Уравнение гиперболы со смещенным центром. Гипербола и её каноническое уравнение

Презентация и урок на тему:
"Гипербола, определение, свойство функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Электронные учебные таблицы по геометрии. 7-9 классы
Электронные учебные таблицы по алгебре. 7-9 классы"

Гипербола, определение

Ребята, сегодня мы с вами изучим новую функцию и построим ее график.
Рассмотрим функцию: $y=\frac{k}{x}$, $k≠0$.
Коэффициент $k$ – может принимать любые действительные значения, кроме нуля. Для простоты начнем разбор функции со случая, когда $k=1$.
Построим график функции: $y=\frac{1}{x}$.
Как всегда начнем с построения таблицы. Правда в этот раз придется разделить нашу таблицу на две части. Рассмотрим случай, когда $x>0$.
Нам нужно отметить шесть точек с координатами $(x;y)$, которые приведены в таблице и соединить их линией.
Теперь посмотрим, что у нас получается при отрицательных х. Поступим тем же образом, отметим точки и соединим их линией. Два кусочка графика мы построили, давайте объединим их.

График функции $y=\frac{1}{x}$.
График такой функции называется "Гиперболой".

Свойства гиперболы

Согласитесь, график выглядит довольно-таки красиво, и он симметричен относительно начала координат. Если провести любую прямую, проходящую через начало координат, из первой в третью четверть, то она пересечет наш график в двух точках, которые будут одинаково отдалены от начала координат.
Гипербола состоит из двух, симметричных относительно начала координат, частей. Эти части называются, ветвями гиперболы.
Ветви гиперболы в одном направлении (влево и вправо) все больше и больше стремятся к оси абсцисс, но никогда не пересекут ее. В другом направлении (вверх и вниз) стремятся к оси ординат, но также никогда не пересекут ее (так как на ноль делить нельзя). В таких случаях, соответствующие линии называются асимптотами. График гиперболы имеет две асимптоты: ось х и ось у.

У гиперболы есть не только центр симметрии, но и ось симметрии. Ребята, проведите прямую $y=x$ и посмотрите, как разделился наш график. Можно заметить, что если часть, которая расположена выше прямой $y=x$, наложить на часть, которая располагается ниже, то они совпадут, это и означает симметричность относительно прямой.

Мы построили график функции $y=\frac{1}{x}$, но что будет в общем случае $y=\frac{k}{x}$, $k>0$.
Графики практически не будут отличаться. Будет получаться гипербола с теми же ветвями, только чем больше $k$, тем дальше будут удалены ветви от начала координат, а чем меньше $k$, тем ближе подходить к началу координат.

Например, график функции $y=\frac{10}{x}$ выглядит следующим образом. График стал "шире", отдалился от начала координат.
А как быть в случае отрицательных $k$? График функции $y=-f(x)$ симметричен графику $y=f(x)$ относительно оси абсцисс, нужно перевернуть его "вверх ногами".
Давайте воспользуемся этим свойством и построим график функции $y=-\frac{1}{x}$.

Обобщим полученные знания.
Графиком функции $y=\frac{k}{x}$, $k≠0$ является гипербола, расположенная в первой и третье (второй и четвертой) координатных четвертях, при $k>0$ ($k

Свойства функции $y=\frac{k}{x}$, $k>0$

1. Область определения: все числа, кроме $х=0$.
2. $y>0$ при $x>0$, и $y 3. Функция убывает на промежутках $(-∞;0)$ и $(0;+∞)$.



7. Область значений: $(-∞;0)U(0;+∞)$.

Свойства функции $y=\frac{k}{x}$, $k
1. Область определения: все числа кроме $х=0$.
2. $y>0$ при $x 0$.
3. Функция возрастает на промежутках $(-∞;0)$ и $(0;+∞)$.
4. Функция не ограничена ни сверху, ни снизу.
5. Наибольшего и наименьшего значений нет.
6. Функция непрерывна на промежутках $(-∞;0)U(0;+∞)$ и имеет разрыв в точке $х=0$.
7. Область значений: $(-∞;0)U(0;+∞)$.

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 есть величина постоянная (2a) , меньшая расстояния (2c) между этими заданными точками (рис.3.40,а). Это геометрическое определение выражает фокальное свойство гиперболы .

Фокальное свойство гиперболы

Точки F_1 и F_2 называются фокусами гиперболы, расстояние 2c=F_1F_2 между ними - фокусным расстоянием, середина O отрезка F_1F_2 - центром гиперболы, число 2a - длиной действительной оси гиперболы (соответственно, a - действительной полуосью гиперболы). Отрезки F_1M и F_2M , соединяющие произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M . Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e=\frac{c}{a} , где c=\sqrt{a^2+b^2} , называется эксцентриситетом гиперболы . Из определения (2a<2c) следует, что e>1 .

