Инструкция построения сечения методом параллельных прямых. Задачи на построение сечений. Построение сечений и разрезов на чертежах

Разрез, служащий для выяснения устройства предмета лишь в от-

дельном, ограниченном месте, называется местным (рис. 24, 25).

Часть вида и часть соответствующего

разреза допускается соединять, разделяя их

сплошной волнистой линией или сплошной

тонкой линией с изломом (рис. 24).Если при

этом соединяются половина вида и полови-

на разреза, каждый из которых является

симметричной фигурой, то разделяющей

линией служит ось симметрии. При этом

ниже оси симметрии (рис. 2, рис. 25).

Если с осью симметрии изображения

совпадает какая – либо линия, например,

проекция ребра (рис. 26), то вид от разреза

отделяют сплошной волнистой линией, проводимой правее, если ребро изо-

бражается на виде (рис. 26, а), или левее, если ребро изображается на разрезе

(рис. 26, б).

Построение сечений

Сечение - изображение фигуры, получающейся при мысленном рассечении предмета плоскостью. На сечении показывается только то, что находится непосредственно в секущей плоскости.

Сечения, не входящие в состав разреза, разделяют на: вынесенные (рис. 27) иналоженные (рис. 28).

Вынесенные сечения являются предпочтительными и их допускается располагать в разрыве между частями одного и того же вида (рис. 29).

Контур вынесенного сечения, а также сечения, входящего в состав разреза, изображают сплошными основными линиями, а контур наложенного сечения – сплошными тонкими линиями, причем контур изображения в месте расположения наложенного сечения не прерывают (рис. 28).

Ось симметрии вынесенного или наложенного сечения (рис. 28) указывают штрихпунктирной тонкой линией без обозначения буквами и стрелками

и линию сечения не проводят.

В случаях, подобных указанному на рис. 29, при симметричной фигуре сечения, линию сечения не проводят.

Во всех остальных случаях для линии сечения применяют разомкнутую линию с указанием стрелками направления взгляда и обозначают ее одинаковыми прописными буквами русского алфавита. Сечение сопровождают надписью по типу «А – А » (рис. 27).

Для несимметричных сечений, расположенных в разрыве или наложенных (рис. 30), линию сечения проводят со стрелками, но буквами не обозначают. Если секущая плоскость проходит через ось поверхности вращения, ограничивающей отверстие или углубление, то контур отверстия или углубления в сечении показывают полностью (рис. 31).

Выносные элементы

Выносной элемент - дополнительное отдельное изображение (обычно увеличенное) какой-либо части предмета, требующей графического и других пояснений в отношении формы, размеров и иных данных.

Выносной элемент может содержать подробности, не указанные на соответствующем изображении, и может отличаться от него по содержанию (например, изображение может быть видом, а выносной элемент – разрезом).

При применении выносного элемента соответствующее место отмечают на виде, разрезе или сечении замкнутой сплошной тонкой линией – окружностью, овалом и т.п. с обозначением выносного элемента прописной буквой русского алфавита на полке линии-выноски. Над изображением выносного элемента указывают обозначение и масштаб, в котором он выполнен

Выносной элемент располагают на чертеже возможно ближе к соответствующему месту на изображении предмета.

Построение аксонометрической проекции

В аксонометрии обычно выполняют вырез¼ части детали, при этом вырез не всегда повторяет разрез, выполненный на ортогональном изображении. Угол, образованный секущими плоскостями, должен быть раскрыт.

На рис. 34 – 37 показано поэтапное выполнение изометрии детали с

вырезом ¼ части. Для удобства построений будем считать, что нижняя плоскость детали совпадает с горизонтальной плоскостью проекций, а осьz – с осью конической и цилиндрической поверхностей.

Рис. 34 Рис. 35

Рис. 36 Рис. 37

Выполнение задания начинаем с построения аксонометрических осей и очертания плоских фигур, полученных при сечении детали вертикальными плоскостями, проведенными по осям симметрии детали (рис. 34).

Отмечаем центры окружностей усеченного конуса и цилиндров – точки О1 , О2 , О3 , О4 и строим изометрические проекции тех частей окружностей, которые остались после выполнения выреза (рис. 35). Заканчиваем построение прямоугольных очертаний детали (рис. 36). Выполнив штриховку плоских фигур, образовавшихся при сечении детали вертикальными плоскостями (проводя линии штриховки параллельно направлениям, показанным на рисунке), обводим контур детали (рис. 37).

