Непрерывная случайная величина задана интегральной функцией решение. Непрерывные случайные величины. Примеры решения задач. Функция распределения непрерывной случайной величины и плотность вероятности

Непрерывные случайные величины - это величины, возможные значения которых образуют некоторый конечный или бесконечный интервал.

Интегральная функция распределения есть закон распределения случайной величины, с помощью которого можно задавать как дискретную, так и непрерывную случайную величину.

Интегральной функцией распределения называют функцию F(x), определяющую для каждого значения x вероятность того, что случайная величина X примет значение меньшее х, т.е. .

Геометрически это означает: F(x) есть вероятность того, что случайная величина Х примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Случайная величина называется непрерывной, если ее интегральная функция F(X) непрерывно дифференцируема.

Свойства интегральной функции.

1 0 . Значения интегральной функции принадлежат отрезку от 0 до1, то есть .

2 0 . Интегральная функция есть функция неубывающая, то есть, если , то .

Следствия:

1. Вероятность того, что СВ примет значение, заключенное в интервале (а;в) равна приращению интегральной функции на этом интервале:

2. Вероятность того, что НСВ примет одно конкретное значение равна 0.

3. Если возможные значения НСВ расположены на всей числовой прямой, то справедливы следующие предельные отношения:

и

График интегральной функции.

График интегральной функции строят, исходя из ее свойств. По первому свойству , график расположен между прямыми y=0 и y=1. из второго свойства следует, что - функция возрастающая, а значит ее график на промежутке (а,в) поднимается вправо и вверх. По 3 0 свойству при , а при (рис.5).

Рисунок 5. График интегральной функции.

Пример 31. ДСВ задана законом распределения

0,2 0,5 0,3

Найти интегральную функцию распределения и построить ее график.

1. Если , то по 3 0 .

2. Если , .

3. Если , .

4. Если , то по 3 0 .

Построим график интегральной функции ДСВ(Ч) (рис.6).

Рисунок 6. График интегральной функции для дискретной случайной величины.

Дифференциальная функция распределения НСВ.

Существует еще один способ задания НСВ, используя дифференциальную функцию распределения.

Дифференциальной функцией распределения называется функция равная первой производной интегральной функции, то есть .

Дифференциальную функцию распределения по-другому называют плотностью распределения вероятностей.

Теорема 17. Вероятность того, что НСВ Х примет значение, принадлежащее промежутку (а,в), равна определенному интегралу от дифференциальной функции, взятому в пределах от а до в.

Пример 32. НСВ задана интегральной функцией распределения

Найти дифференциальную функцию распределения и вероятность попадания НСВ в промежуток .

Решение.

Свойства дифференциальной функции распределения.

1 0 . Дифференциальная функция есть функция неотрицательная: .

2 0 . (Условие нормировки.) Несобственный интеграл от дифференциальной функции в пределах от -∞ до +∞ равен 1, то есть:

В частности, если все возможные значения НСВ принадлежат интервалу (а, в), то

Пример 33.

Найти значение параметра а.

Заметим, что зная дифференциальную функцию распределения, можно найти интегральную функцию по формуле:

.

Пример 34. НСВ задана дифференциальной функцией распределения:

найти интегральную функцию распределения.

Решение.

1.

3.

Числовые характеристики НСВ.


Плотностью распределения вероятностей Х называют функцию f(x) – первую производную от функции распределения F(x) :

Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима.

Плотность распределения вероятностей f(x) – называют дифференциальной функцией распределения:

Свойство 1. Плотность распределения - величина неотрицательная:

Свойство 2. Несобственный интеграл от плотности распределения в пределах от до равен единице:

Пример 1.25. Дана функция распределения непрерывной случайной величины Х:

f(x) .

Решение: Плотность распределения равна первой производной от функции распределения:

1. Дана функция распределения непрерывной случайной величины Х:

Найти плотность распределения.

2. Задана функция распределения непрерывной случайной величины Х:

Найти плотность распределения f(x).

1.3. Числовые характеристики непрерывной случайной

величины

Математическое ожидание непрерывной случайной величины Х , возможные значения которой принадлежат всей оси Ох , определяется равенством:

Предполагается, что интеграл сходится абсолютно.

a,b ), то:

f(x) – плотность распределения случайной величины.

Дисперсия непрерывной случайной величины Х , возможные значения которой принадлежат всей оси, определяется равенством:

Частный случай. Если значения случайной величины принадлежат интервалу (a,b ), то:

Вероятность того, что Х примет значения, принадлежащие интервалу (a,b ), определяется равенством:

.

Пример 1.26. Непрерывная случайная величина Х

Найти математическое ожидание, дисперсию и вероятность попадание случайной величины Х в интервале (0;0,7).

Решение: Случайная величина распределена на интервале (0,1). Определим плотность распределения непрерывной случайной величины Х :

а) Математическое ожидание :

б) Дисперсия

в)

Задания для самостоятельной работы:

1. Случайная величина Х задана функцией распределения:

M(x) ;

б) дисперсию D(x) ;

Х в интервал (2,3).

2. Случайная величина Х

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал (1;1,5).

3. Случайная величина Х задана интегральной функцией распределения:

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал .

1.4. Законы распределения непрерывной случайной величины

1.4.1. Равномерное распределение

Непрерывная случайная величина Х имеет равномерное распределение на отрезке [a,b ], если на этом отрезке плотность распределения вероятности случайной величины постоянна, а вне его равна нулю, т.е.:

Рис. 4.

; ; .

Пример 1.27. Автобус некоторого маршрута движется равномерно с интервалом 5 минут. Найти вероятность того, что равномерно распределенная случайная величина Х – время ожидания автобуса составит менее 3 минут.

Решение: Случайная величина Х – равномерно распределена на интервале .

Плотность вероятности: .

Для того чтобы время ожидания не превысило 3 минут, пассажир должен появиться на остановке в интервале от 2 до 5 минут после ухода предыдущего автобуса, т.е. случайная величина Х должна попасть в интервал (2;5). Т.о. искомая вероятность:

Задания для самостоятельной работы:

1. а) найти математическое ожидание случайной величины Х распределенной равномерно в интервале (2;8);

б) найти дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной равномерно в интервале (2;8).

2. Минутная стрелка электрических часов перемещается скачком в конце каждом минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20 секунд.

1.4.2. Показательное (экспоненциальное) распределение

Непрерывная случайная величина Х распределена по показательному закону, если ее плотность вероятности имеет вид:

где – параметр показательного распределения.

Таким образом

Рис. 5.

Числовые характеристики:

Пример 1.28. Случайная величина Х – время работы электролампочки - имеет показательное распределение. Определить вероятность того, что время работы лампочки будет не меньше 600 часов, если среднее время работы - 400 часов.

Решение: По условию задачи математическое ожидание случайной величины Х равно 400 часам, следовательно:

;

Искомая вероятность , где

Окончательно:


Задания для самостоятельной работы:

1. Написать плотность и функцию распределения показательного закона, если параметр .

2. Случайная величина Х

Найти математическое ожидание и дисперсию величины Х .

3. Случайная величина Х задана функцией распределения вероятностей:

Найти математическое ожидание и среднее квадратическое отклонение случайной величины.

1.4.3. Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины Х , плотность которого имеет вид:

где а – математическое ожидание, – среднее квадратическое отклонение Х .

Вероятность того, что Х примет значение, принадлежащее интервалу :

, где

– функция Лапласа.

Распределение, у которого ; , т.е. с плотностью вероятности называется стандартным.

Рис. 6.

Вероятность того, что абсолютная величина отклонена меньше положительного числа :

.

В частности, при а= 0 справедливо равенство:

Пример 1.29. Случайная величина Х распределена нормально. Среднее квадратическое отклонение . Найти вероятность того, что отклонение случайной величины от ее математического ожидания по абсолютной величине будет меньше 0,3.

Решение: .


Задания для самостоятельной работы:

1. Написать плотность вероятности нормального распределения случайной величины Х , зная, что M(x)= 3, D(x)= 16.

2. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале (15;20).

3. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением мм и математическим ожиданием а= 0. Найти вероятность того, что из 3 независимых измерений ошибка хотя бы одного не превзойдет по абсолютной величине 4 мм.

4. Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением г. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине 10 г.

Равномерное распределение. Непрерывная величина Х распределена равномерно на интервале (a , b ), если все ее возможные значения находятся на этом интервале и плотность распределения вероятностей постоянна:

Для случайной величины Х , равномерно распределенной в интервале (a , b ) (рис. 4), вероятность попадания в любой интервал (x 1 , x 2 ), лежащий внутри интервала (a , b ), равна:

(30)


Рис. 4. График плотности равномерного распределения

Примерами равномерно распределенных величин являются ошибки округления. Так, если все табличные значения некоторой функции округлены до одного и того же разряда , то выбирая наугад табличное значение, мы считаем, что ошибка округления выбранного числа есть случайная величина, равномерно распределенная в интервале

Показательное распределение. Непрерывная случайная величина Х имеет показательное распределение

(31)

График плотности распределения вероятностей (31) представлен на рис. 5.


Рис. 5. График плотности показательного распределения

Время Т безотказной работы компьютерной системы есть случайная величина, имеющая показательное распределение с параметром λ , физический смысл которого – среднее число отказов в единицу времени, не считая простоев системы для ремонта.

Нормальное (гауссово) распределение. Случайная величина Х имеет нормальное (гауссово) распределение , если плотность распределения ее вероятностей определяется зависимостью:

(32)

где m = M (X ) , .

При нормальное распределение называется стандартным .

График плотности нормального распределения (32) представлен на рис. 6.


Рис. 6. График плотности нормального распределения

Нормальное распределение является наиболее часто встречающимся в различных случайных явлениях природы. Так, ошибки выполнения команд автоматизированным устройством, ошибки вывода космического корабля в заданную точку пространства, ошибки параметров компьютерных систем и т.д. в большинстве случаев имеют нормальное или близкое к нормальному распределение. Более того, случайные величины, образованные суммированием большого количества случайных слагаемых, распределены практически по нормальному закону.

Гамма-распределение. Случайная величина Х имеет гамма-распределение , если плотность распределения ее вероятностей выражается формулой:

(33)

где – гамма-функция Эйлера.

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }