Ядерные реакции в звездах. Спектральные классы звёзд


Излучение звезд поддерживается в основном за счет двух типов термоядерных реакций. У массивных звезд это реакции углерод-азотного цикла, а у маломассивных звезд типа Солнца это протон-протонные реакции. В первых углерод играет роль катализатора: сам не расходуется, но способствует превращению других элементов, в результате чего 4 ядра водорода объединяются в одно ядро гелия.

В принципе возможно великое множество других термоядерных реакций, но расчеты показывают, что при температурах, царящих в ядрах звезд, именно реакции этих двух циклов происходят наиболее интенсивно и дают выход энергии, в точности необходимый для поддержания наблюдаемого излучения звезд.

Как видим, звезда – это природная установка для управляемых термоядерных реакций. Если создать в земной лаборатории такие же температуру и давление плазмы, то и в ней начнутся такие же ядерные реакции. Но как удержать эту плазму в пределах лаборатории? Ведь у нас нет материала, который бы выдержал прикосновение вещества с температурой 10–20 млн. К и при этом не испарился. А звезде этого не требуется: ее мощная гравитация с успехом противостоит гигантскому давлению плазмы.

Пока в звезде протекают протон-протонная реакция или углерод- азотный цикл, она находится на главной последовательности, где проводит основную часть жизни. Позже, когда у звезды образуется гелиевое ядро и температура в нем повысится, происходит «гелиевая вспышка», т.е. начинаются реакции превращения гелия в более тяжелые элементы, также приводящие к выделению энергии.

Турбина атомной электростанции является тепловой машиной, определяющей в соответствии со вторым законом термодинамики общую эффективность станции. У современных атомных электростанций коэффициент полезного действия приблизительно равен. Следовательно, для производства 1000 МВт электрической мощности тепловая мощность реактора должна достигать 3000 МВт. 2000 МВт должны уносится водой, охлаждающей конденсатор. Это приводит к локальному перегреву естественных водоемов и последующему возникновению экологических проблем.

Однако, главная проблема состоит в обеспечении полной радиационной безопасности людей, работающих на атомных электростанциях, и предотвращении случайных выбросов радиоактивных веществ, которые в большом количестве накапливаются в активной зоне реактора. При разработке ядерных реакторов этой проблеме уделяется большое внимание. Тем не менее, после аварий на некоторых АЭС, в частности на АЭС в Пенсильвании (США, 1979 г.) и на Чернобыльской АЭС (1986 г.), проблема безопасности ядерной энергетики встала с особенной остротой.

Современная атомная энергетика базируется на расщеплении ядер атомов на два более легких с выделением энергии пропорционально потере массы. Источником энергии и продуктами распада при этом являются радиоактивные элементы. С ними связаны основные экологические проблемы ядерной энергетики.

Еще большее количество энергии выделяется в процессе ядерного синтеза, при котором два ядра сливаются в одно более тяжелое, но также с потерей массы и выделением энергии. Исходными элементами для синтеза является водород, конечным - гелий. Оба элемента не оказывают отрицательного влияния на среду и практически неисчерпаемы.

Результатом ядерного синтеза является энергия солнца. Человеком этот процесс смоделирован при взрывах водородных бомб. Задача состоит в том, чтобы ядерный синтез сделать управляемым, а его энергию использовать целенаправленно. Основная трудность заключается в том, что ядерный синтез возможен при очень высоких давлениях и температурах около 100 млн. °С. Отсутствуют материалы, из которых можно изготовить реакторы для осуществления сверхвысокотемпературных (термоядерных) реакций. Любой материал при этом плавится и испаряется.

Ученые пошли по пути поиска возможностей осуществления реакций в среде, не способной к испарению. Для этого в настоящее время испытываются два пути. Один из них основан на удержании водорода в сильном магнитном поле.

Несмотря на некоторые положительные результаты по осуществлению управляемого ядерного синтеза, высказываются мнения, что в ближайшей перспективе он вряд ли будет использован для решения энергетических проблем. Это связано с нерешенностью многих вопросов и с необходимостью колоссальных затрат на дальнейшие экспериментальные, а тем более промышленные разработки.



Диаграмма «спектр - светимость»

Как и Солнце, звезды освещают Землю, но из-за огромного расстояния до них освещенность, которую они создают на Земле, на много порядков меньше солнечной. По этой причине и возникают технические проблемы при измерениях освещенности от звезд. Астрономы строят гигантские телескопы, чтобы уловить слабые излучения звезд. Чем больше диаметр объектива телескопа, тем более слабые звезды можно с его помощью исследовать. Измерения показали, что, например, Полярная звезда создает освещенность на поверхности Земли Е = 3,8 10 -9 Вт/м 2 , что в 370 млрд раз меньше освещенности, создаваемой Солнцем. Расстояние до Полярной звезды составляет 200 пк, или около 650 св. лет (r = б 10 18 м). Поэтому светимость Полярной звезды L п = 4πr 2 Е = 4 3,14 х (6 10 18 м) 2 3,8 10 -9 Вт/м 2 = 9,1 10 29 Вт = 4600 L Как видим, несмотря на малую видимую яркость этой звезды, ее светимость в 4600 раз превышает солнечную.

Измерения показали, что среди звезд встречаются звезды в сотни тысяч раз более мощные, чем Солнце, и звезды со светимостями в десятки тысяч раз меньшими, чем у Солнца.

Измерения температур поверхности звезд показали, что температура поверхности звезды определяет ее видимый цвет и наличие спектральных линий поглощения тех или иных химических элементов в ее спектре. Так, Сириус сияет белым цветом и его температура равна почти 10 000 К. Звезда Бетельгейзе (α Ориона) имеет красный цвет и температуру поверхности около 3500 К. Солнце желтого цвета имеет температуру 6000 К. По температуре, по цвету и виду спектра все звезды разбили на спектральные классы, которые обозначаются буквами О, В, A, F, G, К, М. Спектральная классификация звезд приведена ниже в таблице.

Имеется еще одна интересная связь между спектральным классом звезды и ее светимостью, которая представляется в виде диаграммы «спектр - светимость (в светимостях Солнца)» (ее еще называют диаграммой Герцшпрунга-Рессела в честь двух астрономов - Э. Герцшпрунга и Г. Рессела, построивших ее). На диаграмме четко выделяются четыре группы звезд.


Главная последовательность

На нее ложатся параметры большинства звезд. К звездам главной последовательности относится и наше Солнце. Плотности звезд главной последовательности сравнимы с солнечной плотностью.

Красные гиганты

К этой группе в основном относятся звезды красного цвета с радиусами, в десятки раз превышающими солнечный, например звезда Арктур (α Волопаса), радиус которой превышает солнечный в 25 раз, а светимость - в 140 раз.


Сверхгиганты

Это звезды со светимостями, в десятки и сотни тысяч раз превышающими солнечную. Радиусы этих звезд в сотни раз превышают радиус Солнца. К сверхгигантам красного цвета относится Бетельгейзе (а Ориона). При массе примерно в 15 раз больше солнечной ее радиус превышает солнечный почти в 1000 раз. Средняя плотность этой звезды составляет всего 2 10 -11 кг/м 3 , что более чем в 1 000 000 раз меньше плотности воздуха.


Белые карлики

Это группа звезд в основном белого цвета со светимостями в сотни и тысячи раз меньше солнечной. Они расположены слева внизу диаграммы. Эти звезды имеют радиусы почти в сто раз меньше солнечного и по размерам сравнимы с планетами. Примером белого карлика служит звезда Сириус В - спутник Сириуса. При массе, почти равной солнечной, и размере, в 2,5 раза большем, чем размер Земли, эта звезда имеет гигантскую среднюю плотность - ρ = 3 10 8 кг/м 3 .


Чтобы понять, чем объясняются наблюдаемые отличия звезд разных групп, вспомним связь между светимостью, температурой и радиусом звезды, которую мы использовали для определения температуры Солнца.

Сравним две звезды спектрального класса К, одна - главной последовательности (ГП), другая - красный гигант (КГ). У них одинаковая температура - Т = 4500 К, а светимости отличаются в тысячу раз:


т. е. красные гиганты в десятки раз больше по размерам, чем звезды главной последовательности.

Массы звезд удалось измерить только у звезд, входящих в состав двойных систем. И они определялись по параметрам орбит звезд и периоду их обращения вокруг друг друга с использованием третьего обобщенного закона Кеплера. Оказалось, что массы всех звезд лежат в пределах

0,05М ≤ М ≤ 100М

Для звезд главной последовательности имеется связь между массой звезды и ее светимостью: чем больше масса звезды, тем больше ее светимость.

Так, звезда спектрального класса В имеет массу около М ≈ 20М и ее светимость почти в 100 000 раз больше солнечной.


Источник энергии Солнца и звезд

По современным представлениям, источником энергии, поддерживающим излучения Солнца и звезд, служит ядерная энергия, которая выделяется при термоядерных реакциях образования (синтеза) ядер атомов гелия из ядер атомов водорода. При реакции синтеза из четырех ядер атомов водорода (четырех протонов) образуется ядро атома гелия, при этом выделяется энергия ΔЕ = 4,8 10 -12 Дж, называемая энергией связи , две элементарные частицы нейтрино и два позитрона (4Н Не + 2е + + 2ν + ΔЕ).

Для протекания ядерных реакций необходима температура выше нескольких миллионов кельвинов, при которой участвующие в реакции протоны с одинаковыми зарядами смогли бы получить достаточную энергию для взаимного сближения, преодоления электрических сил отталкивания и слияния в одно новое ядро. В результате термоядерных реакций синтеза из водорода массой 1 кг образуется гелий массой 0,99 кг, дефект масс Δm = 0,01 кг и выделяется энергия q = Δmc 2 = 9 10 14 Дж.

Теперь можно оценить, на сколько времени хватит у Солнца запасов водорода, чтобы поддерживать наблюдаемое свечение Солнца, т. е. время жизни Солнца. Запас ядерной энергии Е = M q = 2 10 30 9 10 14 = 1,8 10 45 Дж. Если поделить этот запас ядерной энергии на светимость Солнца L , то мы получим время жизни Солнца:

Если учесть, что Солнце состоит по крайней мере на 70% из водорода и ядерные реакции протекают только в центре, в солнечном ядре, масса которого составляет около 0,1М и где температура достаточно высокая для протекания термоядерных реакций, то время жизни Солнца и звезд, похожих на Солнце, составит t ≈ 10 10 лет

Звезды – это, пожалуй, самое интересное, что есть в астрономии. Кроме того, их внутреннее строение и эволюцию мы понимаем лучше, чем что-либо в космосе (во всяком случае, нам так кажется). С планетами дело обстоит не очень хорошо, потому что их внутренности очень трудно исследовать – мы видим только то, что на поверхности. А что касается звезд, то большинство из нас уверено, что они устроены просто.

В начале прошлого века один молодой астрофизик высказался на семинаре у Эддингтона в том духе, что проще звезд ничего нет. На что более опытный астрофизик ответил: «Ну да, если Вас рассматривать с расстояния в миллиарды километров, то Вы тоже покажетесь простым».

На самом деле звезды не так просты, как кажутся. Но все-таки их свойства исследованы наиболее полно. Тому есть две причины. Во-первых, мы умеем численно моделировать звезды, потому что, как нам кажется, они сделаны из идеального газа. Точнее, из плазмы, которая ведет себя как идеальный газ, уравнение состояния которого довольно простое. С планетами так не получится. Во-вторых, иногда нам удается заглянуть в недра звезд, хотя пока это касается в основном Солнца.

К счастью, у нас в стране было и остается много хороших астрофизиков, специалистов по звездам. Связано это в основном с тем, что были хорошие физики, которые делали ядерное оружие, а звезды представляют собой природные ядерные реакторы. И когда оружие было сделано, многие физики, в том числе и сибирские, переключились на исследование звезд, потому что объекты в чем-то подобные. И они написали хорошие книги на эту тему.

Посоветую вам две книжки, которые до сих пор, на мой взгляд, остаются лучшими из тех, что на русском языке. «Физика звезд», автор которой – известный физик и талантливый преподаватель Самуил Аронович Каплан, написана почти сорок лет назад, но основы с тех пор не изменились. А современные сведения о физике звезд – в книге «Звезды» из серии «Астрономия и астрофизика», которую мы с коллегами сделали. Она пользуется таким интересом у читателей, что уже тремя изданиями вышла. Есть и другие книги, но в этих двух содержится практически исчерпывающая информация для тех, кто знакомится с предметом.

Такие разные звезды


Если мы посмотрим на звездное небо, то заметим, что звезды имеют разную яркость (видимый блеск) и разный цве. Понятно, что блеск может быть делом случая, поскольку одна звезда ближе, другая – дальше, по нему трудно сказать, какова звезда на самом деле. А вот цвет нам о многом рассказывает, потому что чем выше температура тела, тем дальше в голубую область сдвигается максимум в спектре излучения. Казалось бы, мы можем просто на глаз оценить температуру звезды: красная – холодная, голубая – горячая. Как правило, это действительно так и есть. Но иногда возникают и ошибки, связанные с тем, что между звездой и нами есть какая-то среда. Иногда она очень прозрачная, а иногда не очень. Всем известен пример с Солнцем: высоко над горизонтом оно белое (мы его называем желтым, но для глаза оно почти белое, потому что его свет нас ослепляет), но Солнце краснеет, когда восходит или заходит за горизонт. Очевидно, что не у самого Солнца меняется температура поверхности, а среда изменяет видимый цвет, и об этом надо помнить. К сожалению, для астрономов это большая проблема – угадать, насколько изменился цвет, т.е. видимая (цветовая) температура звезды, за счет того, что ее свет прошел сквозь межзвездный газ, атмосферу нашей планеты и прочие поглощающие среды.


Спектр звездного света – характеристика намного более надежная, потому что его трудно сильно исказить. Все, что мы знаем сегодня о звездах, мы прочитали в их спектрах. Исследование звездного спектра – это огромная, тщательно отработанная область астрофизики.

Интересно, что менее двухсот лет назад один известный философ, Огюст Конт, сказал: «мы уже многое узнали о природе, но есть такое, что мы не узнаем никогда – это химический состав звезд, потому как их вещество никогда не попадет к нам в руки». Действительно, в руки к нам вряд ли оно когда-нибудь попадет, но прошло буквально 15-20 лет и люди изобрели спектральный анализ, благодаря которому о химическом составе, как минимум, поверхности звезд мы узнали практически все. Так что никогда не говори «никогда». Напротив, всегда найдется способ сделать то, во что ты поначалу не веришь.


Но прежде чем говорить о спектре, посмотрим еще раз на цвет звезды. Мы уже знаем, что максимум интенсивности в спектре с увеличением температуры смещается в голубую область, и это надо использовать. И астрономы научились это использовать, потому что снять полный спектр – дело очень затратное. Нужен большой телескоп, длительное время наблюдения, чтобы накопить достаточно света на разных длинах волн – и при этом получить результат лишь для одной исследуемой звезды. А цвет можно очень просто измерять, причем делать это для многих звезд одновременно. И для массового статистического анализа мы просто фотографируем их два-три раза через разные светофильтры с широким окном пропускания.


Обычно двух фильтров – Blue (B) и Visual (V) – уже достаточно, чтобы в первом приближении определить температуру поверхности звезды. Например, есть у нас три звезды, у которых разные температуры поверхности, цвет у всех разный. Если одна из них будет типа Солнца (температура около 6 тыс. градусов), то на обоих снимках она будет примерно одинаковой яркости. Однако свет более холодной звезды будет сильнее гаситься B-фильтром, сквозь него будет мало длинноволнового света проходить, поэтому она будет казаться нам «слабенькой» звездочкой. А с более горячей звездой дело будет обстоять прямо противоположным образом.

Но бывает мало двух фильтров. Всегда можно ошибиться, как с Солнцем на горизонте. Астрономы обычно 3 окна пропускания используют: Visual, Blue, и третье – Ultraviolet, на границе прозрачности атмосферы. Три снимка уже вполне точно говорят нам о том, в какой мере межзвездная среда ослабляет свет каждой звезды, и какова собственная температура поверхности звезды. Для массовой классификации звезд такая 3-х полосная фотометрия – пока единственный способ, позволивший изучить более миллиарда звезд.

Вселенская паспортизация звезд


Но спектр, конечно, гораздо полнее характеризует звезду. Спектр представляет собой «паспорт» звезды, потому что спектральные линии говорят нам об очень многом. К словам «спектральные линии» мы все привыкли, представляем, что это такое (слайд 08 – спектры химических элементов в видимой области). По горизонтальной оси – длина волны, связанная с тем, на какой частоте излучается свет. Но каково происхождение формы линий, почему они выглядят как прямые вертикальные черточки, а не кружочки, треугольники или какие-нибудь загогулинки?

Спектральная линия – это монохроматическое изображение входной щели спектрографа. Если бы я сделал щель в виде крестика, то получился бы набор крестиков разного цвета. О таких простых вещах физик на третьем курсе, по-моему, должен задумываться. Или, как в армии, сказали «линия» – значит линия? Отнюдь не всегда это линия, потому что в спектрографе не обязательно используется входная щель, хотя, как правило, входное отверстие – это вертикальная прямоугольная щель, так удобнее.

В схеме любого спектрографа всегда есть диспергирующий элемент; в этом качестве может выступать призма или дифракционная решетка. Звезда – облачко горячего газа – испускает характерный набор квантов разных частот. Мы пропускаем их через входную щель и диспергирующий элемент и получаем изображения щели в разных цветах, упорядоченно расположенные по длине волны.




Если излучают свободные атомы химических элементов, то спектр получается линейчатый. А если взять в качестве источника излучения горячую спираль лампы накаливания, тогда получится спектр непрерывный. Почему так? В металлическом проводнике нет характерных уровней энергии, там электроны, бешено двигаясь, излучают на всех частотах. Поэтому спектральных линий так много, что они перекрываются друг с другом и получается континуум – непрерывный спектр.

А вот теперь берем источник непрерывного спектра и пропускаем его свет через облачко газа, но более холодного, чем спиралька. В этом случае облачко выхватывает из непрерывного спектра те фотоны, энергия которых соответствует переходам между энергетическими уровнями в атомах этого газа. И на этих частотах мы получаем в сплошном спектре вырезанные линии, «дырочки» – получается спектр поглощения. Но атомы, которые поглотили световые кванты, стали менее устойчивыми и рано или поздно их излучают. Почему же спектр продолжает оставаться «дырявым»?

Потому что атому все равно куда выбрасывать «лишнюю» энергию. Происходит спонтанное излучение в разных направлениях. Некоторая доля фотонов летит, конечно же, и вперед, но, в отличие от вынужденного излучения лазера, она мизерная.


Спектральные линии обычно весьма широкие и распределение яркости внутри них неравномерное. На это явление тоже надо обратить внимание и исследовать, с чем оно связано.

Есть много физических факторов, делающих спектральную линию широкой. На графике распределения яркости (или поглощения) можно, как правило, выделить два параметра: центральный максимум и характерную ширину. Ширину спектральной линии принято измерять на уровне половины интенсивности максимума. И ширина, и форма линии могут рассказать нам о каких-то физических особенностях источника света. Но о каких?

Предположим, мы подвесили одиночный атом в вакууме и никак не трогаем его, не мешаем ему излучать. Но даже в этом случае в спектре будет ненулевая ширина линий, ее называют естественной. Она возникает из-за того, что процесс излучения ограничен во времени, у разных атомов от 10⁻⁸ до 10⁻¹⁰ с. Если вы синусоиду электромагнитной волны «обрежете» на концах, то это уже будет не синусоида, а кривая, раскладывающаяся в набор синусоид с непрерывным спектром частот. И чем короче время излучения, тем шире спектральная линия.


В природных источниках света есть и другие эффекты, которые уширяют спектральную линию. Например, тепловое движение атомов. Поскольку излучающий объект имеет ненулевую абсолютную температуру, его атомы хаотически движутся: половина – к нам, половина – от нас, если смотреть лучевую проекцию скорости. В результате доплеровского эффекта излучение первых сдвигается в голубую сторону, других – в красную сторону. Это явление называется доплеровским тепловым уширением спектральной линии.

Доплеровское уширение может быть и по другим причинам. Например, в результате макроскопического движения вещества. Поверхность любой звезды кипит: конвективные потоки горячего газа поднимаются из глубин, остывшего – опускаются. Одни потоки в момент снятия спектра движутся к нам, другие - от нас. Конвективный эффект Доплера иногда бывает более сильным, чем тепловой.

Когда мы смотрим на фотографию звездного неба, нам трудно понять, какова величина звезд на самом деле. Например, есть красная и голубая. Если бы я ничего не знал о них, я бы мог подумать так: у красной звезды не очень высокая температура поверхности, но, если я вижу ее довольно яркой, следовательно, она близко ко мне расположена. Но тогда с определением относительной дальности до голубой звезды, которая светит слабее, у меня возникнет проблема. Я размышляю: так, голубая – значит горячая, но мне не понять, близко или далеко она от меня. Ведь она может быть большого размера и излучать большую мощность, но находиться столь далеко, что света оттуда приходит мало. Или же, напротив, она может светиться так слабо, потому что очень маленькая, хотя и близкая. Как же отличить звезду большую от звезды маленькой? Можно ли по спектру звезды определить ее линейный размер?


Казалось бы, нет. Но, тем не менее это возможно! Дело в том, что маленькие звезды плотные, а у больших атмосфера разрежена, поэтому газ в их атмосферах находится в разных условиях. Когда мы получаем спектры так называемых звезд-карликов и звезд-гигантов, то сразу же видим различия в характере спектральных линий (слайд 16 – Спектры звезд карликов и гигантов различаются шириной спектральных линий). В разреженной атмосфере гиганта каждый атом летает свободно, редко встречая соседей. Излучают все они практически одинаково, поскольку не мешают друг другу, так что спектральные линии гигантов имеют близкую к естественной ширину. А вот карлик – звезда массивная, но очень маленькая и, значит, с очень высокой плотностью газа. В ее атмосфере атомы постоянно взаимодействуют друг с другом, мешая излучать соседу на строго определенной частоте: потому что у каждого есть свое электрическое поле, которое влияет на поле соседа. Из-за того, что атомы находятся в разных условиях окружения, происходит так называемое штарковское уширение линии. Т.е. по форме, как говорят, «крыльев» спектральных линий мы сразу угадываем плотность газа на поверхности звезды и ее типичный размер.


Доплеровский эффект может проявляться и из-за вращения звезды в целом. Мы не можем различить края удаленной звезды, она для нас выглядит как точка. Но от приближающегося к нам края все линии спектра испытывают голубое смещение, от удаляющегося от нас – красное (слайд 18 – Вращение звезды приводит к уширению спектральных линий). Складываясь, это приводит к уширению спектральной линии. Оно выглядит не так, как эффект Штарка, по-другому меняет форму спектральной линии, поэтому можно угадать, в каком случае на ширину линии повлияло вращение звезды, а в каком – плотность газа в атмосфере звезды. Фактически это единственный способ измерения скорости вращения звезды, потому что звезд в виде шариков мы не видим, все они для нас – точки.


Движение звезды в пространстве тоже влияет на спектр из-за эффекта Доплера. Если две звезды движутся вокруг друг друга, оба спектра от этой пары смешиваются и ходят один на фоне другого. Т.е. периодическое смещение линий туда-сюда – признак орбитального движения звезд.

А что мы из серии меняющихся во времени спектров можем получить? Мы измеряем скорость (по амплитуде смещения), орбитальный период, а по этим двум параметрам, пользуясь третьим законом Кеплера, рассчитываем суммарную массу звезд. Иногда по косвенным признакам удается разделить эту массу между компонентами двойной системы. В большинстве случаев это единственный способ измерить массу звезд.

Кстати, диапазон масс звезд, которые мы изучили на сегодняшний день, не очень велик: разница составляет немногим больше 3 порядков величины. Наименее массивные звезды – порядка десятой доли массы Солнца. Еще меньшая масса не позволяет им запускать термоядерные реакции. Наиболее массивные звезды, которые мы недавно обнаружили – массой в 150 солнечных. Это уникумы, таких пока только 2 штуки известно из нескольких миллиардов.



Наблюдая редкие двойные системы, в орбитальной плоскости которых мы находимся, мы тоже можем многое узнать об этой паре звезд, используя только наблюдательные характеристики, т.е. которые мы можем непосредственно увидеть, а не рассчитать на основе каких-то законов. Поскольку мы не различаем их поодиночке, мы видим просто источник света, блеск которого время от времени меняется: происходят затмения, пока одна звезда проходит на фоне другой. Более глубокое затмение означает, что холодная звезда закрыла собой горячую, а менее глубокое – наоборот, горячая закрыла собой холодную (закрытые площади одинаковы, поэтому глубина затмения зависит только от их температуры). Помимо орбитального периода мы измеряем светимость звезд, из которой определяем их относительную температуру, а по длительности затмения рассчитываем размер.




Размер звезд, как мы знаем, огромен. По сравнению с планетами они просто гигантские. Солнце – самое типичное по размеру среди звезд, наравне с такими давно известными, как Альфа Кентавра и Сириус. Но размеры звезд (в отличие от их масс) укладываются в огромный диапазон – 7 порядков величины. Есть звезды заметно меньше них, одна из самых мелких (и одновременно одна из самых близких к нам) – Проксима, она чуть больше Юпитера. А есть звезды намного крупнее, причем на некоторых стадиях эволюции они раздуваются до невероятных размеров и становятся заметно больше всей нашей планетной системы.

Пожалуй, единственная звезда, диаметр которой мы измерили напрямую (благодаря тому, что она недалеко от нас), – это сверхгигант Бетельгейзе в созвездии Орион, на снимках телескопа «Хаббл» она не точка, а кружок (слайд 26 – Размер звезды Бетельгейзе в сравнении с диаметрами орбиты Земли и Юпитера. Фото космического телескопа "Хаббл"). Если эту звезду поставить на место Солнца, она «съест» не только Землю, но и Юпитер, полностью накроет его орбиту.

Но что мы вообще называем размером звезды? Между какими точками мы звезду измеряем? На оптических снимках звезда четко ограничена в пространстве, и кажется, что вокруг ничего нет. Значит, сфотографировали Бетельгейзе в видимом свете, приложили линейку к изображению – и готово? Но это, оказывается, еще не все. В дальнем инфракрасном диапазоне излучения видно, что атмосфера звезды тянется гораздо дальше, испускает из себя потоки. Надо полагать, что это и есть граница звезды? Но переходим в микроволновый диапазон – и видим, что атмосфера звезды протянулась почти на тысячу астрономических единиц, в несколько раз крупнее всей нашей Солнечной системы.


Звезда в общем случае – это газовое образование, которое не замкнуто в жестких стенках (в космосе их нет) и поэтому не имеющее границ. Формально, любая звезда простирается бесконечно (точнее, пока не достигнет соседней звезды), интенсивно испуская газ, который называют звездным ветром (по аналогии с солнечным ветром). Поэтому, говоря о размере звезды, всегда нужно уточнять, в каком диапазоне излучения мы его определяем, тогда будет более понятно, о чем речь.

Гарвардская классификация спектров


Настоящие спектры звезд, несомненно, очень сложны. Они совсем не похожи на спектры отдельных химических элементов, которые мы привыкли видеть в справочниках. Например, даже в узком в оптическом диапазоне солнечного спектра – от фиолетовой области до красной, который наш глаз как раз и видит, – линий очень много, и разобраться в них совсем не просто. Узнать даже на основе детального, высокодисперсного спектра, какие химические элементы и в каком количестве присутствуют в атмосфере звезды – большая проблема, которую астрономы до конца не могут решить.

Глядя на спектр, мы сразу увидим выделяющиеся бальмеровские линии водорода (Hα, Hβ, Hγ, Hδ) и очень много линий железа. Иногда попадается гелий, кальций. Логично сделать вывод, что звезда состоит в основном из железа (Fe) и отчасти из водорода (H). В начале XX века была открыта радиоактивность, и когда люди задумались об источниках энергии звезд, они вспомнили, что в спектре Солнца много линий металлов, и предположили, что распад урана или радия греет внутренности нашего Солнца. Однако оказалось, что это не так.

Первая классификация звездных спектров была создана в Гарвардской обсерватории (США) руками примерно дюжины женщин. Кстати, почему именно женщин – вопрос интересный. Обработка спектров – это очень тонкая и кропотливая работа, для выполнения которой директору обсерватории Э. Пикерингу надо было взять помощников. Женский труд в науке тогда не очень приветствовался и оплачивался намного хуже мужского: на те деньги, которые были у этой небольшой обсерватории, можно было нанять либо двух мужчин, либо дюжину женщин. И тогда впервые в астрономию было призвано большое количество женщин, которые сформировали так называемый «гарем Пикеринга». Созданная ими спектральная классификация была первым вкладом в науку женского коллектива, который оказался гораздо более эффективным, чем ожидалось.


В то время люди вообще не представляли, на основе каких физических явлений формируется спектр, его просто фотографировали. Пытаясь построить классификацию, астрономы рассуждали так: в спектре любой звезды есть линии водорода, по убыванию их интенсивности можно упорядочить все спектры и сгруппировать их. Разложили, обозначив группы спектров латинскими буквами по алфавиту: с самыми сильными линиями – класс A, слабее – класс B и т.д.

Вроде бы все было сделано правильно. Но через несколько лет родилась квантовая механика, и мы поняли, что вовсе не обязательно обильный элемент представлен в спектре мощными линиями, а редкий элемент никак не проявляет себя в спектре. Многое зависит от температуры.


Давайте посмотрим на спектр поглощения атомарным водородом: в оптический диапазон попадают линии только бальмеровской серии. Но при каких условиях эти кванты поглощаются? При переходах только со второго уровня вверх. Но в нормальном-то (холодном) состоянии все электроны «сидят» на первом уровне, а на втором почти ничего нет. Значит, нам надо нагреть водород, чтобы какая-то доля электронов запрыгнула на второй уровень (потом они снова вернутся вниз, но перед этим какое-то время там проведут) – и тогда пролетающий оптический квант может быть поглощен электроном со второго уровня, что проявится в видимом спектре.

Итак, холодный водород не будет нам выдавать бальмеровскую серию, а теплый – будет. А если мы еще сильнее нагреем водород? Тогда много электронов запрыгнет на третий и более высокие уровни, а второй уровень снова обеднеет. Очень горячий водород тоже не даст нам спектральных линий, которые мы можем в оптическом диапазоне увидеть. Если пройтись от холодных звезд к самым горячим, то увидим, что линии любого элемента лишь в узком диапазоне температур могут быть достаточно хорошо представлены в спектре.


Когда астрофизики это поняли, им пришлось переставить спектральные классы в порядке роста температуры: от холодных звезд к горячим. Эта классификация по традиции тоже гарвардской называется, но она уже естественная, физическая. У звезд спектрального класса A температура поверхности около 10 тыс. градусов, водородные линии максимально яркие, а с ростом температуры они начинают исчезать, потому что атом водорода при температуре больше 20 тыс. градусов ионизуется. Аналогично дело обстоит с другими химическими элементами. Кстати, в спектрах звезд холоднее 4000 K присутствуют не только линии отдельных химических элементов, но и полосы, соответствующие устойчивым при таких температурах молекулам сложных веществ (например, оксидов титана и железа).


Получившуюся при упорядочивании классов по температуре последовательность букв OBAFGKM студентам-астрономам довольно просто запомнить, тем более что придуманы всякие мнемонические поговорки. Самая известная на английском – Oh, Be A Fine Girl, Kiss Me! Диапазон температур поверхности таков: у самых горячих звезд – десятки тысяч градусов, у самых холодных – две с небольшим тысячи. Для более тонкой классификации каждый класс разделили на десять подклассов и к каждой букве справа приписали одну цифру от 0 до 9. Замечу, что оптические спектры в цвете фотографируют только для красоты, а для научных исследований это бессмысленно, поэтому обычно делают черно-белые изображения.


Редко, но бывает, что звезды демонстрируют линии не поглощения (темные на ярком фоне), а излучения (яркие на темном фоне). Их происхождение уже не так легко понять, хотя это тоже довольно элементарно. В начале лекции мы видели, что разреженное облачко горячего газа дает нам линии излучения. Когда мы смотрим на звезду с линиями излучения в спектре, мы понимаем, что источником этих линий служит разреженный, полупрозрачный газ, находящийся на периферии звезды, в ее атмосфере. То есть это звезды с протяженной горячей атмосферой, которая прозрачна в континууме (в промежутках между линиями), а значит, почти ничего в нем не излучает (закон Кирхгофа). Но она не прозрачна в отдельных спектральных линиях, а раз не прозрачна в них, то и сильно в них излучает.


На сегодняшний день гарвардская классификация звездных спектров расширена. В нее добавлены новые классы, соответствующие горячим звездам с протяженной атмосферой, ядрам планетарных туманностей и новых звезд, а также недавно открытым довольно холодным объектам занимающим промежуточное положение между нормальными звездами и крупнейшими планетами; их называют «коричневыми карликами» или «бурыми карликами» (англ. – brown dwarf).


Есть еще ответвления от некоторых классов для звезд с оригинальным химическим составом. Это, кстати, загадка для нас: до сих пор не ясно, почему у некоторых звезд вдруг наблюдается избыток какого-то редкого химического элемента. Ведь, несмотря на разнообразие звездных спектров, химический состав их атмосфер очень схожий: на 98 % по массе Солнце и подобные ему звезды состоят из первых двух химических элементов – водорода и гелия, а все остальные элементы представлены лишь двумя оставшимися процентами массы.

Солнце – самый яркий для нас источник света, его спектр мы можем растянуть очень сильно, различить в нем десятки тысяч спектральных линий и расшифровать их. Так, установлено, что на Солнце присутствуют все элементы таблица Менделеева. Однако, открою вам секрет, до сих пор примерно 20 линий солнечного спектра, очень слабых, остались не идентифицированными. Так что даже с Солнцем проблема распознавания химического состава еще не решена до конца.


Распределение химических элементов в атмосфере Солнца обладает рядом интересных закономерностей). Считается, что это типичный состав звездного вещества. И для большинства звезд это верно. Начиная с углерода и до самых тяжелых ядер (по крайней мере, до урана) идет довольно ровный спад распространенности элементов по мере увеличения их порядкового номера. Однако между гелием и углеродом имеется очень сильный провал – так происходит потому, что литий и бериллий легче всех участвуют в термоядерных реакциях, они активнее даже водорода и гелия. И как только температура поднимается выше миллиона градусов, они очень быстро выгорают.

Но и внутри этого ровного тренда есть особенности. Во-первых, резко выделяется пик железа. В природе, в том числе и в звездах, железа, никеля и близких к ним элементов по сравнению с их соседями необычайно много. Дело в том, что железо – необычный химический элемент: это самый конечный продукт термоядерных реакций, идущих в равновесных условиях, т.е. без всяких взрывов. В термоядерных реакциях звезда синтезируют из водорода все более и более тяжелые элементы, но доходит дело до железа – и все останавливается. Дальше, если мы попытаемся из железа что-то сделать новое в термоядерной реакции, добавляя к нему нейтроны, протоны, другие ядра, то никакого выделения тепла не будет: когда костер догорел, из золы уже ничего не получишь. Наоборот, на осуществление реакции пришлось бы подводить энергию извне, а сама по себе никакая реакция с железом в обычных условиях не пойдет. Поэтому железа в природе накопилось много.

Другой важный момент, на который стоит обратить внимание: линия, соединяющая на графике точки, имеет пилообразный вид. Так получается потому, что ядра с четным количеством нуклонов (протонов и нейтронов) гораздо более стабильны, чем с нечетным. Поскольку стабильные ядра легче создать, чем разрушить, этих ядер по сравнению с соседними элементами нарабатывается всегда больше на целый порядок, а то и на полтора.

В отличие от Солнца, в составе земного шара и землеподобных планет содержится очень мало водорода и гелия, но начиная с углерода «звездное» распределение химических элементов характерно и для них. Поэтому у каждой планеты, не только у Земли, есть крупное железное ядро.


К сожалению, спектры показывают нам состав только поверхности звезд. Наблюдая свет звезды, мы почти ничего не можем сказать о том, что у нее внутри, а внутренняя жизнь звезд разной массы различается. Перенос энергии в звезде происходить несколькими механизмами, преимущественно лучеиспусканием и конвекцией. Например, у звезд типа Солнца в центральной части, где идут термоядерные реакции, энергию в основном переносит излучение, и вещество ядра не перемешивается с вышележащими слоями. На периферии перемешивание идет, но оно не достигает тех внутренних областей, в которых постепенно меняется химический состав за счет термоядерных реакций. Т.е. продукты термоядерной реакции не выносятся на поверхность, тут циркулирует исходное вещество, из которого Солнце родилось когда-то. У более массивных звезд внутри идет конвективное перемешивание, но дальше не распространяется. Выпрыгнуть на поверхность звезды наработанные химические элементы тоже не могут.

Наконец, маломассивные – это самые правильные звезды: конвекция у них – главный механизм переноса тепла, внутри них происходит полное перемешивание вещества. Значит, казалось бы, на их поверхность должно всплывать то, что в центре в термоядерных реакциях наработалось. Однако в этих маленьких звездах очень медленно идут термоядерные реакции, они очень экономно расходуют свою энергию и медленно эволюционируют. Продолжительность их жизни в сотни и тысячи раз больше, чем у звезд типа Солнца, т.е. триллионы лет. А за те 14 млрд лет, что прошли с момента рождения Вселенной, в их составе практически ничего не изменилось. Они еще младенцы, многие из них еще недоформировались и не запустили нормальный термоядерный цикл.

Таким образом, о том, что находится внутри звезд, какой там химический состав вещества, мы не знаем до сих пор, натурных данных у нас нет. Только моделирование нам может что-то об этом сказать.

Диаграмма Герцшпрунга–Рассела


Видимый блеск звезд измеряют в обратной логарифмической шкале звездных величин (слайд 43), но для физика это неинтересно. Ему важна полная мощность излучения звезды, а ее мы не можем просто так по фотографии угадать.


Например, Альфа Кентавра среди других звезд имеет потрясающую яркость, но это вовсе не значит, что она самая мощная, ничего подобного. Это совершенно обычная звезда типа Солнца, просто по случаю она оказалась к нам намного ближе остальных и поэтому как фонарь заливает своим светом окрестный кусочек неба, хотя большинство соседних с ней на этом фото звезд представляют собой гораздо более мощные источники излучения, но они расположены дальше.

Итак, надо оценить мощность звезды как можно более точно. Для этого мы используем фотометрический закон обратных квадратов: измеряя видимую яркость звезды (плотность светового потока, достигающего Земли) и расстояние до нее, вычисляем полную мощность ее излучения в ваттах. Теперь можно представить общую физическую картину, изобразив все звезды на двумерной диаграмме (слайд 46), на осях которой откладывают две выведенные из наблюдений величины – температуру поверхности звезды и относительную мощность ее излучения (астрономы, принимая во внимание только оптический диапазон, называют эту мощность светимостью и измеряют в единицах мощности Солнца). В начале XX века такую картинку впервые построили два астронома, по именам которых она называется диаграммой Герцшпрунга–Рассела.


Солнце, звезда с температурой около 6000 K и с единичной мощностью, располагается почти посередине этой диаграммы. Вдоль диапазона изменения обоих параметров звезды распределены практически непрерывно, но по плоскости диаграммы они не как попало разбросаны, а группируются в компактные области.

Сегодня на диаграмме Герцшпрунга–Рассела выделяют несколько типичных групп, в которых сконцентрированы наблюдаемые в природе звезды (слайд 47). Подавляющее большинство звезд (90%) лежит в узкой полосе по диагонали диаграммы; эту группу называют главной последовательностью. Она распространяется от тусклых холодных звезд до горячих яркосветящихся: от миллионных долей до нескольких миллионов солнечных светимостей. Для физика это естественно: чем горячее поверхность, тем сильнее она излучает.


По обе стороны от главной последовательности находятся группы аномальных звезд. Некоторое количество звезд с высокой температурой обладают необычно низкой светимостью (в сотни и тысячи раз меньше солнечной) из-за своего мелкого размера – мы называем их белыми карликами, такие они по цвету. Другие исключительные звезды, в противоположном углу диаграммы, характеризуется более низкой температурой, но огромной светимостью – значит, они явно имеют больший физический размер, это гиганты.

В процессе своей эволюции звезда может менять положение на диаграмме. Об этом – в одной из следующих лекций.

Звезда – небесное тело, в котором идут в данный момент термоядерные реакции. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами, а на их поверхности – тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Большинство звёздных характеристик, как правило, выражается в СИ. Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

Звезда – раскалённый газовый шар, а основным свойством газа является стремление расшириться и занять любой предоставленный ему объём. Это стремление вызвано давлением газа и определяется его температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой же точке ей противодействует другая сила – сила тяжести вышележащих слоев, пытающаяся сжать звезду. Однако ни расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоёв увеличивается, то давление, а, следовательно, и температура возрастают к центру звезды.

Звезда излучает энергию, вырабатываемую в её недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться её поверхностью, иначе равновесие нарушится. Таким образом, к давлению газа добавляется ещё и давление излучения.

Лучи, испускаемые звездой, получают свою энергию в недрах, где располагается её источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои. Если бы звёздное вещество было прозрачным, то продвижение это осуществлялось бы почти мгновенно, со скоростью света. Но оно непрозрачно и тормозит прохождение излучения. Световые лучи поглощаются атомами и вновь испускаются уже в других направлениях. Путь каждого луча сложен и напоминает запутанную зигзагообразную кривую. Иногда он «блуждает» многие тысячи лет, прежде чем выйдет на поверхность и покинет звезду.

Излучение, покидающее поверхность звезды, качественно (но не количественно) отличается от излучения, рождающегося в источнике звёздной энергии. По мере движения наружу длина волны света увеличивается. Поверхность Солнца, например, излучает в основном световые и инфракрасные лучи, а в его недрах возникает коротковолновое рентгеновское и гамма-излучение. Давление излучения для Солнца и подобных ему звёзд составляет лишь очень малую долю от давления газа, но для гигантских звёзд оно значительно.

Оценки температуры и плотности в недрах звёзд получают теоретическим путём, исходя из известной массы звезды и мощности её излучения, на основании газовых законов физики и закона всемирного тяготения. Определённые таким образом температуры в центральных областях звёзд составляют от 10 млн. градусов для звёзд легче Солнца до 30 млн. градусов для гигантских звёзд. Температура в центре Солнца – около 15 млн. градусов.

При таких температурах вещество в звёздных недрах почти полностью ионизовано. Атомы химических элементов теряют свои электронные оболочки. Вещество состоит только из атомных ядер и отдельных электронов. Поскольку поперечник атомного ядра в десятки тысяч раз меньше поперечника целого атома, то в объёме, вмещающем всего десяток целых атомов, могут свободно уместиться многие миллиарды атомных ядер и отдельных электронов. При этом расстояния между частицами вопреки высокой плотности будут всё ещё велики по сравнению с их размерами. Вот почему вещество, плотность которого в центре Солнца в 100 раз превышает плотность воды, – более плотное, чем любое твёрдое тело на Земле! - тем не менее, обладает всеми свойствами идеального газа.

Температура внутри звезды тем ниже, чем больше концентрация частиц в газе, т. е. чем меньше его средняя молекулярная масса. В звёздном веществе все химические элементы, за исключением водорода и гелия, имеют среднюю молекулярную массу, равную примерно 2. Чем больше водорода и гелия по сравнению с более тяжёлыми элементами, тем ниже температура в центре звезды. Чисто водородное Солнце, например, имело бы температуру в центре 10 млн. градусов, гелиевое 26 млн. градусов, а состоящее целиком из более тяжёлых элементов – 40 млн. градусов.

Определение химического состава и физических условий в центральных частях звёзд позволило решить вопрос об источниках звёздной энергии. При температуре 10-30 млн. градусов и наличии большого числа ядер водорода протекают термоядерные реакции, в результате образуются ядра различных химических элементов. Не все возможные ядерные реакции годятся на роль источников звёздной энергии, а только такие, которые выделяют достаточно большую энергию и могут продолжаться в течение нескольких миллиардов лет жизни звезды.

После длительных поисков было установлено, что звёзды большую часть своей жизни светят за счёт совершающихся в них преобразований четырёх ядер водорода (протонов) в одно ядро гелия. Масса четырёх протонов больше массы ядра гелия, этот избыток массы и превращается в энергию в термоядерных реакциях. Такая реакция идёт медленно и поддерживает свечение звезды на протяжении миллиардов лет.

Звезда - это горячий газовый шар, разогреваемый за счет ядерной энергии и удерживаемый силами тяготения. Основную информацию о звездах дает испускаемый ими свет и электромагнитное излучение в других областях спектра. Главными факторами, определяющими свойства звезды, являются её масса, химический состав и возраст. Звезды должны меняться со временем, так как они излучают энергию в окружающее пространство. Информация о звездной эволюции может быть получена из диаграммы Герцшпрунга-Рассела, представляющей собой зависимость светимости звезды от температуры её поверхности (рис.9).

На диаграмме Герцшпрунга-Рассела звезды распределены неравномерно. Около 90% звезд сконцентрировано в узкой полосе, пересекающей диаграмму по диагонали. Эту полосу называют главной последовательностью . Её верхний конец расположен в области ярких голубых звезд. Различие в заселенности звезд, находящихся на главной последовательности и областей, примыкающих к главной последовательности, составляет несколько порядков величины. Причина в том, что на главной последовательности находятся звезды на стадии горения водорода, которая составляет основную часть времени жизни звезды. Солнце находится на главной последовательности. Его положение указано на рис. 9.
Следующие по населенности области после главной последовательности - белые карлики, красные гиганты и красные сверх-гиганты. Красные гиганты и сверхгиганты - это в основном звезды на стадии горения гелия и более тяжелых ядер.
Светимость звезды - полная энергия, испускаемая звездой в единицу времени. Светимость звезды может быть вычислена по энергии, достигающей Земли, если известно расстояние до звезды.
Из термодинамики известно, что, измеряя длину волны в максимуме излучения черного тела, можно определить его температуру. Черное тело с температурой 3 K будет иметь максимум спектрального распределения на частоте 3·10 11 Гц. Черное тело с температурой 6000 K будет излучать зеленый свет. Температуре 10 6 K соответствует излучение в рентгеновском диапазоне. В таблице 2 приведены интервалы длин волн, соответствующие различным цветам, наблюдаемым в оптическом диапазоне.

Таблица 2

Цвет и длина волны

Температура поверхности звезды рассчитывается по спектральному распределению излучения.
Классификацию спектрального класса звезд легко понять из таблицы 3.
Каждая буква характеризует звезды определенного класса. Звезды класса O самые горячие, класса N - самые холодные. В звезде класса O видны в основном спектральные линии ионизованного гелия. Солнце принадлежит к классу G, для которого характерны линии ионизованного кальция.
В таблице 4 приведены основные характеристики Солнца. Пределы изменения таких характеристик звезд как масса (M), светимость (L), радиус (R) и температура поверхности (T) даны в таблице 5.

Таблица 3

Спектральные классы звезд

Обозначение класса
звезд

Характерный признак
спектральных линий

Температура
поверхности, K

Ионизованный гелий

Нейтральный гелий

Ионизованный кальций

Ионизованный кальций,
нейтральные металлы

Нейтральные металлы

Нейтральные металлы,
полосы поглощения
молекул

Полосы поглощения
циана (CN) 2


Рис. 10. Соотношение масса-светимость

Для звезд главной последовательности с известной массой зависимость масса-светимость показана на рис.10 и имеет вид
L ~ M n , где n = 1.6 для звезд малой массы (M < M) и n = 5.4 для звезд большой массы (M > M). Это означает, что перемещение вдоль главной последовательности от звезд меньшей массы к звездам большей массы приводит к увеличению светимости.

Таблица 4

Основные характеристики Солнца

Светимость L

3.83·10 33 эрг/с (2.4·10 39 МэВ/с)

Поток излучения с единицы
поверхности

6.3·10 7 Вт/м 2

Средняя плотность вещества

Плотность в центре

Температура поверхности
Температура в центре
Химический состав:
водород
гелий
углерод, азот, кислород, неон и др.

74%
23%
3%

Возраст
Ускорение свободного падения
на поверхности

2.7·10 4 см/с 2

Шварцшильдовский радиус - 2GM /c 2
(c - скорость света)
Период вращения относительно
неподвижных звезд
Расстояние до центра Галактики
Скорость вращения вокруг центра
Галактики

Таблица 5

Пределы изменения характеристик различных звезд

10 -1 M < M < 50 M

10 -4 L < L < 10 6 L

10 -2 R < R < 10 3 R

2·10 3 K < T < 10 5 K

За единицу измерения M, R, L приняты соответствующие характеристики Солнца, T- температура поверхности.

Таким образом, более массивные звезды оказываются и более яркими.
В левой нижней части диаграммы (рис.9) - вторая по численности группа - белые карлики. В правом верхнем углу диаграммы группируются звезды с высокой светимостью, но низкой температурой поверхности - красные гиганты и сверхгиганты. Этот тип звезд встречается реже. Названия “гиганты” и “карлики” связаны с размерами звезд. Белые карлики не подчиняются зависимости масса-светимость, характерной для звезд главной последовательности. При одной и той же массе они имеют значительно меньшую светимость, чем звезды главной последовательности.
Звезда может находиться на главной последовательности на определенном этапе эволюции и быть гигантом или белым карликом на другом. Большинство звезд находится на главной последовательности потому, что это наиболее длительная по времени фаза эволюции звезды.
Одним из существенных моментов в понимании эволюции Вселенной является представление о распределении образующихся звезд по массам. Изучая наблюдаемое распределение звезд по массам и учитывая время жизни звезд различной массы, можно получить распределение звезд по массам в момент рождения. Установлено, что вероятность рождения звезды данной массы, очень приближенно, обратно пропорциональна квадрату массы (функция Солпитера).