Геометрическое определение гиперболы , выражающее ее фокальное свойство, эквивалентно ее аналитическому определению - линии, задаваемой каноническим уравнением гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1.

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр O гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2 ); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0) и F_2(c,0) . Для произвольной точки M(x,y) , принадлежащей гиперболе, имеем:

\left||\overrightarrow{F_1M}|-|\overrightarrow{F_2M}|\right|=2a.

Записывая это уравнение в координатной форме, получаем:

\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}=\pm2a.

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\,

где b=\sqrt{c^2-a^2} , т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.

Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии a^2\!\!\not{\phantom{|}}\,c от нее (рис.3.41,а). При a=0 , когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом e=1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство гиперболы ). Здесь F и d - один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.41,а) условие \frac{r_2}{\rho_2}=e можно записать в координатной форме:

\sqrt{(x-c)^2+y^2}=e\left(x-\frac{a^2}{c}\right)

Избавляясь от иррациональности и заменяя e=\frac{c}{a},~c^2-a^2=b^2 , приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1 :

\frac{r_1}{\rho_1}=e \quad \Leftrightarrow \quad \sqrt{(x+c)^2+y^2}= e\left(x+\frac{a^2}{c} \right).

Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат F_2r\varphi (рис.3.41,б) имеет вид

R=\frac{p}{1-e\cdot\cos\varphi} , где p=\frac{p^2}{a} - фокальный параметр гиперболы .

В самом деле, выберем в качестве полюса полярной системы координат правый фокус F_2 гиперболы, а в качестве полярной оси - луч с началом в точке F_2 , принадлежащий прямой F_1F_2 , но не содержащий точки F_1 (рис.3.41,б). Тогда для произвольной точки M(r,\varphi) , принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем F_1M-r=2a . Выражаем расстояние между точками M(r,\varphi) и F_1(2c,\pi) (см. пункт 2 замечаний 2.8):

F_1M=\sqrt{(2c)^2+r^2-2\cdot(2c)^2\cdot r\cdot\cos(\varphi-\pi)}=\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}.

Следовательно, в координатной форме уравнение гиперболы имеет вид

\sqrt{r^2+4\cdot c\cdot r\cdot\cos\varphi+4\cdot c^2}-r=2a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

R^2+4cr\cdot\cos\varphi+4c^2=4a^2+4ar+r^2 \quad \Leftrightarrow \quad a\left(1-\frac{c}{a}\cos\varphi\right)r=c^2-a^2.

Выражаем полярный радиус r и делаем замены e=\frac{c}{a},~b^2=c^2-a^2,~p=\frac{b^2}{a} :

R=\frac{c^2-a^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{b^2}{a(1-e\cos\varphi)} \quad \Leftrightarrow \quad r=\frac{p}{1-e\cos\varphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами ( e>1 для гиперболы, 0\leqslant e<1 для эллипса).

Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение y=0 , находим абсциссы точек пересечения: x=\pm a . Следовательно, вершины имеют координаты (-a,0),\,(a,0) . Длина отрезка, соединяющего вершины, равна 2a . Этот отрезок называется действительной осью гиперболы, а число a - действительной полуосью гиперболы. Подставляя x=0 , получаем y=\pm ib . Длина отрезка оси ординат, соединяющего точки (0,-b),\,(0,b) , равна 2b . Этот отрезок называется мнимой осью гиперболы, а число b - мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые x=\pm a,~y=\pm b ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые , содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы , описываемой уравнением (т.е. при a=b ), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат Ox"y" (рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид y"=\frac{a^2}{2x"} (гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

В самом деле, повернем каноническую систему координат на угол \varphi=-\frac{\pi}{4} (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

\left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y",\\ y&=-\frac{\sqrt{2}}{2}\cdot x"+\frac{\sqrt{2}}{2}\cdot y"\end{aligned}\right. \quad \Leftrightarrow \quad \left\{\!\begin{aligned}x&=\frac{\sqrt{2}}{2}\cdot(x"+y"),\\ y&=\frac{\sqrt{2}}{2}\cdot(y"-x")\end{aligned}\right.

Подставляя эти выражения в уравнение \frac{x^2}{a^2}-\frac{y^2}{a^2}=1 равносторонней гиперболы и приводя подобные члены, получаем

\frac{\frac{1}{2}(x"+y")^2}{a^2}-\frac{\frac{1}{2}(y"-x")^2}{a^2}=1 \quad \Leftrightarrow \quad 2\cdot x"\cdot y"=a^2 \quad \Leftrightarrow \quad y"=\frac{a^2}{2\cdot x"}.

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр - центром симметрии.

Действительно, если точка M(x,y) принадлежит гиперболе . то и точки M"(x,y) и M""(-x,y) , симметричные точке M относительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах r=\frac{p}{1-e\cos\varphi} (см. рис.3.41,б) выясняется геометрический смысл фокального параметра - это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси ( r=p при \varphi=\frac{\pi}{2} ).

5. Эксцентриситет e характеризует форму гиперболы. Чем больше e , тем шире ветви гиперболы, а чем ближе e к единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина \gamma угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника: \operatorname{tg}\frac{\gamma}{2}=\frac{b}{2} . Учитывая, что e=\frac{c}{a} и c^2=a^2+b^2 , получаем

E^2=\frac{c^2}{a^2}=\frac{a^2+b^2}{a^2}=1+{\left(\frac{b}{a}\right)\!}^2=1+\operatorname{tg}^2\frac{\gamma}{2}.

Чем больше e , тем больше угол \gamma . Для равносторонней гиперболы (a=b) имеем e=\sqrt{2} и \gamma=\frac{\pi}{2} . Для e>\sqrt{2} угол \gamma тупой, а для 1

6 . Две гиперболы, определяемые в одной и той же системе координат уравнениями \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 и называются сопряженными друг с другом . Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы -\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 приводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение \frac{(x-x_0)^2}{a^2}-\frac{(y-y_0)^2}{b^2}=1 определяет гиперболу с центром в точке O"(x_0,y_0) , оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнение -\frac{(x-x_0)^2}{a^2}+\frac{(y-y_0)^2}{b^2}=1 определяет сопряженную гиперболу с центром в точке O"(x_0,y_0) .

Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

\begin{cases}x=a\cdot\operatorname{ch}t,\\y=b\cdot\operatorname{sh}t,\end{cases}t\in\mathbb{R},

где \operatorname{ch}t=\frac{e^t+e^{-t}}{2} - гиперболический косинус, a \operatorname{sh}t=\frac{e^t-e^{-t}}{2} гиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству \operatorname{ch}^2t-\operatorname{sh}^2t=1 .


Пример 3.21. Изобразить гиперболу \frac{x^2}{2^2}-\frac{y^2}{3^2}=1 в канонической системе координат Oxy . Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 - действительная полуось, b=3 - мнимая полуось гиперболы. Строим основной прямоугольник со сторонами 2a=4,~2b=6 с центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляя x=4 в уравнение гиперболы, получаем

\frac{4^2}{2^2}-\frac{y^2}{3^2}=1 \quad \Leftrightarrow \quad y^2=27 \quad \Leftrightarrow \quad y=\pm3\sqrt{3}.

Следовательно, точки с координатами (4;3\sqrt{3}) и (4;-3\sqrt{3}) принадлежат гиперболе. Вычисляем фокусное расстояние

2\cdot c=2\cdot\sqrt{a^2+b^2}=2\cdot\sqrt{2^2+3^2}=2\sqrt{13}

эксцентриситет e=\frac{c}{a}=\frac{\sqrt{13}}{2} ; фокальныи параметр p=\frac{b^2}{a}=\frac{3^2}{2}=4,\!5 . Составляем уравнения асимптот y=\pm\frac{b}{a}\,x , то есть y=\pm\frac{3}{2}\,x , и уравнения директрис: x=\pm\frac{a^2}{c}=\frac{4}{\sqrt{13}} .

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Определение. Гиперболой называется геометрическое место точек плоскости у абсолютная величина разности расстояний каждой из которых от двух данных точек этой плоскости, называемых фокусами у есть постоянная величина, при условии, что эта величина не равна нулю и меньше расстояния между фокусами.

Обозначим расстояние между фокусами через а постоянную величину, равную модулю разности расстояний от каждой точки гиперболы до фокусов, через (по условию ). Как и в случае эллипса, ось абсцисс проведем через фокусы, а за начало координат примем середину отрезка (см. рис. 44). Фокусы в такой системе будут иметь координаты Выведем уравнение гиперболы в выбранной системе координат. По определению гиперболы для любой ее точки имеем или

Но . Поэтому получим

После упрощений, подобных тем, которые были сделаны при выводе уравнения эллипса, получим следующее уравнение:

которое является следствием уравнения (33).

Нетрудно заметить, что это уравнение совпадает с уравнением (27), полученным для эллипса. Однако в уравнении (34) разность , так как для гиперболы . Поэтому положим

Тогда уравнение (34) приводится к следующему виду:

Это уравнение называется каноническим уравнением гиперболы. Уравнению (36), как следствию уравнения (33), удовлетворяют координаты любой точки гиперболы. Можно показать, что координаты точек, не лежащих на гиперболе, уравнению (36) не удовлетворяют.

Установим форму гиперболы, пользуясь ее каноническим уравнением. Это уравнение содержит лишь четные степени текущих координат. Следовательно, гипербола имеет две оси симметрии, в данном случае совпадающих с координатными осями. В дальнейшем оси симметрии гиперболы мы будем называть осями гиперболы, а точку их пересечения - центром гиперболы. Ось гиперболы, на которой расположены фокусы, называется фокальной осью. Исследуем форму гиперболы в I четверти, где

Здесь так как иначе у принимал бы мнимые значения. При возрастании х от а до возрастает от 0 до Частью гиперболы, лежащей в I четверти, будет дуга , изображенная на рис. 47.

Так как гипербола расположена симметрично относительно координатных осей, то эта кривая имеет вид, изображенный на рис. 47.

Точки пересечения гиперболы с фокальной осью называются ее вершинами. Полагая в уравнении гиперболы, найдем абсциссы ее вершин: . Таким образом, гипербола имеет две вершины: . С осью ординат гипербола не пересекается. В самом деле, положив в уравнении гиперболы получим для у мнимые значения: . Поэтому фокальная ось гиперболы называется действительной осью, а ось симметрии, перпендикулярная фокальной оси, - мнимой осью гиперболы.

Действительной осью также называется отрезок, соединяющий вершины гиперболы, и его длина 2а. Отрезок, соединяющий точки (см. рис. 47), а также его длина называется мнимой осью гиперболы. Числа а и b соответственно называются действительной и мнимой полуосями гиперболы.

Рассмотрим теперь гиперболу, расположенную в I четверти и являющуюся графиком функции

Покажем, что точки этого графика, расположенные на достаточно большом расстоянии от начала координат, сколь угодно близки к прямой

проходящей через начало координат и имеющей угловой коэффициент

С этой целью рассмотрим две точки имеющие одну и ту же абсциссу и лежащие соответственно на кривой (37) и прямой (38) (рис. 48), и составим разность между ординатами этих точек

Числитель этой дроби - величина постоянная, а знаменатель неограниченно возрастает при неограниченном возрастании . Поэтому разность стремится к нулю, т. е. точки М и N неограниченно сближаются при неограниченном возрастании абсциссы.

Из симметрии гиперболы относительно координатных осей следует, что имеется еще одна прямая , к которой сколь угодно близки точки гиперболы при неограниченном удалении от начала координат. Прямые

называются асимптотами гиперболы.

На рис. 49 указано взаимное расположение гиперболы и ее асимптот. На этом рисунке указано также, как построить асимптоты гиперболы.

Для этого следует построить прямоугольник с центром в начале координат и со сторонами, параллельными осям и соответственно равными . Этот прямоугольник называется основным. Каждая из его диагоналей, неограниченно продолженная в обе стороны, является асимптотой гиперболы. Перед построением гиперболы рекомендуется строить ее асимптоты.

Отношение половины расстояния между фокусами к действительной полуоси гиперболы называется эксцентриситетом гиперболы и обозначается обычно буквой :

Так как для гиперболы , то эксцентриситет гиперболы больше единицы: Эксцентриситет характеризует форму гиперболы

Действительно, из формулы (35) следует, что . Отсюда видно, что чем меньше эксцентриситет гиперболы,

тем меньше отношение - ее полуосей. Но отношение - определяет форму основного прямоугольника гиперболы, а следовательно, и форму самой гиперболы. Чем меньше эксцентриситет гиперболы, тем более вытянут ее основной прямоугольник (в направлении фокальной оси).

Гиперболой называется геометрическое место точек, для которых разность расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению и обозначается обычно через 2а, Фокусы гиперболы обозначают буквами F 1 и F 2 , расстояние между ними - через 2с. По определению гиперболы 2а

Пусть дана гипербола. Если оси декартовой прямоугольной системы координат выбраны так, что фокусы данной гиперболы располагаются на оси абсцисс симметрично относительно начала координат, то в этой системе координат уравнение гиперболы имеет вид

х 2 /a 2 + y 2 /b 2 = 1, (1)

где b = √(с 2 - а 2). Уравнение вида (I) называется каноническим уравнением гиперболы При указанном выборе системы координат оси координат являются осями симметрии гиперболы, а начало координат -ее центром симметрии (рис. 18). Оси симметрии гиперболы называются просто ее осями, центр симметрии-центром гиперболы. Гипербола пересекает одну из своих осей; точки пересечения называются вершинами гиперболы. На рис. 18 вершины гиперболы суть точки А" и А.

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником гиперболы.

Отрезки длиной 2а и 2b, соединяющие середины сторон основного прямоугольника гиперболы, также называют ее осями. Диагонали основного прямоугольника (неограниченно продолженные) являются асимптотами гиперболы; их уравнения суть:

y = b/a x, y = - b/a x

Уравнение

X 2 /a 2 + y 2 /b 2 = 1 (2)

определяет гиперболу, симметричную относительно координатных осей с фокусами на оси ординат; уравнение (2),как и уравнение (1), называется каноническим уравнением гиперболы; в этом случае постоянная разность расстояний от произвольной точки гиперболы до фокусов равна 2b.

Две гиперболы, которые определяются уравнениями

x 2 /a 2 - y 2 /b 2 = 1, - x 2 /a 2 + y 2 /b 2 = 1

в одной и той же системе координат, называются сопряженными.

Гипербола с равными полуоясми (а = b) называется равносторонней,; ее каноническое уравнение имеет вид

х 2 - у 2 = а 2 или - х 2 + у 2 = а 2 .

где а - расстояние от центра гиперболы до ее вершины, называется эксцентриситетом гиперболы. Очевидно, для любой гиперболы ε > 1. Если М(х; у) - произвольная точка гиперболы, то отрезки F 1 М и F 2 M (см. рис. 18) называются фокальными радиусами точки М. Фокальные радиусы точек правой ветви гиперболы вычисляются по формулам

r 1 = εх + а, r 2 = εх - а,

фокальные радиусы точек левой ветви - по формулам

r 1 = -εх - а, r 2 = -εх + а

Если гипербола задана уравнением (1), то прямые, определяемые уравнениями

x = -a/ε, x = a/ε

называются ее директрисами (см. рис. 18). Если гипербола задана уравнением (2), то директрисы определяются уравнениями

x = -b/ε, x = b/ε

Каждая директриса обладает следующим свойством: если r - расстояние от произвольной точки гиперболы до некоторого фокуса, d - расстояние от той же точки до односторонней с этим фокусом директрисы, то отношение r/d есть постоянная величина, равная эксцентриситету гиперболы:

515. Составить уравнение гиперболы, фокусы которой расположены на оси абсцисс симметрично относительно начала координат, зная, кроме того, что:

1) ее оси 2а = 10 и 2b = 8;

2) расстояние между фокусами 2с = 10 и ось 2b = 8;

3) расстояние между фокусами 2с = 6 и эксцентриситет ε = 3/2;

4) ось 2а = 16 и эксцентриситет ε = 5/4;

5) уравнения асимптот у = ±4/3х и расстояние между фокусами 2с = 20;

6) расстояние между директрисами равно 22 2/13 и расстояние между фокусами 2с = 26; 39

7) расстояние между директрисами равно 32/5 и ось 2b = 6;

8) расстояние между директрисами равно 8/3 и эксцентриситет ε = 3/2;

9) уравнения асимптот у = ± 3/4 х и расстояние между директрисами равно 12 4/5.

516. Составить уравнение гиперболы, фокусы которой расположены на оси ординат симметрично относительно начала координат, зная, кроме того, что:

1) ее полуоси а = 6, b = 18 (буквой а мы обозначаем полуось гиперболы, расположенную на оси абсцисс);

2) расстояние между фокусами 2с = 10 и эксцеитриситет ε = 5/3; оч и. 12

3) уравнения асимптот у = ±12/5х и расстояние между вершинами равно 48;

4) расстояние между директрисами равно 7 1/7 и эксцентриситет ε = 7/5;

5) уравнения асимптот у = ± 4/3x и расстояние между директрисами равно 6 2/5.

517. Определить полуоси а и b каждой из следующих гипербол:

1) x 2 /9 - y 2 /4 = 1; 2) x 2 /16 - y 2 = 1; 3) x 2 - 4y 2 = 16;

4) x 2 - y 2 = 1; 5) 4x 2 - 9y 2 = 25; 6) 25x 2 -16y 2 = 1;

7) 9x 2 - 64y 2 = 1.

518. Дана гипербола 16x 2 - 9y 2 = 144. Найти: 1) полуоси а и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

519. Дана гипербола 16x 2 - 9у 2 = -144. Найти: 1) полуоси a и b; 2) фокусы; 3) эксцентриситет; 4) уравнения асимптот; 5) уравнения директрис.

520. Вычислить площадь треугольника, образованного асимптотами гиперболы x 2 /4 - y 2 /9 = 1 и прямой 9x + 2y - 24 = 0.

521. Установить, какие линии определяются следующими уравнениями:

1) y = +2/3√(x 2 - 9); 2) y = -3√(x 2 + 1)

3) x = -4/3√(y 2 + 9); 4) +2/5√(x 2 + 25)

522. Дана точка M 1 (l0; - √5) на гиперболе - x 2 /80 - y 2 /20 = 1. Составить уравнения прямых, на которых лежат фокальные радиусы точки M 1 .

523. Убедившись, что точка M 1 (-5; 9/4) лежит на гилерболе x 2 /16 - y 2 /9 = 1, определить фокальные радиусы точки M 1 .

