это открытие сделал учёный Симмер, который доказал существование полюсов зарядов: положительного и отрицательного.
  • Изучение свойств электричества перешло к точным наукам после того как в 1785 году Кулон открыл закон о силе взаимодействия, происходящей между точечными электрическими зарядами, который получил название Закон Кулона.
  • Затем, в 1791 году итальянский учёный Гальвани публикует трактат о том, что в мышцах животных, при их движении возникает электрический ток.
  • Изобретение батареи другим итальянским учёным – Вольтом в 1800, привело к бурному развитию науки об электричестве и к последовавшему ряду важных открытий в этой области.
  • Затем последовали открытия Фарадея, Максвелла и Ампера, которые произошли всего за 20 лет.
  • В 1874 году российский инженер А.Н.Лодыгин получил патент, на изобретённую в 1872 году лампу накаливания с угольным стержнем. Затем в лампе стал использоваться стержень из вольфрама. А в 1906 году он продал свой патент компании Томаса Эдисона.
  • В 1888 году Герц регистрирует электромагнитные волны.
  • В 1879 году Джозеф Томсон открывает электрон, который является материальным носителем электричества.
  • В 1911 году француз Жорж Клод изобрёл первую в мире неоновую лампу.
  • Двадцатый век дал миру теорию Квантовой электродинамики.
  • В 1967 году был сделан еще один шаг на пути изучения свойств электричества. В этом году была создана теория электрослабых взаимодействий.

Однако это только основные открытия, сделанные учёными, и способствовавшие применению электричества. Но исследования продолжаются и сейчас, и каждый год происходят открытия в области электричества.

Все уверенны что самым великим и могущественным в плане открытий связанных с электричеством, был Никола Тесла. Сам он родился в Австрийской империи, теперь это территория Хорватии. В его багаже изобретений и научных работ: переменный ток, теория полей, эфир, радио, резонанс и многое другое. Некоторые допускают возможность что явление “Тунгусского метеорита”, это ни что иное как работа рук самого Николы Теслы, а именно взрыв огромной мощности на территории Сибири.

Властелин мира - Никола Тесла

Какое-то время считалось, что электричество в природе не существует. Однако после того как Б.Франклин установил, что молнии имеют электрическую природу возникновения, это мнение перестало существовать.

Значение электричества в природе, как и в жизни человека достаточно огромно. Ведь именно молнии привели к синтезу аминокислот и, следовательно, к появлению жизни на земле .

Процессы в нервной системе человека и животных, например, движение и дыхание, происходят благодаря нервному импульсу, который возникает из-за электричества, существующего в тканях живых существ.

Некоторые виды рыб использую электричество, а точнее электрические разряды для защиты от врагов, поиска пищи под водой и её добывания. Такими рыбами являются: угри, миноги, электрические скаты и даже некоторые акулы. Все эти рыбы имеют специальный электрический орган, который работает по принципу конденсатора, то есть накапливает достаточно большой электрический заряд, а затем разряжает его на жертву, прикоснувшуюся к такой рыбе. Также такой орган работает с частотой в несколько сотен герц и имеет напряжение несколько вольт. Сила тока электрического органа рыб меняется с возрастом: чем старше становится рыба, тем сила тока больше. Также благодаря электрическому току рыбы, обитающие на большой глубине, ориентируются в воде. Электрическое поле искажается под действие предметов, находящихся в воде. А эти искажения и помогают рыбам ориентироваться.

Смертельные опыты. Электричество

Получение электричества

Для получения электричества были специально созданы электростанции. На электростанциях при помощи генераторов, создается электроэнергия, которая после передается в места потребления по линиям электропередач. Электрический ток создается благодаря переходу механической или внутренней энергии в электрическую энергию. Электростанции делятся на: гидроэлектростанции или ГЭС, тепловые атомные, ветровые, приливные, солнечные и другие электростанции.

В гидроэлектростанциях турбины генератора, движущиеся под действием потока воды, вырабатывают электрический ток. В тепловых электростанциях или по-другому ТЭЦ электрический ток образуется также, но только вместо воды используется водяной пар, возникающий в процессе нагрева воды при сгорании топлива, например, угля.

Очень похожий принцип работы используется в атомной станции или АЭС. Только в АЭС используется другой вид топлива – радиоактивные материалы, например, уран или плутоний. Происходит деление их ядер, благодаря чему выделяется очень большое количество теплоты, используемое для нагревания воды и превращения её в водяной пар, который затем поступает в турбину, вырабатывающую электрический ток. Для работы таких станций требуется очень мало топлива. Так десять граммов урана вырабатывает такое же количество электричества, как и вагон угля.

Использование электричества

В наше время жизнь без электричества становится невозможной. Оно достаточно плотно вошло в жизнь людей двадцать первого века. Часто электричество используют для освещения, например, используя электрическую или неоновую лампу, и для передачи всевозможной информации с помощью телефона, телевидения и радио, а в прошлом и телеграфа. Также еще в двадцатом веке появилась новая область применения электричества: источник питания электрических двигателей трамваев, поездов в метро, троллейбусов и электричек. Электричество необходимо для работы различных бытовых приборов, которые значительно улучшают жизнь современного человека.

Сегодня электричество также применяется для получения качественных материалов и их обработки. С помощью электрогитар, работающих благодаря электричеству, можно создавать музыку. Также электричество продолжает использоваться, как гуманный способ умерщвления преступников (электрический стул), в странах, в которых разрешена смертная казнь.

Также учитывая то, что жизнь современного человека становится практически невозможной без компьютеров и сотовых телефонов, для работы которых необходимо электричество, то важность электричества будет достаточно сложно переоценить.

Электричество в мифологии и искусстве

В мифологии почти всех народов есть боги, которые способны метать молнии, то есть умеющие использовать электричество. Например, у греков таким богом был Зевс, у индусов-Агни, который умел превращаться в молнию, у славян – это Перун, а у скандинавских народов-Тор.

В мультфильмах также есть электричество. Так в диснеевском мультфильме Черный плащ есть антигерой Мегавольт, который способен повелевать электричеством. В японской анимации электричеством владеет покемон Пикачу.

Заключение

Изучение свойств электричества началось ещё в глубокой древности и продолжается до сих пор. Узнав, основные свойства электричества и, научившись их правильно использовать, люди значительно облегчили свою жизнь. Электричество также используется на заводах, фабриках и тд., то есть с помощью него можно получать другие блага. Значение электричества, как в природе, так и в жизни современного человека огромно. Без такого электрического явления как молния на земле не зародилась бы жизнь, а без нервных импульсов, возникающих также благодаря электричеству, не возможно было бы обеспечить согласованную работу между всеми частями организмов.

Люди всегда были благодарны электричеству, даже когда не знали об его существовании. Они наделяли своих главных богов возможностью метать молнии.

Современный человек также не забывает об электричестве, но возможно ли о нем забыть? Он наделяет электрическими способностями героев мультфильмов и фильмов, строит электростанции, чтобы получать электричество и делает многое другое.

Таким образом, электричество величайший дар, данный нам самой природой и которым мы, к счастью, научились пользоваться.