Построение наклонного сечения

Наклонное сечение получается от пересечения предмета плоскостью, составляющей с горизонтальной плоскостью проекций угол, отличный от прямого.

На чертеже наклонные сечения выполняют по типу вынесенных сечений и в соответствии с направлением, указанным стрелками на линии сечения. При построении сечения не является обязательным строгое соблюдение проекционной связи между изображением, где задан след секущей плоскости, и фигурой сечения. Фигуру сечения можно расположить в любом удобном месте поля чертежа, рис. 38, б, в. При этом, если ориентация сечения на чертеже не соответствует направлению взгляда, указанному стрелками на штрихах линии сечения, то обозначение сечения должно сопровождаться знаком повернуто, рис. 38, в.

Цель работы:
Развитие пространственных представлений.
Задачи:
1. Познакомить с правилами построения сечений.
2. Выработать навыки построения сечений
тетраэдра и параллелепипеда при различных
случаях задания секущей плоскости.
3. Сформировать умение применять правила
построения сечений при решении задач по
темам «Многогранники».

Для решения многих
геометрических
задач необходимо
строить сечения
многогранников
различными
плоскостями.

Понятие секущей плоскости

Секущей
плоскостью
параллелепипеда
(тетраэдра)
называется любая
плоскость, по обе
стороны от
которой имеются
точки данного
параллелепипеда
(тетраэдра).

Понятие сечения многогранника

Секущая плоскость
пересекает грани
тетраэдра
(параллелепипеда) по
отрезкам.
Многоугольник, сторонами
которого являются данные
отрезки, называется
сечением тетраэдра
(параллелепипеда).

Работа по рисункам

Сколько плоскостей можно провести
через выделенные элементы?
Какие аксиомы и теоремы вы применяли?

Для построения сечения
нужно построить точки
пересечения секущей
плоскости с ребрами и
соединить их отрезками.

Правила построения сечений

1. Соединять можно только две
точки, лежащие в плоскости одной
грани.
2. Секущая плоскость пересекает
параллельные грани по
параллельным отрезкам.

Правила построения сечений

3. Если в плоскости грани отмечена
только одна точка, принадлежащая
плоскости сечения, то надо
построить дополнительную точку.
Для этого необходимо найти точки
пересечения уже построенных
прямых с другими прямыми,
лежащими в тех же гранях.

10. Построение сечений тетраэдра

11.

Тетраэдр имеет 4 грани
В сечениях могут получиться
Треугольники
Четырехугольники

12.

Построить сечение тетраэдра
DABC плоскостью, проходящей
через точки M,N,K
1. Проведем прямую через
точки М и К, т.к. они лежат
в одной грани (АDC).
D
M
AA
N
K
BB
CC
2. Проведем прямую через
точки К и N, т.к. они
лежат в одной грани
(СDB).
3. Аналогично рассуждая,
проводим прямую MN.
4. Треугольник MNK –
искомое сечение.

13. проходящей через точку М параллельно АВС.

D
1. Проведем через точку М
прямую параллельную
ребру AB
2.
М
Р
А
К
С
В
Проведем через точку М
прямую параллельную
ребру AC
3. Проведем прямую через
точки K и P, т.к. они лежат в
одной грани (DBC)
4. Треугольник MPK –
искомое сечение.

14.

Построить сечение тетраэдра плоскостью,
проходящей через точки E, F, K.
D
1. Проводим КF.
2. Проводим FE.
3. Продолжим
EF, продолжим AC.
F
4. EF AC =М
5. Проводим
MK.
E
M
AB=L
6.
MK
C
A
7. Проводим EL
L
EFKL – искомое сечение
K
B

15.

Построить сечение тетраэдра плоскостью,
проходящей через точки E, F, K
СКакие
какойпрямые
точкой,
лежащей в
можно
Соедините
получившиеся
Какие
точки
можно
сразу
той
же
грани
можно
продолжить,
чтобы
получить
точки,
лежащие
в
одной
соединить?
соединить
полученную
дополнительную
точку?
грани,
назовите
сечение.
дополнительную точку?
D
АС
ЕLFK
FСЕК
иточкой
K,и Е
и FК
F
L
C
M
A
E
K
B

16.

Построить сечение
тетраэдра плоскостью,
проходящей через точки
E, F, K.
D
F
L
C
A
E
K
B
О

17.

Вывод: независимо от способа
построения сечения одинаковые

18. Построение сечений параллелепипеда

19.

Тетраэдр имеет 6 граней
Треугольники
Пятиугольники
В его сечениях могут получиться
Четырехугольники
Шестиугольники

20. Построить сечение параллелепипеда плоскостью проходящей через точку Х параллельно плоскости (ОСВ)

В1
А1
Y
Х
D1
S
В
А
D
Z
1. Проведем через
С1
точку X прямую
параллельную ребру
D1C1
2. Через точку X
прямую
параллельную ребру
D1D
3. Через точку Z прямую
параллельную ребру
С
DC
4. Проведем прямую через
точки S и Y, т.к. они лежат в
одной грани (BB1C1)
XYSZ – искомое сечение

21.

Построить сечение параллелепипеда
плоскостью, проходящей через точки
M,A,D
В1
D1
E
A1
С1
В
А
1. AD
2. MD
3. ME//AD, т.к. (ABC)//(A1B1C1)
4. AE
5. AEMD – искомое сечение
М
D
С

22. Построить сечение параллелепипеда плоскостью, проходящей через точки М, К, Т

N
М
К
R
S
Х
Т

23. Выполните задания самостоятельно

м
т
к
м
Д
к
т
Постройте сечение: а) параллелепипеда;
б) тетраэдра
плоскостью, проходящей через точки М, Т, К.

24. Использованные ресурсы

Соболева Л. И. Построение сечений
Ткачева В. В. Построение сечений
тетраэдра и параллелепипеда
Гобозова Л. В. Задачи на построение
сечений
DVD-диск. Уроки геометрии Кирилла и
Мефодия. 10 класс, 2005
Обучающие и проверочные задания.
Геометрия. 10 класс (Тетрадь)/Алешина
Т.Н. – М.: Интеллект-Центр, 1998

Определение

Сечение - это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

Замечание

Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.
Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве” .

Важные определения

1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.

4. Две плоскости параллельны, если они не имеют общих точек.

5. Две прямые в пространстве называются перпендикулярными, если угол между ними равен \(90^\circ\) .

6. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

7. Две плоскости называются перпендикулярными, если угол между ними равен \(90^\circ\) .

Важные аксиомы

1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Важные теоремы

1. Если прямая \(a\) , не лежащая в плоскости \(\pi\) , параллельна некоторой прямой \(p\) , лежащей в плоскости \(\pi\) , то она параллельна данной плоскости.

2. Пусть прямая \(p\) параллельна плоскости \(\mu\) . Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\) , то линия пересечения плоскостей \(\pi\) и \(\mu\) - прямая \(m\) - параллельна прямой \(p\) .


3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

4. Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\) , то линии пересечения плоскостей также параллельны:

\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]


5. Пусть прямая \(l\) лежит в плоскости \(\lambda\) . Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\) , не лежащей на прямой \(l\) , то прямые \(l\) и \(s\) скрещиваются.


6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

7. Теорема о трех перпендикулярах.

Пусть \(AH\) – перпендикуляр к плоскости \(\beta\) . Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\) . Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.


8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

Замечание

Еще один важный факт, часто использующийся для построения сечений:

для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.


Для этого из двух произвольных точек \(A\) и \(B\) прямой \(a\) проведем перпендикуляры на плоскость \(\mu\) – \(AA"\) и \(BB"\) (точки \(A", B"\) называются проекциями точек \(A,B\) на плоскость). Тогда прямая \(A"B"\) – проекция прямой \(a\) на плоскость \(\mu\) . Точка \(M=a\cap A"B"\) и есть точка пересечения прямой \(a\) и плоскости \(\mu\) .

Причем заметим, что все точки \(A, B, A", B", M\) лежат в одной плоскости.

Пример 1.