524. Эксцентриситет гиперболы ε = 2, фокальный ра-диус ее точки М, проведенный из некоторого фокуса, равен 16. Вычислить расстояние от точки М до односторонней с этим фокусом директрисы.

525. Эксцентриситет гиперболы ε = 3, расстояние от точки, М гиперболы до директрисы равно 4. Вычислить расстояние от точки М до фокуса, одностороннего с этой директрисой.

526. Эксцентриситет гиперболы ε = 2, центр ее лежит в начале координат, один из фокусов F(12; 0). Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 13, до директрисы, соответствующей заданному фокусу.

527. Эксцентриситет гиперболы ε = 3/2, центр ее лежит в начале координат, одна из директрис дана уравнением х = -8. Вычислить расстояние от точки M 1 гиперболы с абсциссой, равной 10, до фокуса, соответствующего заданной директрисе.

528. Определить точки гиперболы - x 2 /64 - y 2 /36 = 1, расстояние которых до правого фокуса равно 4,5.

529. Определить точки гиперболы x 2 /9 - y 2 /16 = 1, расстояние которых до левого фокуса равно 7.

530. Через левый фокус гиперболы x 2 /144 - y 2 /25 = 1 про-веден перпендикуляр к ее оси, содержащей вершины. Определить расстояния от фокусов до точек пересечения этого перпендикуляра с гиперболой.

531. Пользуясь одним циркулем, построить фокусы гиперболы x 2 /16 - y 2 /25 = 1 (считая, что оси координат изображены и масштабная единица задана).

532. Составить уравнение гиперболы, фокусы которой лежат на оси абсцисс симметрично относительно начала координат, если даны:

1) точки М 1 (6; -1) и М 2 (-8; 2√2) гиперболы;

2) точка M 1 (-5; 3) гиперболы и эксцентриситет ε = √2;

3) точка M 1 (9/2;-l) гиперболы и уравнения асимптот у = ± 2.3х;

4) точка M 1 (-3 ; 5.2) гиперболы и уравнения директрис х = ± 4/3;

5) уравнения асимптот у = ±-3/4х и уравнения директрис х = ± 16/5

533. Определить эксцентриситет равносторонней гиперболы.

534. Определить эксцентриситет гиперболы, если отрезок между ее вершинами виден из фокусов сопряженной гиперболы под углом в 60°.

535. Фокусы гиперболы совпадают с фокусами эллипса x 2 /25 + y 2 /9 = 1. Составить уравнение гиперболы, если ее эксцентриситет ε = 2.

536. Составить уравнение гиперболы, фокусы которой лежат в вершинах эллипса x 2 /100 + y 2 /64 = 1, а директрисы проходят через фокусы этого эллипса.

537. Доказать, что расстояние от фокуса гиперболы x 2 /a 2 - y 2 /b 2 = 1 до ее асимптоты равно b.

538. Доказать что произведение расстояний от любой точки гиперболыx x 2 /a 2 - y 2 /b 2 = 1 до двух ее асимптот есть величина постоянная, равная a 2 b 2 /(a 2 + b 2)

539. Доказать, что площадь параллелограмма, ограниченного асимптотами гиперболы x 2 /a 2 - y 2 /b 2 = 1 и прямыми, проведенными через любую ее точку параллельно асимптотам, есть величина постоянная, равная ab/2.

540. Составить уравнение гиперболы, если известны ее полуоси а и b, центр С(х 0 ;у 0) и фокусы расположены на прямой: 1) параллельной оси Ох; 2) параллельной оси Оу.

541. Установить, что каждое из следующих уравнений определяет гиперболу, и найти координаты ее центра С, полуоси, эксцентриситет, уравнения асимптот и уравнения директрис:

1) 16x 2 - 9у 2 - 64x - 54у - 161 =0;

2) 9x 2 - 16у 2 + 90x + 32y - 367 = 0;

3) 16x 2 - 9у 2 - 64x - 18у + 199 = 0.

542. Установить, какие линии определяются следующими уравнениями:

1) у = - 1 + 2/3√(x 2 - 4x - 5);

2) у = 7- 3/2√(х 2 - 6х + 13);

3) x = 9 - 2√(y 2 + 4y + 8);

4) Х = 5 + 3/4√(y 2 + 4y - 12).

Изобразить эти линии на чертеже.

543. Составить уравнение гиперболы, зная, что:

1) расстояние между ее вершинами равно 24 и фокусы суть F 1 (-10;2), F 2 (16; 2);

2) фокусы суть F 1 (3;4), F 2 (-3; -4) и расстояние между директрисами равно 3,6;

3) угол между асимптотами равен 90° и фокусы суть F 1 (4; -4), F 1 (- 2;2).

