Как используют графит. Используется в таких промышленных отраслях. Форма нахождения в природе

Графит (от др.-греч. γράφω - пишу) — минерал, неметалл из класса самородных элементов. Гексагональная модификация углерода. Формула: С. Первоначально английские пастухи, открывшие минерал в XVI веке, приняли графит за свинец.

Графит в музее минералогии, Бонн.

Блеск металловидный, жирный или графит матовый. Твердость 1-2. Удельный вес 2,09-2,23 г/см 3 . Пишет на бумаге, пачкает руки. Жирен на ощупь. Цвет железно-черный, стально-серый. Черта черная. Спайность весьма совершенная. Сплошные чешуйчатые, плотные или землистые массы, вкрапления и кристаллы в виде шестиугольных пластинок. Сингония гексагональная. Кристаллы встречаются редко. Кристаллическая структура графита обусловливает его отличия от алмаза - другой аллотропной формы углерода, в котором атомы прочно связаны друг с другом по всем направлениям. Кристаллическая структура графита определяет и его малую твердость, легкость растирания, ощущение жирности, весьма совершенную спайность, непрозрачность, металловидный блеск, высокую электропроводность.

Отличительные признаки . Для графита характерна небольшая твердость (графит мягкий), графит легко пишет на бумаге, имеет более или менее постоянный стально-серый, железно-черный цвет. Графит можно спутать с молибденитом. В отличие от молибденита графит растирается пальцами в черную пыль (молибденовый блеск растирается в светло-серый порошок).

Химические свойства . С кислотами не взаимодействует. При нагревании с селитрой дает вспышку. Кусочек цинка, помещенный на поверхности графита и смоченный каплей медного купороса, выделяет пятно меди (отличие от молибденита).

Разновидность : Шунгит -аморфная разность графита.

Происхождение графита

Известные крупные месторождения графита образовались в результате изменения осадочных отложений органогенного происхождения (каменных углей, битумов и т. п.) под действием контактного или глубинного (регионального) метаморфизма. В отдельных случаях графит образовался в результате непосредственной кристаллизации из магм, богатых углеродом, или восстановления известняков, захваченных магматическими породами.

Наибольшее практическое значение имеет графит метаморфического происхождения.

Встречается в контактовой зоне каменного угля с магматическими породами, в гнейсах, в кристаллических сланцах, в мраморах, в контактах магматических пород с известняками, в виде вкраплений в кислых, средних и основных магматических породах, в пневматолитовых образованиях.

Спутники . В контактах магматических пород с известняками: апатит, флогопит. В пневматолитовых образованиях: кварц, полевой шпат, каолинит, апатит, биотит, титаномагнетит. В гнейсах: каолинит.

Применение графита

Графит используется очень широко. Можно сказать, что нет ни одной отрасли, где бы он в той или иной степени ни применялся. Необходим графит главным образом в металлургической промышленности для изготовления огнеупорных тиглей и для покрытия поверхности литейных форм с целью предохранения отливки от пригара формовочной земли; кроме того, в электропромышленности - в производстве электродов и дуговых углей, в производстве карандашей, черных красок, черной копировальной бумаги, типографской краски или же китайской туши. Используется также как смазочное вещество (в тех случаях, когда вследствие высокого нагрева нельзя применять масла) и в паровых котлах в качестве антинакипного средства. В последнее время применяется для изготовления графитовых блоков «атомных котлов» и изготовления космической техники. Из графита получают искусственный алмаз. Графитовая жидкость применяется при объемном прессовании детален автомобилей. Штампы, обволакиваемые этим веществом, обеспечивают высокую чистоту поверхности стальных заготовок, что исключает их последующую обтирку на шлифовальных станках.

Месторождения

Имеются несколько граффито-носных провинций: Украинская, Уральская, Тунгусская (Ногинское, Курейское), Верхне-Саянская (Ботогольское), Уссурийская и другие.

Крупные месторождения графита имеются в Южной Корее, Мексике (штат Сонора), Малагасийской Республике, Шри-Ланке, Индии, ФРГ и Швеции.

В таблице представлены физические свойства графита в интервале температуры от 20 до 800 °С.

Свойства указаны в направлении, как параллельно, так и перпендикулярно главной оси кристаллов графита.

Теплопроводность графита указана для следующих типов: кристаллический, естественный, прессованный искусственный. По данным таблицы видно, что теплопроводность графита при увеличении его температуры снижается.

Удельная (массовая) теплоемкость углерода при комнатной температуре составляет величину 710 Дж/(кг·град) и при нагревании увеличивается. Плотность углерода находится в диапазоне от 1400 до 1750 кг/м 3 .

Даны следующие физические свойства графита различной плотности:

  • теплопроводность графита, Вт/(м·град);
  • сопротивление разрыву, МН/м 2 ;
  • модуль упругости графита, МН/м 2 ;
  • удельная (массовая) теплоемкость, кДж/(кг·град);
  • удельное электрическое сопротивление, Ом·м;
  • коэффициент теплового линейного расширения (КТлР), 1/град.

Свойства углерода (графита) в зависимости от температуры

В таблице представлены теплофизические свойства углерода (графита) в зависимости от температуры.
Свойства углерода в таблице указаны при температуре от 100 до 2000К в направлении вдоль (параллельно), так и перпендикулярно главной оси кристаллов углерода.

Приведены следующие свойства углерода (графита):

  • коэффициент теплового линейного расширения (КТлР), 1/град;
  • удельная (массовая) теплоемкость, Дж/(кг·град);
  • коэффициент теплопроводности, Вт/(м·град).

В таблице представлены значения теплопроводности графита различной плотности при температуре 20 °С. Теплопроводность графита указана при направлении теплового потока вдоль главной оси кристаллов и в размерности .

По данным таблицы видно, что теплопроводность графита с увеличением плотности заметно увеличивается. Плотность графита в таблице приведена в размерности 10 3 ·кг/м 3 , то есть в т/м 3 . Плотность графита изменяется в интервале от 1400 до 1750 кг/м 3 .

В таблице представлены значения теплопроводности графита плотностью 1650…1720 кг/м 3 в зависимости от температуры.

Теплопроводность графита указана при направлении теплового потока, как вдоль, так и поперек главной оси кристаллов, указано также отношение теплопроводности в этих направлениях (оно постоянно и равно приблизительно 1,5).

Значения теплопроводности графита приведены в интервале температуры от 20 до 1800 °С. По значениям в таблице видно, что теплопроводность графита с увеличением температуры уменьшается .

Теплопроводность реакторного графита плотностью 1700 кг/м 3 в зависимости от температуры

В таблице представлены значения теплопроводности реакторного графита плотностью 1700 кг/м 3 в зависимости от температуры.
Теплопроводность указана в направлении теплового потока, идущего, как параллельно, так и перпендикулярно прессованию графитовых стержней.
Значения теплопроводности реакторного графита приведены в интервале температуры от 100 до 1700 К.

Теплопроводность измельченного графита

В таблице дана теплопроводность измельченного графита (углерода) в зависимости от размера частиц при температуре 20 °С.
Размер частиц определялся в зависимости от количества отверстий в сите на 1 квадратный сантиметр (3, 6, 16 отв/см 2 и сухая сажа).

Теплопроводность графита указана в размерности Вт/(м·град). Плотность графита в таблице указана в 10 3 ·кг/м 3 , то есть в т/м 3 .

Теплопроводность слоя графитовых частиц в зависимости от его пористости

В таблице представлены значения теплопроводности слоя графитовых частиц (частиц углерода) при пористости от 0,4 до 0,7. Следует отметить, что при увеличении пористости слоя его теплопроводность снижается.

Коэффициент теплового расширения (КТР) углерода (графита) в зависимости от температуры

В таблице указаны значения коэффициента линейного теплового расширения (КТР) углерода (графита) в зависимости от температуры.
КТР в таблице приводится для различных сортов графита: пиролитический графит, графит на основе нефтяного кокса, графит на основе .
Коэффициент линейного теплового расширения графита приведен в интервале температуры от 100 до 700 °С в размерности 1/град.

Теплоемкость углерода в зависимости от температуры

В таблице представлены значения теплоемкости углерода в зависимости от температуры. Удельная теплоемкость углерода (графита) указана в интервале температуры от 200 до 2000 К.

Теплоемкость углерода в таблице дана массовая и выражена в размерности кДж/(кг·град). По данным в таблице видно, что теплоемкость углерода с увеличением температуры растет.

Теплоемкость природного углерода (графита) при низких температурах

В таблице даны значения атомной (на 1 моль вещества) и удельной теплоемкости углерода при низких температурах. Теплоемкость углерода (графита) указана в интервале температуры от -260 до 17 °С.

Атомная теплоемкость углерода выражена в размерности Дж/(моль·град). Удельная теплоемкость углерода (массовая — на 1 кг массы) выражена в размерности кДж/(кг·град).

По значениям в таблице хорошо видно, что атомная и удельная теплоемкости углерода (графита) с увеличением температуры растут и при очень низких отрицательных температурах.

Источники:
1. Агроскин А.А., Глейбман В.Б. Теплофизика твердого топлива. М., Недра, 1980 — 256 с.
2.
3. .
4. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное, Казанцев Е.И. М., «Металлургия», 1975.- 368 с.


Графит, брат угля и алмаза

На картинках, иллюстрирующих нахождение углерода в минеральной природе, графит ненапрасно располагают между углем и алмазом. По свойствам графит действительно частично схож с обычным каменным углем, а частично – с благородным алмазом.

Самородный графит не всегда одинаков. Добытый из недр, он чаще всего черен, плотен, мягок и прекрасно пишет по твердой поверхности. За это греки и прозвали черный минерал «графитом»: «графо» - значит «пишу».

Народы, менее склонные к писательству, звали графит (в вольном переводе на русский) и «черным свинцом», и «углистым железом», а также «сливовиком» и даже «скальником» - поскольку графитовые обнажения чаще всего таятся в расселинах скал.

Природный графит может быть не только черным, но и серым, с явным металлическим отблеском. Графитовая масса нередко полна примесей – в том числе и золота – и промышленникам приходится использовать многоэтапные технологии очищения графита.

Между тем, каждому металлургу известно, как много графита выделяет остывающий чугун. Так не проще ли вместо добычи ископаемого графита использовать графит искусственный?

Разновидности графита

Графит имеет слоистое строение. Атомы углерода в графите объединены в пластины толщиной в одну молекулу. В идеале пластины плотно прилегают друг к другу и срастаются в шестиугольные таблитчатые кристаллы. Кристаллические разрастания графита могут принимать столбчатую, чешуйчатую или сфероподобную форму. Графитовые сферолиты порой образуют массивные грозди, округлости которых напоминают бока темных слив, покрытых глянцевым налетом.

Природный графит может быть смешан с аморфной углистой или глинистой массой, газами, битумами и соединениями чужеродных элементов, но в нем всегда наблюдается кристаллическая структура, и он достаточно легко очищается и доводится до нужных производству параметров.

Доменный графит, выделяясь в среду отдельными мельчайшими пластинками, представляет собой трудноуловимое вещество. Его улавливают и утилизуют – обычно прямо на предприятии, используя как добавку к шихте – но технология дорога и масштабы этой утилизации невелики.

Более производительным является метод изготовления графита из высокоуглеродистого сырья – летучих углеводородов, антрацита, кокса, пека. Основой метода является нагревание твердой сырьевой массы до 2800°С, а газообразной среды – до 3000°С при повышенном до 500 атм. давлении.

Технологии добычи природного и получения искусственного графита весьма затратны. Однако целесообразность подобных расходов неоспорима: свойства графита уникальны, и как материал он во многих случаях просто незаменим.

Свойства графита

Главное практическое свойство графита – устойчивость к запредельным термическим нагрузкам , инертность в диапазоне температур ниже 2500°С, высокая электропроводность, низкий коэффициент трения в парах графит-металл. Помимо того, графит легко расщепляется на чешуйки, которые, в свою очередь, без задержки прилипают к любой поверхности. Таким образом, мелкодисперсная графитная пыль становится отличным смазывающим веществом.

Температура плавления графита близка к 4000°С, что позволяет использовать материал в качестве лабораторной среды для работы с тугоплавкими металлами. Находит свое применение и высокая теплопроводность минерала.

Пластичность графита дает возможность формовать из него детали любой формы. Прессованный графит прекрасно поддается механической обработке.

Важнейшим свойством графита является его способность к перерождению в алмаз.

Алмаз из графита и графит из алмаза

Разница между графитом и алмазом состоит в плотности укладки углеродных слоев. Практически разобщенные в графите, в алмазе они соединены столь плотно, что кристаллическая решетка минерала принимает кубическую форму. То есть каждый атом углерода в алмазе находится одновременно в трех взаимно перпендикулярных слоях.

Для того чтобы углеродные слои связались воедино, не придумано ничего лучше кроме сильного сдавливания и подъема температуры. Первые синтетические алмазы были получены при разогреве графита до 1800°С под давлением в 120 тысяч атмосфер. Сегодня практикуется производство мелкой алмазной крошки при температурах порядка 1200°С и краткосрочном повышении давления до 300 тыс. атм.

Реакция обратима. Любой алмаз, разогретый до 1000°С, начинает превращаться в графит. При 2000°С процесс протекает очень быстро.

Использование графита

И природный, и синтетический графит находят применение в промышленности. В металлургии цветных и тугоплавких металлов графит незаменим как материал для обработки или изготовления литьевых форм. Способность графита растворяться в разогретых сплавах используется для придания изделиям заданных свойств.

Работоспособность подшипников скольжения обеспечивается за счет использования графита. Что важно, темп износа графитовой опоры или обоймы постоянен во всем диапазоне рабочих температур подшипников, нередко насчитывающем сотни градусов.

Графит обладает не только смазывающими, но и абразивными способностями. Тончайшие полировочные пасты содержат в себе графит. Введенный в состав фрикционных материалов, минерал повышает устойчивость изделий к нагреву.

Керамика, замешанная на графите, отличается особой огнеупорностью. Электропроводность и стойкость материала к эрозии дает возможность изготавливать из графита высоковольтные контакты, облицовку сопел и дюз.

Инертность графита делает его отличным защитным покрытием для всевозможных конструкций. Краски, созданные на основе графитовой взвеси в растворителе-пластификаторе, работают и на твердых (бетон, сталь), и на упругих (древесина, алюминий) поверхностях.

Углерод формирует множество самородных элементов, которые имеют свою структуру. Одним из таких элементов является графит. Это распространённый материал в природе, который встречается в виде чешуек и пластинок. Скопления его отличаются по величине и содержанию материала. Кристаллические сланцы или магматическая порода - это места залегания. Часто он образовывается при метаморфическом воздействии на уголь.

Происхождение вещества

Графит чаще всего образуется от воздействия большой температуры и давления в осадочных породах - в каменном угле и битумах. Этот процесс называют метаморфизмом. В некоторых случаях материал образовывается в процессе кристаллизации. Как правило, возникает из магмы, которая богата углеродом. Иногда образуется из известняка, который был захвачен магмой.

Места образования:

В процессе кристаллизации порода получается в редких случаях. Да и практическое значение имеет порода, которая возникла метаморфическим путём. Небольшие вкрапления в породах метеоритов интересны учёным, но не промышленности.

Химический состав графита - это атомы углерода, которые связаны между собой ковалентно. То есть один атом перекрывает электронное облака трёх других атомов, которые окружают его. Атомы состоят в прочной связи. В минерале наблюдается незначительная примесь иных компонентов Различают 2 вида графита:

  1. Альфа (гексагональный).
  2. Бета (ромбоэдрический).

Между собой виды отличаются упаковкой слоёв. У вида альфа атомы имеют укладку типа ABABABA. То есть укладка в виде шестиугольника, но между слоями крайне слабая связь. Структура графита такова, что он легко ломается по слоям.

У вида бета каждый четвёртый слой повторяет первый. Получается своеобразная ромбоэдрическая связь. Бета-графит в чистом виде не существует - это метастабильная фаза. Природные породы материала имеют до 30% в своём составе эту фазу. При температуре около 2,5 тыс. Кельвинов происходит полная трансформация ромбоэдрической структуры в гексагональную.

Материал имеет одинаковый состав с алмазом, но свойства различаются кардинально. Виной всему разница в атомных связях. После закаливания в печи при высокой температуре твёрдость графита увеличивается, но растёт и хрупкость. Это качество используют для создания искусственных алмазов.

Таблица характеристик:

Порода не плавится. При достижении критической температуры кристаллическая решётка начинает разрушаться. На ощупь порода скользкая, жирная. При трении раскалывается на небольшие чешуйки, которые остаются на поверхности. Эта характеристика позволяет использовать минерал для ведения записей.

Графит широкого используют в промышленности. Большинству отраслей необходим этот материал в чистом виде или же с добавлением. Список того, что делают из графита, огромен: начиная от карандашей и огнеупорного покрытия, оканчивая стержнями для атомных реакторов и смазкой.

Сферы применения:

Пищевая отрасль - это ещё одна сфера где используется графит, пусть и в связанном виде. Но перед использованием компонент проходит определённую обработку. Железо, этиловый спирт, графит и сахар имеют разную плотность. Но рассматриваемое вещество может входить в состав других пищевых продуктов. Он встречается в эфирах, спирте и сахаре.

Несложный опыт с сахаром показывает содержание в нём графита. Для этого кубик сахара кладут на крышку и накрывают колпачком. Снизу крышку греют на огне до тех пор, пока из-под колпачка не начнёт выделяться дым. Если к нему поднести источник огня, то дым загорится. После окончания выделения газа огонь снизу крышки тушат. На крышке будет находиться чёрная масса углерода.

Китай является ведущим экспортёром минерала. Страна поставляет до 70% мирового объёма. И китайцы не собираются останавливаться на этом результате, поскольку производители расширяют связи с западными компаниями. Последние выступают потребителями.

Канада, Бразилия, Мексика и Шри-Ланка - это остальные мировые лидеры производства минерала. Эти страны добывают 8−12% мирового объёма. В Российской Федерации запасы графита составляют порядка 13 млн тонн. Значительная часть запасов сосредоточена в Сибири. Более 75% отечественных запасов - это бедная руда, которая содержит не более 6% минерала. Отечественные балансовые запасы требуют переоценки, поскольку некоторую их часть нецелесообразно разрабатывать из-за низкого качества руды. Расположение на природоохранных территориях тоже накладывает ограничения к разработке рудников.

Более половины добываемого материала потребляют США, Япония, Германия и Китай. Стоимость графита на рынке определяют по его кристаллу и содержанию в нём углерода. Средняя цена порядка 0,75 центов на 1 кг материала. Месторасположение производителя тоже влияет на стоимость.

Углерод в природе присутствует в самородном виде, образуя две полиморфные разновидности - графит и алмаз, идентичные по своему составу, но резко отличающиеся по структуре и физическим свойствам.

Графит встречается в виде рассеянных чешуек, либо их листоватых агрегатов (кристаллический чешуйчатый графит, flake graphite), плотных зернистых агрегатов (кристаллический кусковый графит, vein type, lump graphite), либо плотных скрытокристаллических масс (аморфный графит, amorphous graphite). Кроме того, в промышленности все шире используется искусственный (коксовый, доменный, ретортный) графит, специально получаемый из антрацита, нефтяного кокса, а также из отходов доменного производства.

Чешуйчатые графиты по диаметру кристаллов разделяются на крупночешуйчатые (0,1 -Х,0 мм) и мелкочешуйчатые (0,001-0,1мм). В литокристаллическом кусковом графите размер кристаллов тот же, что и в мелкочешуйчатом, однако они не ориентированы, что затрудняет расщепление агрегата и сдвиги при деформации. Промышленные руды чешуйчатого графита содержат от 2 до 15% (редко более) этого минерала. Они легко обогащаются флотацией с получением концентрата, содержащего 80-90% и более графита. В плотно кристаллических кусковых pудах массовая доля графита составляет 35-40% и более; без обогащения используется руда, в которой эта величина поднимается до 60-80%.

Величина зерен в скрыто кристаллическом (аморфном) графите менее 0,001мм. Скрытокристаллическая руда (аморфный графит) труднообогатима. Без обогащения используются руды с содержанием углерода около 70%, бедные руды (20-40%) обогащаются ручной разборкой.

Искусственный графит по качеству приблизительно соответствует чешуйчатому и плотно кристаллическому, отличаясь большей чистотой и меньшей кристалличностью.

В зависимости от структурного строения графиты делятся на: - явнокристаллические, -скрытокристаллические, - графитоиды, - высокодисперсные графитовые материалы.

В свою очередь, явнокристаллические графиты по величине и структуре кристаллов делятся на: - плотнокристаллические, - чешуйчатые.

Электрические свойства графита. Электропроводность графита в 2,5 раза больше электропроводности ртути. При температуре 0 град. удельное сопротивление электрическому току находится в пределах от 0,390 до 0,602 ом. Низкий предел удельного сопротивления для всех видов графита одинаков и равен 0,0075 Ом.

Термические свойства графита. Графит обладает высокой теплопроводностью, которая равняется 3,55вт*град/см и занимает место между палладием и платиной. Коэффициент теплопроводности 0,041 (в 5 раз больше, чем у кирпича). У тонких графитовых нитей теплопроводность выше, чем у медных. Температура плавления графита - 3845-3890 С при давлении от 1, до 0,9 атм. Точка кипения доходит до 4200 С. Температура воспламенения в струе кислорода составляет для явнокристаллических графитов 700-730С. Количество тепла, получаемого при сжигании графита, Находится в пределах от 7832 до 7856 ккал.

Магнитные свойства. Графит считается диамагнитным.

Химические свойства. Химически инертен и не растворяется ни в каких растворителях, кроме расплавленных металлов, особенно тех, у которых высокая точка плавления. При растворении образуются карбиды, наиболее важными из которых являются карбиды вольфрама, титана, железа, кальция и бора. При обычных температурах графит соединяется с другими веществами весьма трудно, но при высоких температурах он дает химические соединения со многими элементами.

Механические свойства. Графит не обладает эластичностью, но, тем не менее, может быть подвергнут резанию и изгибанию. Графитовая проволока легко сгибается и закручивается в спираль, а при вальцевании дает удлинение около 10%. Сопротивление на разрыв такой проволоки равно 2 кг/мм2, а модуль изгиба равен 836 кг/мм2. Жирность и пластичность графита являются важнейшими свойствами, которые дают возможность широко применять его в промышленности. Чем выше жирность графита, тем меньше коэффициент трения. От жирности графита зависит использование его в качестве смазочного материала, а также способность прилипания к твердым поверхностям.

Оптические свойства. Коэффициент светопоглощения графита постоянен для всего спектра и не зависит от температуры лучеиспускания тела; для тонких графитовых нитей он равен 0,77, с увеличением кристаллов графита светопоглащение уже находится в пределах 0,52-0,55.

Чистый графит имеет низкий коэффициент поглощения нейтронов и самый высокий коэффициент замедления, благодаря чему он незаменим в атомных реакторах. Без графитовых электродов немыслимо развитие черной и цветной, химической промышленности. Графит является футеровочным материалом электролизеров для получения алюминия. Углеродосодержащие материалы применяются для строительства электропечей и других тепловых агрегатов. Из графита готовятся тигли, лодочки для производства сверхтвердых сплавов.

В химической промышленности материалы из графита незаменимы для производства теплообменников, работающих в агрессивных средах а так же для изготовления нагревателей, конденсаторов, испарителей, холодильников, скрубберов, дистилляционных колонн, форсунок, сопел, кранов, деталей для насосов, фильтров.

Промышленность в большом ассортименте выпускает графитовые электрощетки для различных электрических машин, электрические осветительные угли для прожекторов и для демонстрации и съемок кинофильмов, элементные - гальванических батарей, сварочные и для спектрального анализа, изделия для электровакуумной техники и техники связи. В машиностроении графит используется как антифрикционный материал для подшипников, колец трения, торцевых и поршневых уплотнений, подпятников. Обработка графита требуется для получения сложных изделий.

Различные отрасли промышленности предъявляют свои специфические требования к качеству графитного сырья (руд и концентратов). В настоящее время производятся следующие типы и марки графита: литейный (марки ГЛ, ГЛС), элементный (ГЭ), электроугольный (ЭУЗ, ЭУТ, ЭУН), аккумуляторный (ГАК), тигельный (ГТ), карандашный, смазочный (ГК, ГС, П), специальный малозольный (ГСМ-1, ГСМ-2), графит для специальных сталей (ГСС), особо чистый графит для ядерных реакторов и др. Его состав варьирует в широких пределах: 40-97% графита, 0,7-7,5% летучих, 1,75-26,5% золы. Общими лимитирующими показателями являются зольность, влажность, содержание летучих, иногда железа, серы, меди, фосфора и других элементов, а также величина рН водной вытяжки.

Производимый в СНГ графит, в зависимости от сферы применения должен соответствовать требованиям ГОСТов, в частности: Графит тигельный (тигель графитовый) ГОСТ 4596-75, Графит кристаллический литейный ГОСТ 5279-74, Графит аккумуляторный ГОСТ 10273-79, Графит для производства карандашных стержней ГОСТ 4404-78, Графит элементный ГОСТ 7478-75, Графит электроугольный ГОСТ 10274-79, Графит для изготовления смазок покрытий и электропроводящей резины ГОСТ 8295-73.

Терморасширенный графит. Терморасширенный графит (далее ТРГ) был разработан компанией UCAR Carbon Co. Inc более 30 лет назад. Это характерный гибкий листовой материал, унаследовавший от графита высокую стойкость к температурным и химическим воздействиям и приобретший дополнительные свойства гибкости, податливости и прочности на сжатие и растяжение. Эти свойства отличают ТРГ от прочих видов углерода и графита и делают его превосходным и высокоэффективным набивочным и уплотнительным материалом.

Показатели:

    Выщелачиваемый хлорид 50 ppm

    Температурный диапазон -200...3000°C

    Сжимаемость 40%

    Регенерация 15%

    Проседание под нагрузкой <5%

    pH диапазон 0-14

Названия:

    терморасширенный графит

    гибкий графит

Переход на уплотнения из ТРГ взамен традиционно используемых позволяет увеличить средние сроки межремонтной эксплуатации арматуры в 2,5-8 раз, а центробежных насосов в 5-13 раз.

Ведущим экспортером природного графита в 2006-2008 гг. выступил Китай, на чью долю в 2008-2009г. г. пришлось 70% всего объема продаваемого в мире графита. Производство графита в Китае, как ожидают, продолжит рост, поскольку китайские производители очень тесно сотрудничают с западными потребителями графита.

Также мировыми лидерами экспорта (73-77 тыс. т) являются Канада, Бразилия, Мексика, Шри Ланка чей совокупный экспорт в период 2006-2009 гг. составлял около 9-12 % всего объема.

Балансовые запасы графитовых руд в России составляют по кат. А+В+С1 139,71млн. тонн (графита - 13,54 млн.т). Преобладает скрытокристаллический графит с содержанием графитового углерода до 82%. Практически все запасы (99,5%) сосредоточены в Сибирском ФО (Красноярский край, Эвенкийский АО). Запасы кристаллического графита составляют 4,5 млн. тонн по кат. А+В+С. При этом около 77% запасов кристаллического графита находятся в бедных рудах с содержанием графита менее 4-6%. Значительная часть балансовых запасов кристаллического графита требует переоценки, так как разработка их нецелесообразна по ряду причин – низкое качество и плохая обогатимость руд, расположение в природоохранных зонах или охранных целиках.

В мире имеется значительный резерв неосвоенных месторождений, однако качество большинства руд недостаточно высокое и условия их отработки сложные. Мировое производство природного графита в последнее время находится на уровне 1,13 млн. тонн

Крупнейшими потребителями природного графита (около 50 % всего объема природного графита) в 2006-2010 гг. выступили такие промышленно развитые страны как США, Япония, Германия, Китай. Эти страны (за исключением Китая) являются и ведущими импортерами графита, на чью долю приходится около 350 - 450 тыс. т. мирового потребления.

Стоимость природного графита определяется размером его кристалла и содержанием в нем углерода. Существует дифференциация цен на графит по его сортам - наибольшая цена определена для типа графита с максимальным содержанием углерода в данном сорте. В 2006г., когда поставки природного графита были широко доступны, главным образом из Китая, цены на сырье были сравнительно низкие. К 2009-2010 гг. цены достигли максимума.