Дан куб \(ABCDA"B"C"D"\) . \(A"P=\dfrac 14AA", \ KC=\dfrac15 CC"\) . Найдите точку пересечения прямой \(PK\) и плоскости \(ABC\) .

Решение

1) Т.к. ребра куба \(AA", CC"\) перпендикулярны \((ABC)\) , то точки \(A\) и \(C\) - проекции точек \(P\) и \(K\) . Тогда прямая \(AC\) – проекция прямой \(PK\) на плоскость \(ABC\) . Продлим отрезки \(PK\) и \(AC\) за точки \(K\) и \(C\) соответственно и получим точку пересечения прямых – точку \(E\) .


2) Найдем отношение \(AC:EC\) . \(\triangle PAE\sim \triangle KCE\) по двум углам (\(\angle A=\angle C=90^\circ, \angle E\) – общий), значит, \[\dfrac{PA}{KC}=\dfrac{EA}{EC}\]

Если обозначить ребро куба за \(a\) , то \(PA=\dfrac34a, \ KC=\dfrac15a, \ AC=a\sqrt2\) . Тогда:

\[\dfrac{\frac34a}{\frac15a}=\dfrac{a\sqrt2+EC}{EC} \Rightarrow EC=\dfrac{4\sqrt2}{11}a \Rightarrow AC:EC=4:11\]

Пример 2.

Дана правильная треугольная пирамида \(DABC\) с основанием \(ABC\) , высота которой равна стороне основания. Пусть точка \(M\) делит боковое ребро пирамиды в отношении \(1:4\) , считая от вершины пирамиды, а \(N\) – высоту пирамиды в отношении \(1:2\) , считая от вершины пирамиды. Найдите точку пересечения прямой \(MN\) с плоскостью \(ABC\) .

Решение

1) Пусть \(DM:MA=1:4, \ DN:NO=1:2\) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку \(O\) пересечения медиан основания. Найдем проекцию прямой \(MN\) на плоскость \(ABC\) . Т.к. \(DO\perp (ABC)\) , то и \(NO\perp (ABC)\) . Значит, \(O\) – точка, принадлежащая этой проекции. Найдем вторую точку. Опустим перпендикуляр \(MQ\) из точки \(M\) на плоскость \(ABC\) . Точка \(Q\) будет лежать на медиане \(AK\) .
Действительно, т.к. \(MQ\) и \(NO\) перпендикулярны \((ABC)\) , то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки \(M, N, O\) лежат в одной плоскости \(ADK\) , то и точка \(Q\) будет лежать в этой плоскости. Но еще (по построению) точка \(Q\) должна лежать в плоскости \(ABC\) , следовательно, она лежит на линии пересечения этих плоскостей, а это – \(AK\) .


Значит, прямая \(AK\) и есть проекция прямой \(MN\) на плоскость \(ABC\) . \(L\) – точка пересечения этих прямых.

2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки \(L\) (например, на нашем чертеже точка \(L\) лежит вне отрезка \(OK\) , хотя она могла бы лежать и внутри него; а как правильно?).

Т.к. по условию сторона основания равна высоте пирамиды, то обозначим \(AB=DO=a\) . Тогда медиана \(AK=\dfrac{\sqrt3}2a\) . Значит, \(OK=\dfrac13AK=\dfrac 1{2\sqrt3}a\) . Найдем длину отрезка \(OL\) (тогда мы сможем понять, внутри или вне отрезка \(OK\) находится точка \(L\) : если \(OL>OK\) – то вне, иначе – внутри).

а) \(\triangle AMQ\sim \triangle ADO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle A\) – общий). Значит,

\[\dfrac{MQ}{DO}=\dfrac{AQ}{AO}=\dfrac{MA}{DA}=\dfrac 45 \Rightarrow MQ=\dfrac 45a, \ AQ=\dfrac 45\cdot \dfrac 1{\sqrt3}a\]

Значит, \(QK=\dfrac{\sqrt3}2a-\dfrac 45\cdot \dfrac 1{\sqrt3}a=\dfrac7{10\sqrt3}a\) .

б) Обозначим \(KL=x\) .
\(\triangle LMQ\sim \triangle LNO\) по двум углам (\(\angle Q=\angle O=90^\circ, \ \angle L\) – общий). Значит,

\[\dfrac{MQ}{NO}=\dfrac{QL}{OL} \Rightarrow \dfrac{\frac45 a}{\frac 23a} =\dfrac{\frac{7}{10\sqrt3}a+x}{\frac1{2\sqrt3}a+x} \Rightarrow x=\dfrac a{2\sqrt3} \Rightarrow OL=\dfrac a{\sqrt3}\]

Следовательно, \(OL>OK\) , значит, точка \(L\) действительно лежит вне отрезка \(AK\) .

Замечание

Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что \(x\) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки \(L\) (то есть, что она находится внутри отрезка \(AK\) ).

Пример 3

Дана правильная четырехугольная пирамида \(SABCD\) . Найдите сечение пирамиды плоскостью \(\alpha\) , проходящей через точку \(C\) и середину ребра \(SA\) и параллельной прямой \(BD\) .

Решение

1) Обозначим середину ребра \(SA\) за \(M\) . Т.к. пирамида правильная, то высота \(SH\) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость \(SAC\) . Отрезки \(CM\) и \(SH\) лежат в этой плоскости, пусть они пересекаются в точке \(O\) .


Для того, чтобы плоскость \(\alpha\) была параллельна прямой \(BD\) , она должна содержать некоторую прямую, параллельную \(BD\) . Точка \(O\) находится вместе с прямой \(BD\) в одной плоскости – в плоскости \(BSD\) . Проведем в этой плоскости через точку \(O\) прямую \(KP\parallel BD\) (\(K\in SB, P\in SD\) ). Тогда, соединив точки \(C, P, M, K\) , получим сечение пирамиды плоскостью \(\alpha\) .

2) Найдем отношение, в котором делят точки \(K\) и \(P\) ребра \(SB\) и \(SD\) . Таким образом мы полностью определим построенное сечение.

Заметим, что так как \(KP\parallel BD\) , то по теореме Фалеса \(\dfrac{SB}{SK}=\dfrac{SD}{SP}\) . Но \(SB=SD\) , значит и \(SK=SP\) . Таким образом, можно найти только \(SP:PD\) .

Рассмотрим \(\triangle ASC\) . \(CM, SH\) – медианы в этом треугольнике, следовательно, точкой пересечения делятся в отношении \(2:1\) , считая от вершины, то есть \(SO:OH=2:1\) .


Теперь по теореме Фалеса из \(\triangle BSD\) : \(\dfrac{SP}{PD}=\dfrac{SO}{OH}=\dfrac21\) .

3) Заметим, что по теореме о трех перпендикулярах \(CO\perp BD\) как наклонная (\(OH\) – перпендикуляр на плоскость \(ABC\) , \(CH\perp BD\) – проекция). Значит, \(CO\perp KP\) . Таким образом, сечением является четырехугольник \(CPMK\) , диагонали которого взаимно перпендикулярны.

Пример 4

Дана прямоугольная пирамида \(DABC\) с ребром \(DB\) , перпендикулярным плоскости \(ABC\) . В основании лежит прямоугольный треугольник с \(\angle B=90^\circ\) , причем \(AB=DB=CB\) . Проведите через прямую \(AB\) плоскость, перпендикулярную грани \(DAC\) , и найдите сечение пирамиды этой плоскостью.

Решение

1) Плоскость \(\alpha\) будет перпендикулярна грани \(DAC\) , если она будет содержать прямую, перпендикулярную \(DAC\) . Проведем из точки \(B\) перпендикуляр на плоскость \(DAC\) - \(BH\) , \(H\in DAC\) .

Проведем вспомогательные \(BK\) – медиану в \(\triangle ABC\) и \(DK\) – медиану в \(\triangle DAC\) .
Т.к. \(AB=BC\) , то \(\triangle ABC\) – равнобедренный, значит, \(BK\) – высота, то есть \(BK\perp AC\) .
Т.к. \(AB=DB=CB\) и \(\angle ABD=\angle CBD=90^\circ\) , то \(\triangle ABD=\triangle CBD\) , следовательно, \(AD=CD\) , следовательно, \(\triangle DAC\) – тоже равнобедренный и \(DK\perp AC\) .

