Что такое размерность в физике. Физические величины и их размерность



Понятие о размерности измеряемых величин

Размерность измеряемой величины является качественной ее характеристикой и обозначается символом dim , происходящим от слова dimension (измерение, размах, величина, степень, мера) .
Размерность основных физических величин обозначается соответствующими заглавными буквами.
Например, для длины, массы и времени:

dim l = L; dim m = M; dim t = T .

При определении размерности производных величин руководствуются следующими правилами:

1. Размерности левой и правой частей уравнений не могут не совпадать, так как сравниваться между собой могут только одинаковые свойства. Объединяя левые и правые части уравнений, можно прийти к выводу, что алгебраически суммироваться могут только величины, имеющие одинаковые размерности.

2. Алгебра размерностей мультипликативна , т. е. состоит из одного единственного действия - умножения.

3. Размерность произведения нескольких величин равна произведению их размерностей . Так, если зависимость между значениями величин Q , А , В , С имеет вид Q = А×В×С , то

dim Q = dim A×dim B×dim C .

4. Размерность частного при делении одной величины на другую равна отношению их размерностей , т. е. если Q = А/В , то

dim Q = dim A/dim B .

5. Размерность любой величины, возведенной в некоторую степень, равна ее размерности в той же степени.
Так, если Q = А n , то

dim Q = dim n A .

Например, если скорость определять по формуле V = l / t , то dim V = dim l/dim t = L/Т = LТ -1 .
Если сила по второму закону Ньютона F = mа , где а = V/ t - ускорение тела, то

dim F = dim m×dim а = МL/Т 2 = MLТ -2 .

Итак, всегда можно выразить размерность производной физической величины через размерности основных физических величин с помощью стеᴨенного одночлена:

dim Q = LMT ... ,

где:
L, М, Т,... - размерности соответствующих основных физических величин;
a,b ,q ,... - показатели размерности. Каждый из показателей размерности может быть положительным или отрицательным, целым или дробным числом, нулем.

Если все показатели размерности равны нулю, то такая величина называется безразмерной. Она может быть относительной, определяемой как отношение одноименных величин (например, относительная диэлектрическая проницаемость) , и логарифмической, определяемой как логарифм относительной величины (например, логарифм отношения мощностей или напряжений) .
В гуманитарных науках, искусстве, спорте, квалиметрии, где номенклатура основных величин не определена, теория размерностей не находит пока эффективного применения.

Размер измеряемой величины является количественной ее характеристикой. Получение информации о размере физической или нефизической величины является содержанием любого измерения.



Измерительные шкалы и их типы

В теории измерений принято, в основном, различать пять типов шкал: наименований, порядка, разностей (интервалов), отношений и абсолютные .

Шкалы наименований характеризуются только отношением эквивалентности (равенства) . Примером такой шкалы является распространённая классификация (оценка) цвета по наименованиям (атласы цветов до 1000 наименований) .

Шкалы порядка - это расположенные в порядке возрастания или убывания размеры измеряемой величины. Расстановка размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием. Для облегчения измерений по шкале порядка некоторые точки на ней можно зафиксировать в качестве опорных (реперных) . Недостатком реперных шкал является неопределённость интервалов между реперными точками.
В связи с этим баллы нельзя складывать, вычислять, перемножать, делить и т.п.
Примерами таких шкал являются: знания студентов по баллам, землетрясения по 12 -балльной системе, сила ветра по шкале Бофорта, чувствительность плёнок, твёрдость по шкале Мооса и т.д.

Шкалы разностей (интервалов) отличаются от шкал порядка тем, что по шкале интервалов можно уже судить не только о том, что размер больше другого, но и на сколько больше. По шкале интервалов возможны такие математические действия, как сложение и вычитание.
Характерным примером является шкала интервалов времени, поскольку интервалы времени можно суммировать или вычитать, но складывать, например, даты каких-либо событий не имеет смысла.

Шкалы отношений описывают свойства, к множеству самих количественных проявлений котоҏыҳ применимы отношения эквивалентности, порядка и суммирования, а следовательно, вычитания и умножения. В шкале отношений существует нулевое значение показателя свойства. Примером является шкала длин.
Любое измерение по шкале отношений заключается в сравнении неизвестного размера с известным и выражении первого через второй в кратном или дольном отношении.

Абсолютные шкалы обладают всеми признаками шкал отношений, но в них дополнительно существует естественное однозначное определение единицы измерения. Такие шкалы соответствуют относительным величинам (отношения одноимённых физических величин, описываемых шкалами отношений) . К таким величинам относятся коэффициент усиления, ослабления и т. п. Среди этих шкал существуют шкалы, значения которых находятся в пределах от 0 до 1 (коэффициент полезного действия, отражения и т.п.) .

Измерение (сравнение неизвестного с известным) происходит под влиянием множества случайных и неслучайных, аддитивных (прибавляемых) и мультипликативных (умножаемых) факторов, точный учёт которых невозможен, а результат совместного воздействия непредсказуем.

Основной постулат метрологии - отсчёт - является случайным числом.
Математическая модель измерения по шкале сравнения имеет вид:

q = (Q + V)/[Q] + U ,

где:
q - результат измерения (числовое значение величины Q );
Q - значение измеряемой величины;
[Q] - единица данной физической величины;
V - масса тары (например, при взвешивании);
U - слагаемое от аддитивного воздействия.

Из приведенной формулы можно выразить значение измеряемой величины Q :

Q = q[Q] - U[Q] - V .

При однократном измерении величины ее значение подсчитывается с учетом поправки:

Q i = q i [Q] + i ,

где:
q i [Q] - результат однократного измерения;
i = - U[Q] - V - суммарная поправка.

Значение измеряемой величины при многократном измерении может быть определено из соотношения:

Q n = 1/n×∑Q i .



Законы физики, как уже отмечалось, устанавливают количественные соотношения между физическими величинами. Для установления таких соотношений необходимо иметь возможность измерять различные физические величины.

Измерить какую-либо физическую величину (найример, скорость) означает сравнить ее с величиной того же вида (во взятом примере - со скоростью), принятой за единицу.

Вообще говоря, для каждой физической величины можно было бы установить ее единицу произвольно, независимо от других. Однако оказывается, что можно ограничиться произвольным выбором единиц для нескольких (минимум трех) в принципе любых величин, принятых за основные. Единицы же всех прочих величин можно установить с помощью основных, воспользовавшись для этой цели физическими законами, связывающими соответствующую величину с основными величинами или с величинами, для которых единицы уже установлены подобным образом.

Поясним сказанное следующим примером. Предположим, что мы уже установили единицы для массы и ускорения. Соотношение (9.3) связывает закономерным образом эти величины с третьей физической величиной - силой. Выберем единицу силы так, чтобы коэффициент пропорциональности в этом уравнении был равен единице. Тогда формула (9.3) принимает более простой вид:

Из (10.1) следует, что установленная единица силы представляет собой такую силу, под действием которой тело с массой, равной единице, получает ускорение, равное также единице (подстановка в (10.1) F=1 и дает ).

При указанном способе выбора единиц физические соотношения принимают более простой вид. Сама же совокупность единиц образует определенную систему.

Существует несколько систем, отличающихся выбором основных единиц. Системы, в основу которых положены единицы длины, массы и времени, называются абсолютными.

В СССР введен с 1 января 1963 г. государственный стандарт ГОСТ 9867-61, устанавливающий применение Международной системы единиц, обозначаемой символом СИ. Эта система единиц должна применяться как предпочтительная во всей области науки, техники и народного хозяйства, а также при преподавании. Основными единицами СИ являются: единица длины - метр (сокращенное обозначение - м), единица массы - килограмм (кг) и единица времени - секунда (с). Таким образом, СИ принадлежит к числу абсолютных систем. Кроме указанных трех единиц, СИ принимает в качестве основных единицу силы тока - ампер (А), единицу термодинамической температуры - кельвин (К), единицу силы света - канделу (кд) и единицу количества вещества - моль (моль).

Об этих единицах будет речь в соответствующих разделах курса.

Метр определяется как длина, равная 1650763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями атома криптона-86 (оранжевая линия криптона-86), Метр приближенно равен 1/40 000 000 доле длины земного меридиана. Применяются также кратные и дольные единицы: километр ), сантиметр ), миллиметр (1 мм ), микрометр (1 мкм ) и т. д.

Килограмм представляет собой массу платино-иридиевого тела, хранящегося в Международном бюро мер и весов в Севре (близ Парижа). Это тело называется международным прототипом килограмма. Масса прототипа близка к массе 1000 см3 чистой воды при 4 °С. Грамм равен 1/1000 килограмма.

Секунда определяется как промежуток времени, равный сумме 9 192 631 770 периодов излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Секунда приблизительно равна 1/86 400 средних солнечных суток.

В физике применяется также абсолютная система единиц, называемая СГС-системой. Основными единицами в этой системе, являются сантиметр, грамм и секунда.

Единицы введенных нами в кинематике величин (скорости и ускорения) являются производными от основных единиц. Так, за единицу скорости принимается скорость равномерно движущегося тела, проходящего в единицу времени (секунду) путь, равный единице длины (метру или сантиметру). Обозначается эта единица м/с в СИ и см/с в СГС-системе. За единицу ускорения принимается ускорение равномерно-переменного движения, при котором скорость тела за единицу времени (секунду) изменяется на единицу (на м/с или см/с). Обозначается эта единица в СИ и в СГС-системе.

Единица силы в СИ называется ньютоном (Н). Согласно ньютон равен силе, под действием которой тело с массой 1 кг получает ускорение . Единица силы в СГС-системе называется диной (дин). Одна дина равна силе, под действием которой тело с массой 1 г получает ускорение 1 см/с2. Между ньютоном и диной имеется следующее соотношение:

В технике широко применялась система МКГСС (называемая обычно технической системой единиц). Основными единицами этой системы являются метр, единица силы - килограмм - сила (кгс) и секунда. Килограмм - сила определяется как сила, сообщающая массе в 1 кг ускорение, равное 9,80655 м/с2. Из этого определения следует, что 1 кгс=9,80655 Н (приближенно 9,81 Н).

За единицу массы в МКГСС согласно (10.1) должна быть принята масса такого тела, которое под действием силы в 1 кгс получает ускорение 1 м/с2. Эта единица обозначается кгс с2/м, специального названия она не имеет. Очевидно, что 1 кгс с2/м=9,80655 кг (приблизительно 9,81 кг).

Из способа построения систем единиц следует, что изменение основных единиц влечет за собой изменение производных единиц. Если, например, за единицу времени принять вместо секунды минуту, т. е. увеличить единицу времени в 60 раз, то единица скорости уменьшится в 60 раз, а единица ускорения уменьшится в 3600 раз.

Соотношение, показывающее, как изменяется единица какой-либо величины при изменении основных единиц, называется размерностью этой величины. Для обозначения размерности произвольной физической величины используется ее буквенное обозначение, взятое в квадратные скобки. Так, например, символ Ы означает размерность скорости. Для размерностей основных величин используются специальные обозначения для длины L, для массы М и для времени Т. Таким образом, обозначив длину буквой I, массу буквой и время буквой t, можно написать:

В указанных обозначениях размерность произвольной физической величины имеет вид и у могут быть как положительными, так и отрицательными, в частности, они могут равняться нулю). Эта запись означает, что при увеличении единицы длины в раз единица данной величины увеличивается в раз (соответственно число, которым выражается значение величины в этих единицах, уменьшается в раз); при увеличении единицы массы в раз единица данной величины увеличивается в раз и, наконец, при увеличении единицы времени в раз единица данной величины увеличивается в раз.

Написанное соотношение называется формулой размерности, а его правая часть - размерностью соответствующей величины (в данном случае скорости).

На основании соотношения можно установить размерность ускорения:

Размерность силы

Аналогично устанавливаются размерности всех прочих величин.

Cтраница 3


И Размерностью физической величины называется выражение, характеризующее связь этой физической величины с основными величинами данной системы единиц. Физическая величина называется безразмерной величиной, если в выражение ее размерности все основные величины входят в нулевой степени. Числовое значение безразмерной величины не зависит от выбора системы единиц.  

Под размерностью физической величины следует понимать выражение, отражающее связь рассматриваемой величины с основными величинами системы, если принять коэффициент пропорциональности в этом выражении равным безразмерной единице. Размерность представляет собой произведение размерностей основных величин системы, возведенных с соответствующие степени.  

Итак, размерность физической величины указывает, как в данной абсолютной системе единиц изменяются единицы, служащие для измерения этой физической величины, при изменении масштабов основных единиц. Например, сила в системе LMT имеет размерность LMT 2; это значит, что при увеличении единицы длины в п раз единица силы также увеличивается в п раз; при увеличении единицы массы в п раз единица силы также увеличивается в п раз и, наконец, при увеличении единицы времени в п раз единица силы уменьшается в 2 раз.  

Соображения, касающиеся размерности физических величин, помогают в решении задач огромной практической важности, например задачи о стационарном обтекании жидкостью или газом препятствия, или, что то же самое, о движении тела в среде.  

Для указания размерности физических величин пользуются символическими обозначениями, например LpM. Это означает, что в системе LMT число, выражающее результат измерения данной физической величины, уменьшится в пр раз, если единицу длины увеличить в п раз, увеличится в п 1 раз, если единицу массы увеличить в п раз, и, наконец, увеличится в пг раз, если единицу времени увеличить в п раз.  

Результат определения размерности физической величины принято записывать условным равенством, в котором эта величина заключается в квадратные скобки.  

Если посмотреть на размерности физических величин, фактически встречающихся в физике, то нетрудно заметить, что во всех случаях числа р, q, r оказываются рациональными. Это не обязательно с, точки зрения теории размерности, а является результатом соответствующих определений физических величин.  

Таким образом, размерность физической величины представляет собой функцию, которая определяет, во сколько раз изменится численное значение этой величины при переходе от исходной системы единиц измерения к другой системе внутри данного класса.  

Определим теперь понятие размерности физической величины. Размерность показывает, как связана данная величина с основными физическими величинами. В Международной системе единиц СИ основным физическим величинам соответствуют основные единицы измерения: длина, масса, время, сила тока, температура, количество вещества и сила света.  

Путем использования анализа размерностей физических величин устанавливают функциональную связь между обобщенными переменными (уравнение подобия), а количественную зависимость получают в результате обработки экспериментальных данных.  

Если при определении размерности физической величины составляющие ее основные единицы измерения сокращаются, то такая величина называется безразмерной. Безразмерными величинами являются относительные координаты точек тела, аэродинамические коэффициенты профиля крыла, относительные деформации упругой конструкции. Постоянные и переменные безразмерные величины занимают особое место при изучении подобия физических явлений.  

Строго говоря, размерностью физической величины называются показатели степени в символическом уравнении, выражающем эту величину через основные физические величины.  

Физические величины и их размерность

Физической величиной называют свойство, общее в качественном отношении многим физическим объектам, но в количественном отношении индивидуальное для каждого объекта(Болсун, 1983)/

Совокупность ФВ связанных между собой зависимостями, называют системой физи­ческих величин. Система ФВ состоит из базовых величин , которые условно приняты в каче­стве независимых, и из производных величин , которые выражаются через основные величины системы.

Производныефизическиевеличины - это физические величины, входящие в систему и определяемые через основные величины этой системы. Математическое соотношение (форму­ла), посредством которого интересующая нас производ­ная ФВ выражается в явном виде через другие величины системы и в котором проявляется непосредственная связь между ними, принято называть определяющим уравнением . К примеру, определяющим уравнением скорости служит соотношение

V = (1)

Опыт показывает, что система ФВ, охватывающая всœе разделы физики должна быть построена на семи базовых величинах: масса, время, длина, температура, сила света͵ количество вещества, сила электрического тока.

Учёные договорились обозначать основные ФВ символами: длину (расстояние) в любых уравнениях и любых системах символом L (с этой буквы начинается на английском и немецком языках слово длина), а время – символом T (с этой буквы начинается на английском языке слово время). То же самое относится и к размерностям массы (символ М), электрического тока (символ I), термодинамической температуры (символ Θ), количества вещества (символ

N), силы света (символ J). Эти символы называются размерностями длины и времени, массы и т.д., причем независимо от размера длины или времени. (Иногда эти символы называют логическими операторами, иногда – радика-лами, но чаще всœего размерностями.) Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, Размерность основной ФВ -это всœего лишь символ ФВ в виде заглавной буквы латинского или греческого алфавита. Так, к примеру, размерность скорости - ϶ᴛᴏ символ скорости в виде двух букв LT −1 (согласно формуле (1)), где Т представляет собой размерность времени, а L - длины Эти символы обозначают ФВ времени и длины независимо от их конкретного размера (секунда, минута͵ час, метр, сантиметр и т. д.). Размерность силы - MLT −2 (согласно уравнению второго закона Ньютона F = ma) . У любой производной ФВ имеется размерность, так как имеется уравнение, определяющее эту величину. В физике имеется одна чрезвычайно полезная математическая процедура, называемая анализом размерностей или проверка формулы размерностью .

По поводу понятия “размерность“ до сих пор имеются два противоположных мнения Проф. Коган И. Ш., в статье Размерность физической величины (Коган,) приводит следующие аргументы по поводу этого спора.. Более ста лет продолжаются споры о физическом смысле размерностей. Два мнения – размерность относится к физической величинœе, и размерность относится к единице измерений – уже целый век делят учёных на два лагеря. Первую точку зрения отстаивал известный физик начала ХХ века А.Зоммерфельд. Вторую точку зрения отстаивал выдающийся физик М.Планк, который считал размерность физической величины некоторой условностью. Известный метролог Л.Сена (1988) придерживался той точки зрения, согласно которой понятие размерности относится вообще не к физической величинœе, а к ее единице измерений. Эта же точка зрения изложена и в популярном учебнике по физике И.Савельева (2005).

При этом это противостояние искусственно. Размерность физической величины и ее единица измерений – различные физические категории, и их не следует сравнивать. В этом кроется суть ответа͵ решающего эту проблему.

Можно сказать, что у физической величины размерность имеется постольку, поскольку имеется уравнение, определяющее эту величину. Пока нет уравнения, нет и размерности, хотя от этого физическая величина не перестает существовать объективно. В существовании же размерности у единицы измерений физической величины объективной крайне важно сти нет.

Опять же, размерности физических величин для одних и тех же физических величин должны быть одинаковыми на любой планете в любой звездной системе. В то же время единицы измерений тех же величин могут оказаться там какими угодно и, конечно же, не похожими на наши земные.

Подобный взгляд на проблему говорит о том, что правы и А.Зоммерфельд, и М.Планк . Просто каждый из них имел в виду разное. А.Зоммерфельд имел в виду размерности физических величин, а М.Планк − единицы измерений . Противопоставляя их взгляды друг другу, метрологи безосновательно приравнивают размерности физических величин к их единицам измерений, тем самым искусственно противопоставляя точки зрения А.Зоммерфельда и М.Планка.

В настоящем пособии понятие ʼʼразмерностьʼʼ, как и полагается, относится к ФВ и с единицами ФВ не идентифицируется.

Физические величины и их размерность - понятие и виды. Классификация и особенности категории "Физические величины и их размерность" 2017, 2018.

Когда мы говорим о размерности величины, мы имеем в виду основные единицы или основные величины, с помощью которых можно построить данную величину.
 Размерность площади, например, всегда равна квадрату длины (сокращенно ; квадратные скобки здесь и далее обозначают размерность); единицами измерения площади могут быть квадратный метр, квадратный сантиметр, квадратный фут и т.п.
 Скорость же может измеряться в единицах км/ч, м/с и миль/ч, но размерность ее всегда равна размерности длины [L] , деленной на размерность времени [Т] , т. е. мы имеем . Формулы, описывающие величину, в разных случаях могут быть различны, но размерность сохраняется той же самой. Например, площадь треугольника с основанием b и высотой h равна S = (1/2)bh , а площадь круга радиусом r равна S = πr 2 . Эти формулы отличаются друг от друга, но размерности в обоих случаях совпадают и равны .
 При определении размерности величины обычно пользуются размерностями основных, а не производных величин. Например, сила, как мы увидим ниже, имеет размерность массы [М] , умноженной на ускорение т.е. ее размерность равна .
 Правило подбора размерностей может помочь при выводе различных соотношений; такая процедура называется анализом размерностей. Один из полезных методов − это применение анализа размерностей для проверки правильности того или иного соотношения. В этом случае используются два простых правила. Во-первых, складывать или вычитать можно величины только одинаковой размерности (нельзя складывать сантиметры и граммы); во-вторых, величины, стоящие в обеих частях любого равенства, должны иметь одинаковые размерности.
 Пусть, например, получено выражение v = v o + (1/2)at 2 , где v − скорость тела по прошествии времени t , v o − начальная скорость тела, а − испытываемое им ускорение. Для проверки правильности этой формулы произведем анализ размерностей. Запишем равенство для размерности, учитывая, что скорость имеет размерность , а ускорение - размерность :

В этой формуле с размерностью не все в порядке; в правой части равенства стоит сумма величин, размерности которых не совпадают. Отсюда можно сделать вывод о том, что при выводе исходного выражения была допущена ошибка.
 Совпадение размерности в обеих частях еще не доказывает правильности выражения в целом. Например, может быть неверным безразмерный числовой множитель вида 1/2 или . Поэтому проверка размерности может указать только на ошибочность выражения, но не может служить доказательством его правильности.
 Анализ размерностей можно также использовать как быструю проверку правильности соотношения, в котором вы не уверены. Предположим, вы не можете вспомнить выражение для периода Т (времени, необходимого для совершения полного колебания) простого математического маятника длиной l : то ли эта формула выглядит как

то ли

где g − ускорение свободного падения, размерность которого, как и у любого ускорения, равна .
 Нас будет только интересовать, входят ли в нее величины l и g в виде отношения l/g или g/l .) Анализ размерностей показывает, что верна первая формула:

в то время как вторая ошибочна, поскольку

 Обратите внимание на то, что постоянный множитель является безразмерным и не входит в окончательный результат.
 Наконец, важное применение анализа размерностей (которое, впрочем, требует большой осторожности) − это нахождение вида искомого соотношения. Такая необходимость может возникнуть, если требуется определить лишь то, как одна величина зависит от других.
 Рассмотрим конкретный пример получения формулы для периода Т колебаний математического маятника. Сначала определим, от каких величин может зависеть Т . Период может зависеть от длины нити l , масса на конце маятника m , угла отклонения маятника α и ускорение свободного падения g . Он может также зависеть от сопротивления воздуха (мы будем использовать здесь вязкость воздуха), силы гравитационного притяжения Луны и т.д. Однако повседневный опыт указывает на то, что сила притяжения к Земле значительно превышает все остальные силы, которыми поэтому мы пренебрежем. Предположим, что период Т является функцией величин l , m , α и g , причем каждая из этих величин возведена в некоторую степень:

здесь С − безразмерная постоянная; α , β , и δ − показатели степени, которые нужно определить.
Запишем формулу размерности для этого соотношения:

После некоторых упрощений мы получаем

 В силу того что семь основных величин системы СИ (Система Интернациональная) − международная система единиц, вариант метрической системы используемый с 1960 г., когда на XI Генеральной конференции по мерам и весам был принят стандарт, который впервые получил название «Международная система единиц (СИ)». СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике
Основные единицы СИ, названия единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится.

Задача 3 . Определите энергию взаимодействия двух точечных масс m 1 и m 2 , находящихся на расстоянии r друг от друга.

Задача 4 . Определите силу взаимодействия двух точечных зарядов q 1 и q 2 , находящихся на расстоянии r друг от друга.

Задача 5 . Определите напряженность гравитационного поля бесконечного цилиндра радиусом r o и плотностью ρ на расстоянии R (R > r o ) от оси цилиндра.

Задача 6 . Оценить дальность полета и высоту тела, брошенного под углом α к горизонту. Сопротивлением воздуха пренебречь.

Вывод:
1. Метод размерностей может быть использован в случае, если искомая величина может быть представлена в виде степенной функции.
2. Метод размерностей позволяет качественно решить задачу и получить ответ с точностью до коэффициента.
3. В некоторых случаях метод размерностей является единственным способом решить задачу и хотя бы оценить ответ.
4. Анализ размерностей при решении задачи широко используется в научных исследованиях.
5. Решение задач методом размерностей является дополнительным или вспомогательным методом, позволяющим лучше понять взаимодействие величин, их влияние друг на друга.

Читайте еще статьи из