544. Составить уравнение гиперболы, если известны ее эксцентриситет ε = 5/4, фокус F (5; 0) и уравнение соответствующей директрисы 5х - 16 = 0.

545. Составить уравнение гиперболы, если известны ее эксцентриситет е - фокус F(0; 13) и уравнение соответствующей директрисы 13y - 144 = 0.

546. Точка А (-3; - 5) лежит на гиперболе, фокус которой F (-2;-3), а соответствующая директриса дана уравнением x + 1 = 0. Составить уравнение этой гиперболы.

547. Составить уравнение гиперболы, если известны ее эксцентриситет ε = √5, фокус F(2;-3) и уравнение соответствующей директрисы Зх - у + 3 = 0.

548. Точка M 1 (1; 2) лежит на гиперболе, фокус которой F(-2; 2), а соответствующая директриса дана уравнением 2х - у - 1 = 0. Составить уравнение этой гиперболы.

549. Дано уравнение равносторонней гиперболы х 2 - у 2 = а 2 . Найти ее уравнение в новой системе, приняв за оси координат ее асимптоты.

550. Установив, что каждое из следующих уравнений определяет гиперболу, найти для каждой из них центр, полуоси, уравнения асимптот и построить их на чертеже: 1) ху = 18; 2) 2ху - 9 = 0; 3) 2ху + 25 = 0.

551. Найти точки пересечения прямой 2x - y - 10 = 0 и гиперболы х 2 /20 - y 2 /5 = 1.

552. Найти точки пересечения прямой 4х - 3y - 16 = 0 и гиперболы х 2 /25 - y 2 /16 = 1.

553. Найти точки пересечения прямой 2x - y + 1 = 0 и гиперболы х 2 /9 - y 2 /4 = 1.

554. В следующих случаях определить, как расположена прямая относительно гиперболы: пересекает ли, касается или проходит вне ее:

1) x - y - 3 = 0, х 2 /12 - y 2 /3 = l;

2) x - 2y + 1 = 0, х 2 /16 - y 2 /9 = l;

555. Определить, при каких значениях m прямая y = 5/2x + m

1) пересекает гиперболу x 2 /9 - y 2 /36 = 1; 2) касается ее;

3) проходит вне этой гиперболы.

556. Вывести условие, при котором прямая у = kx + m касается гиперболы х 2 /a 2 - y 2 /b 2 = 1.

557. Составить уравнение касательной к гиперболе х 2 /a 2 - y 2 /b 2 = 1 в ее точке Af, (*,; #i).

558. Доказать, что касательные к гиперболе, про-веденные в концах одного и того же диаметра, параллельны.

559. Составить уравнения касательных к гиперболе х 2 /20 - y 2 /5 = 1, перпендикулярных к прямой 4x + Зy - 7 = 0.

560. Составить уравнения касательных к гиперболе x 2 /16 - y 2 /64 = 1, параллельных прямой 10x - 3y + 9 = 0.

561. Провести касательные к гиперболе x 2 /16 - y 2 /8 = - 1 параллельно прямой 2x + 4y - 5 = 0 и вычислить расстояние d между ними.

562. На гиперболе x 2 /24- y 2 /18 = 1 найти точку М 1 , ближайшую к прямой Зx + 2y + 1 = О, и вычислить расстояние d от точки M x до этой прямой.

563. Составить уравнение касательных к гиперболе х 2 - y 2 = 16, проведенных из точки A(- 1; -7).

564. Из точки С(1;-10) проведены касательные к гиперболе x 2 /8 - y 2 /32 = 1. Составить уравнение хорды, соединяющей точки касания.

565. Из точки Р(1; -5) проведены касательные к гиперболе x 2 /3 - y 2 /5 = 1. Вычислить расстояние d от точки Р до хорды гиперболы, соединяющей точки касания.

566. Гипербола проходит через точку А(√6; 3) и касается прямой 9x + 2у - 15 == 0. Составить уравнение этой гиперболы при условии, что ее оси совпадают с осями координат.

567. Составить уравнение гиперболы, касающейся двух прямых: 5x - 6y - 16 = 0, 13x - 10y - 48 = 0, при условии, что ее оси совпадают с осями координат.

568. Убедившись, что точки пересечения эллипса x 2 /3 - y 2 /5 = 1 и гиперболы x 2 /12 - y 2 /3 = 1 являются вершинами прямоугольника, составить уравнения его сторон.

569. Даны гиперболы x 2 /a 2 - y 2 /b 2 = 1 и какая-нибудь ее касательная: Р - точка пересечения касательной с осью Ox, Q - проекция точки касания на ту же ось. Доказать, что ОР OQ = а 2 .

570. Доказать, что фокусы гиперболы расположены по разные стороны от любой ее касательной.