Применим теорему о трех перпендикулярах: \(BH\) – перпендикуляр на \(DAC\) ; наклонная \(BK\perp AC\) , значит и проекция \(HK\perp AC\) . Но мы уже определили, что \(DK\perp AC\) . Таким образом, точка \(H\) лежит на отрезке \(DK\) .


Соединив точки \(A\) и \(H\) , получим отрезок \(AN\) , по которому плоскость \(\alpha\) пересекается с гранью \(DAC\) . Тогда \(\triangle ABN\) – искомое сечение пирамиды плоскостью \(\alpha\) .

2) Определим точное положение точки \(N\) на ребре \(DC\) .

Обозначим \(AB=CB=DB=x\) . Тогда \(BK\) , как медиана, опущенная из вершины прямого угла в \(\triangle ABC\) , равна \(\frac12 AC\) , следовательно, \(BK=\frac12 \cdot \sqrt2 x\) .

Рассмотрим \(\triangle BKD\) . Найдем отношение \(DH:HK\) .


Заметим, что т.к. \(BH\perp (DAC)\) , то \(BH\) перпендикулярно любой прямой из этой плоскости, значит, \(BH\) – высота в \(\triangle DBK\) . Тогда \(\triangle DBH\sim \triangle DBK\) , следовательно

\[\dfrac{DH}{DB}=\dfrac{DB}{DK} \Rightarrow DH=\dfrac{\sqrt6}3x \Rightarrow HK=\dfrac{\sqrt6}6x \Rightarrow DH:HK=2:1\]


Рассмотрим теперь \(\triangle ADC\) . Медианы треугольника точной пересечения делятся в отношении \(2:1\) , считая от вершины. Значит, \(H\) – точка пересечения медиан в \(\triangle ADC\) (т.к. \(DK\) – медиана). То есть \(AN\) – тоже медиана, значит, \(DN=NC\) .

Сегодня еще раз разберем, как построить сечение тетраэдра плоскостью .
Рассмотрим самый простой случай (обязательный уровень), когда 2 точки плоскости сечения принадлежат одной грани, а третья точка - другой грани.

Напомним алгоритм построения сечений такого вида (случай: 2 точки принадлежат одной грани).

1. Ищем грань, которая содержит 2 точки плоскости сечения. Проводим прямую через две точки, лежащие в одной грани. Находим точки ее пересечения с ребрами тетраэдра. Часть прямой, оказавшаяся в грани, есть сторона сечения.

2. Если многоугольник можно замкнуть - сечение построено. Если нельзя замкнуть, то находим точку пересечения построенной прямой и плоскости, содержащей третью точку.

1. Видим, что точки E и F лежат в одной грани (BCD), проведем прямую EF в плоскости (BCD).
2. Найдем точку пересечения прямой EF c ребром тетраэдра BD, это точка Н.
3. Теперь следует найти точку пересечения прямой EF и плоскости, содержащей третью точку G, т.е. плоскости (ADC).
Прямая CD лежит в плоскостях (ADC) и (BDC), значит она пересекается с прямой EF, и точка К является точкой пересечения прямой EF и плоскости (ADC).
4. Далее находим еще две точки, лежащие в одной плоскости. Это точки G и K, обе лежат в плоскости левой боковой грани. Проводим прямую GK, отмечаем точки, в которых эта прямая пересекает ребра тетраэдра. Это точки M и L.
4. Осталось "замкнуть" сечение, т.е.соединить точки, лежащие в одной грани. Это точки M и H, и также L и F. Оба этих отрезка - невидимы, проводим их пунктиром.


В сечении получился четырехугольник MHFL. Все его вершины лежат на ребрах тетраэдра. Выделим получившееся сечение.

Теперь сформулируем "свойства" правильно построенного сечения:

1. Все вершины многоугольника, которое является сечением, лежат на ребрах тетраэдра (параллелепипеда, многоугольника).

2. Все стороны сечения лежат в гранях многогранника.
3. В каждой грани многоранника может находиться не более одной (одна или ни одной!) стороны сечения

Как известно, любой экзамен по математике содержит в качестве основной части решение задач. Умение решать задачи – основной показатель уровня математического развития.

Достаточно часто на школьных экзаменах, а так же на экзаменах, проводимых в ВУЗах и техникумах, встречаются случаи, когда ученики, показывающие хорошие результаты в области теории, знающие все необходимые определения и теоремы, запутываются при решении весьма простых задач.

За годы обучения в школе каждый ученик решает большое число задач, но при этом для всех учеников задачи предлагаются одни и те же. И если некоторые ученики усваивают общие правила и методы решения задач, то другие, встретившись с задачей незнакомого вида, даже не знают, как к ней подступиться.

Одной из причин такого положения является то, что если одни ученики вникают в ход решения задачи и стараются осознать и понять общие приёмы и методы их решения, то другие не задумываются над этим, стараются как можно быстрее решить предложенные задачи.

Многие учащиеся не анализируют решаемые задачи, не выделяют для себя общие приёмы и способы решения. В таких случаях задачи решаются только ради получения нужного ответа.

Так, например, многие учащиеся даже не знают, в чём суть решения задач на построение. А ведь задачи на построение являются обязательными задачами в курсе стереометрии. Эти задачи не только красивы и оригинальны в методах своего решения, но и имеют большую практическую ценность.

Благодаря задачам на построение развивается способность мысленно представлять себе ту или иную геометрическую фигуру, развивается пространственное мышление, логическое мышление, а так же геометрическая интуиция. Задачи на построение развивают навыки решения проблем практического характера.

Задачи на построения не являются простыми, так как единого правила или алгоритма для их решения не существует. Каждая новая задача уникальна и требует индивидуального подхода к решению.

Процесс решения любой задачи на построение – это последовательность некоторых промежуточных построений, приводящих к цели.

Построение сечений многогранников базируется на следующих аксиомах:

1) Если две точки прямой лежат в некоторой плоскости, то и вся прямая лежит в данной плоскости;

2) Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Теорема: если две параллельные плоскости пересечены третьей плоскостью, то прямые пересечения параллельны.

Построить сечение многогранника плоскостью, проходящей через точки А, В и С. Рассмотрим следующие примеры.

Метод следов

I. Построить сечение призмы плоскостью, проходящей через данную прямую g (след) на плоскости одного из оснований призмы и точку А.

Случай 1.

Точка А принадлежит другому основанию призмы (или грани, параллельной прямой g) – секущая плоскость пересекает это основание (грань) по отрезку ВС, параллельному следу g.

Случай 2.

Точка А принадлежит боковой грани призмы:

Отрезок ВС прямой AD и есть пересечение данной грани с секущей плоскостью.


Случай 3.

Построение сечения четырехугольной призмы плоскостью, проходящей через прямую g в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

II. Построить сечение пирамиды плоскостью, проходящей через данную прямую g (след) на плоскости основания пирамиды и точку А.

Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.

Случай 1.

Если точка А принадлежит грани, параллельной прямой g, то секущая плоскость пересекает эту грань по отрезку ВС, параллельному следу g.

Случай 2.

Если точка А, принадлежащая сечению, расположена на грани, не параллельной грани следу g, то:

1) строится точка D, в которой плоскость грани пересекает данный след g;

2) проводится прямая через точки А и D.

Отрезок ВС прямой АD и есть пересечение данной грани с секущей плоскостью.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с секущей плоскостью. И т. д.

Случай 3.

Построение сечения четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из боковых ребер.

Задачи на построение сечений через точку на грани

1. Построить сечение тетраэдра АВСD плоскостью, проходящей через вершину С и точки М и N на гранях АСD и АВС соответственно.

Точки С и М лежат на грани АСD, значит, и прямая СМ лежит в плоскости этой грани (рис. 1).

Пусть Р – точка пересечения прямых СМ и АD. Аналогично, точки С и N лежат в грани АСВ, значит прямая СN лежит в плоскости этой грани. Пусть Q – точка пересечения прямых СN и АВ. Точки Р и Q принадлежат и плоскости сечения, и грани АВD. Поэтому отрезок РQ – сторона сечения. Итак, треугольник СРQ – искомое сечение.

2. Построить сечение тетраэдра АВСD плоскостью MPN, где точки M, N, P лежат соответственно на ребре АD, в грани ВСD и в грани АВС, причем MN не параллельно плоскости грани АВС (рис. 2) .

Остались вопросы? Не знаете, как построить сечение многогранника?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.