571. Доказать, что произведение расстояний от фокусов до любой касательной к гиперболе x 2 /a 2 - y 2 /b 2 = 1 есть величина постоянная, равная b 2 .

572. Прямая 2x - y - 4 == 0 касается гиперболы, фокусы которой находятся в точках F 1 (-3; 0) и F 2 (3;0). Составить уравнение этой гиперболы.

573. Составить уравнение гиперболы, фокусы кото-рой расположены на оси абсцисс симметрично относительно начала координат, если известны уравнение касательной к гиперболе 15x + 16y - 36 = 0 и расстояние между ее вершинами 2а = 8.

574. Доказать, что прямая, касающаяся гиперболы в некоторой точке М, составляет равные углы с фокальными радиусами F 1 M, F 2 M и проходит внутри угла F 1 MF 2 . Х^

575. Из правого фокуса гиперболы x 2 /5 - y 2 /4 = 1 под углом α(π

576. Доказать, что эллипс и гипербола, имеющие общие фокусы, пересекаются под прямым углом.

577. Коэффициент равномерного сжатия плоскости к оси Ох равен 4/3 . Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /16 - y 2 /9 = 1. Указание. См. задачу 509.

578. Коэффициент равномерного сжатия плоскости к оси Оу равен 4/5. Определить уравнение линии, в которую при этом сжатии преобразуется гипербола x 2 /25 - y 2 /9 = 1.

579. Найти уравнение линии, в которую преобразуется гипербола х 2 - у 2 = 9 при двух последовательных равномерных сжатиях плоскости к координатным осям, если коэффициенты равномерного сжатия плос- кости к осям Ох и Оу соответственно равны 2/3 и 5/3.

580. Определить коэффициент q равномерного сжатия плоскости к оси Ох, при котором гипербола - x 2 /25 - y 2 /36 = 1 преобразуется в гиперболу x 2 /25 - y 2 /16 = 1.

581. Определить коэффициент q равномерного сжатия плоскости к оси Оу, при котором гипербола x 2 /4 - y 2 /9 = 1 преобразуется в гиперболу x 2 /16 - y 2 /9 = 1.

582. Определить коэффициенты q 1 и q 2 двух последовательных равномерных сжатий плоскости к осям Ох и Оу, при которых гипербола x 2 /49 - y 2 /16 = 1 преобразуется в гиперболу x 2 /25 - y 2 /64 = 1.

Гипербола - это плоская кривая второго порядка, которая состоит из двух отдельных кривых, которые не пересекаются.
Формула гиперболы y = k/x , при условии, что k не равно 0 . То есть вершины гиперболы стремятся к нолю, но никогда не пересекаются с ним.

Гипербола - это множество точек плоскости, модуль разности расстояний которых от двух точек, называемых фокусами, есть величина постоянная.

Свойства:

1. Оптическое свойство: свет от источника, находящегося в одном из фокусов гиперболы, отражается второй ветвью гиперболы таким образом, что продолжения отраженных лучей пересекаются во втором фокусе.
Иначе говоря, если F1 и F2 фокусы гиперболы, то касательная в любой точки X гиперболы является биссектрисой угла ∠F1XF2.

2. Для любой точки, лежащей на гиперболе, отношение расстояний от этой точки до фокуса к расстоянию от этой же точки до директрисы есть величина постоянная.

3. Гипербола обладает зеркальной симметрией относительно действительной и мнимой осей , а также вращательной симметрией при повороте на угол 180° вокруг центра гиперболы.

4. Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними.

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния r i от точки гиперболы до фокуса F i к расстоянию d i от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

42. Гиперболой называется множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фокусами , есть величина постоянная.

Выведем каноническое уравнение гиперболы по аналогии с выводом уравнения эллипса, пользуясь теми же обозначениями.

|r 1 - r 2 | = 2a , откуда Если обозначить b ² = c ² - a ², отсюда можно получить

- каноническое уравнение гиперболы . (11.3)

Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная называется эксцентриситетом гиперболы

Определение 11.6. Эксцентриситетом гиперболы называется величина е = с / а.

Эксцентриситет:

Определение 11.7. Директрисой D i гиперболы, отвечающей фокусу F i , называется прямая, расположенная в одной полуплоскости с F i относительно оси Оу перпендикулярно оси Ох на расстоянии а / е от начала координат.

43.Случай сопряжённой,вырожденной гиперболы (НЕ ПОЛНОСТЬЮ)

Каждая гипербола имеет сопряженную гиперболу , для которой действительная и мнимая оси меняются местами, но асимптоты остаются прежними. Это соответствует замене a и b друг на друга в формуле, описывающей гиперболу. Сопряженная гипербола не является результатом поворота начальной гиперболы на угол 90°; обе гиперболы различаются формой.

Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной . Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными .