Расстояние между прямой и плоскостью метод координат. Координаты и векторы. Исчерпывающий гид (2019). Угол между прямыми а и b

Другой метод применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить C2 хочется.

Если вы освоили векторы на плоскости и действия с ними то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми. Повторить http://www.ege-study.ru/ege-materials/math/vectors.pdf Но не забывайте "ловить" ошибки, в этом pdf-документе есть ошибки.

Метод координат удобен для нахождения угла между прямыми в пространстве. Особенно если эти прямые –– скрещиваются.

Любые две пересекающиеся прямые лежат в одной плоскости и образуют четыре неразвернутых угла. Угол между прямыми в стереометрии мы называем угол, который не превосходит любой из трех остальных углов.

Вы можете воспользоваться формулой для вычисления косинуса угла между векторами. Формула (1):

Но следует понимать, что вы найдете угол между векторами. А если косинус получится отрицательный, значит, угол между векторами тупой. И следует найти смежный угол. Т.е. надо будет сделать дополнительное действие. А вдруг вы забудете об этом...

В формуле (2) введен знак модуля для скалярного произведения. Значит, вы автоматически получите искомый угол при любом выборе векторов.

Примеры задач.

1. В кубе ABCDA 1 B 1 C 1 D 1 точки E и K середины ребер соответственно A 1 B 1 и B 1 C 1 . Найдите косинус угла между прямыми AE и BK.
Решение: 2 слайда [ , 193 Kb]

2. Точка К – середина ребра АА 1 куба АВСDA 1 B 1 C 1 D 1 . Найдите угол между прямыми А 1 В и СК.
Решение: 1 способ, метод координат [ , 146 Kb], 2 способ, геометрический [ , 187 Kb].

3. Точка M – середина ребра АD куба АВСDA 1 B 1 C 1 D 1 . Найдите угол между прямыми C 1 M и B 1 С.
Решение: 1 способ, метод координат [ , 108 Kb], 2 способ, геометрический [ , 116 Kb]

5. В кубе АВСDА 1 В 1 С 1 D 1 точка Т лежит на стороне СС 1 и делит ее пополам. Найти угол между прямыми ВT и В 1 D.

6. На ребре СС 1 куба ABCDA 1 B 1 C 1 D 1 отмечена точка Е так, что СЕ: ЕС 1 = 1: 2. Найдите угол между прямыми ВЕ и АС 1 .
Решение: 1 способ, метод координат [ , 139 Kb], 2 способ, геометрический [ , 155 Kb]

7. В прямоугольном параллелепипеде ABCD 1 B 1 C 1 D 1 AB=2, AD=4, AA 1 =3 и точка Е - середина ребра АВ. Найдите угол между прямыми А 1 С 1 и В 1 Е. Решение

8. В правильной треугольной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, точка D середина ребра A 1 B 1 . Найдите косинус угла между прямыми AD и BC 1 .
Решение: 3 слайда [ , 240 Kb]

9. В правильной четырехугольной призме АВСТA 1 B 1 C 1 Т 1 основание относится к высоте как 1:2. Найдите угол между прямыми АМ и KС, где М и К – точки пересечения диагоналей граней ВСС 1 В 1 и АТТ 1 А 1 соответственно.
Решение: 2 слайда [ , 172 Kb]

10. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.
Решение: 3 слайда [ , 320 Kb]

11. В правильной четырехугольной пирамиде АВСMT со стороной основания а=4 и высотой ТО 1 = h =1. Найдите косинус угла между прямыми ОТ и MK, где О и К - середины ребер АВ и ТС.
Решение: 2 слайда [ , 223 Kb]

12. В правильной шестиугольной призме А…F 1 все ребра которой равны 1 найдите угол между прямыми АВ 1 и ВЕ 1 .
Два способа решения [

Использование метода координат при вычислении угла

между плоскостями

Наиболее общий метод нахождения угла между плоскостями - метод координат (иногда - с привлечением векторов). Его можно использовать тогда, когда испробованы все остальные. Но бывают ситуации, в которых метод координат имеет смысл применять сразу же, а именно тогда, когда система координат естественно связана с многогранником, указанным в условии задачи, т.е. явно просматриваются три попарно перпендикулярные прямые, на которых можно задать оси координат. Такими многогранниками являются прямоугольный параллелепипед и правильная четырехугольная пирамида. В первом случае система координат может быть задана выходящими из одной вершины ребрами (рис.1), во втором - высотой и диагоналями основания (рис. 2)

Применение метода координат состоит в следующем.

Вводится прямоугольная система координат в пространстве. Желательно ввести ее «естественным» образом - «привязать» к тройке попарно перпендикулярных прямых, имеющих общую точку.

Для каждой из плоскостей, угол между которыми ищется, составляется уравнение. Проще всего составить такое уравнение, зная координаты трех точек плоскости, не лежащих на одной прямой.

Уравнение плоскости в общем виде имеет вид Ах + By + Cz + D = 0.

Коэффициенты А, В, С в этом уравнении являются координатами нормального вектора плоскости (вектора, перпендикулярного плоскости). Определяем затем длины и скалярное произведение нормальных векторов к плоскостям, угол между которыми ищется. Если координаты этих векторов (А 1 , В 1 ; С 1 ) и (А 2 ; В 2 ; С 2 ), то искомый угол вычисляется по формуле

Замечание. Необходимо помнить, что угол между векторами (в отличие от угла между плоскостями) может быть тупым, и чтобы избежать возможной неопределенности, в числителе правой части формулы стоит модуль.

Решите методом координат такую задачу.

Задача 1. Дан куб ABCDA 1 B 1 C 1 D 1 . Точка К - середина ребра AD, точка L - середина ребра CD. Чему равен угол между плоскостями А 1 KL и A 1 AD?

Решение . Пусть начало системы координат находится в точке А, а оси координат идут вдоль лучей AD, АВ, АА 1 (рис. 3). Ребро куба примем равным 2 (удобно делить пополам). Тогда координаты точек A 1 , К, L таковы: А 1 (0; 0; 2), К(1; 0; 0), L(2; 1; 0).

Рис. 3

Запишем уравнение плоскости А 1 К L в общем виде. Затем подставим в него координаты выбранных точек этой плоскости. Получим систему трех уравнений с четырьмя неизвестными:

Выразим коэффициенты А, В, С через D и придем к уравнению

Разделив обе его части на D (почему D = 0?) и домножив затем на -2, получим уравнение плоскости A 1 KL: 2х - 2 у + z - 2 = 0. Тогда нормальный вектор к этой плоскости имеет координаты (2: -2; 1) . Уравнение плоскости A 1 AD таково: y=0, а координаты нормального вектора к ней, например, (0; 2: 0) . Согласно приведенной выше формуле для косинуса угла между плоскостями получаем:

Метод координат — весьма эффективный и универсальный способ нахождения любых углов или расстояний между стереометрическими объектами в пространстве. Если Ваш репетитор по математике имеет высокую квалификацию, то он должен это знать. В противном случае я бы советовал для «С» части сменить репетитора. Моя подготовка к ЕГЭ по математике С1-С6 обычно включает разбор основных алгоритмов и формул, описанных ниже.

Угол между прямыми а и b

Углом между прямыми в пространстве называется угол между любыми параллельными им пересекающимися прямыми. Этот угол равен углу между направляющими векторами данных прямых (или дополняет его до 180 град).

Какой алгоритм использует репетитор по математике для поиска угла?

1) Выбираем любые вектора и , имеющие направления прямых а и b (параллельные им).
2) Определяем координаты векторов и по соответствующим координатам их начал и концов (от координат конца вектора нужно отнять координаты начала).
3) Подставляем найденный координаты в формулу:
. Для нахождения самого угла, нужно найти арккосинус полученного результата.

Нормаль к плоскости

Нормалью к плоскости называется любой вектор, перпендикулярный к этой плоскости.
Как найти нормаль? Для поиска координат нормали достаточно узнать координаты любых трех точек M, N и K, лежащих в данной плоскости. По этим координатам находим координаты векторов и и требуем выполнения условий и . Приравнивая скалярные произведение векторов к нулю, составляем систему уравнений с тремя переменными, из которой можно найти координаты нормали.

Замечание репетитора по математике : Совсем не обязательно решать систему полностью, ибо достаточно подобрать хотя бы одну нормаль. Для этого можно подставить вместо какой-нибудь из ее неизвестных координат любое число (например единицу) и решить систему двух уравнений с оставшимися двумя неизвестными. Если она решений не имеет, то это значит, что в семействе нормалей нет той, у которой по выбранной переменной стоит единица. Тогда подставьте единицу вместо другой переменной (другой координаты) и решите новую систему. Если опять промахнетесь, то Ваша нормаль будет иметь единицу по последней координате, а сама она окажется параллельной какой-нибудь координатной плоскости (в таком случае ее легко найти и без системы).

Допустим, что нам заданы прямая и плоскость координатами направляющего вектора и нормали
Угол между прямой и плоскость вычисляется по следующей формуле:

Пусть и — две любые нормали к данным плоскостям. Тогда косинус угла между плоскостями равен модулю косинуса угла между нормалями:

Уравнение плоскости в пространстве

Точки, удовлетворяющие равенству образуют плоскость с нормалью . Коэффициент отвечает за величину отклонения (параллельного сдвига) между двумя плоскостями с одной и той же заданной нормалью . Для того, чтобы написать уравнение плоскости нужно сначала найти ее нормаль (как это описано выше), а затем подставить координаты любой точки плоскости вместе с координатами найденной нормали в уравнение и найти коэффициент .

В данной статье на примере решения задачи C2 из ЕГЭ разобран способ нахождения с помощью метода координат. Напомним, что прямые являются скрещивающи-мися, если они не лежат в одной плоскости. В частности, если одна прямая лежит в плоскости, а вторая прямая пересекает эту плоскость в точке, которая не лежит на первой прямой, то такие прямые являются скрещивающимися (см. рисунок).

Для нахождения расстояния между скрещивающимися прямыми необходимо:

  1. Провести через одну из скрещивающихся прямых плоскость, которая параллельна другой скрещивающейся прямой.
  2. Опустить перпендикуляр из любой точки второй прямой на полученную плоскость. Длина этого перпендикуляра будет являться искомым расстоянием между прямыми.

Разберем данный алгоритм подробнее на примере решения задачи C2 из ЕГЭ по математике.

Расстояние между прямыми в пространстве

Задача. В единичном кубе ABCDA 1 B 1 C 1 D 1 найдите расстояние между прямыми BA 1 и DB 1 .

Рис. 1. Чертеж к задаче

Решение. Через середину диагонали куба DB 1 (точку O ) проведем прямую, параллельную прямой A 1 B . Точки пересечения данной прямой с ребрами BC и A 1 D 1 обозначаем соответственно N и M . Прямая MN лежит в плоскости MNB 1 и параллельна прямой A 1 B , которая в этой плоскости не лежит. Это означает, что прямая A 1 B параллельна плоскости MNB 1 по признаку параллельности прямой и плоскости (рис. 2).

Рис. 2. Искомое расстояние между скрещивающимися прямыми равно расстоянию от любой точки выделенной прямой до изображенной плоскости

Ищем теперь расстояние от какой-нибудь точки прямой A 1 B до плоскости MNB 1 . Это расстояние по определению будет являться искомым расстоянием между скрещивающимися прямыми.

Для нахождения этого расстояния воспользуемся методом координат. Введем прямоугольную декартову систему координат таким образом, чтобы ее начало совпало с точкой B, ось X была направлена вдоль ребра BA , ось Y — вдоль ребра BC , ось Z — вдоль ребра BB 1 (рис. 3).

Рис. 3. Прямоугольную декартову систему координат выберем так, как показано на рисунке

Находим уравнение плоскости MNB 1 в данной системе координат. Для этого определяем сперва координаты точек M , N и B 1: Полученные координаты подставляем в общее уравнение прямой и получаем следующую систему уравнений:

Из второго уравнения системы получаем из третьего получаем после чего из первого получаем Подставляем полученные значения в общее уравнение прямой:

Замечаем, что иначе плоскость MNB 1 проходила бы через начало координат. Делим обе части этого уравнения на и получаем:

Расстояние от точки до плоскости определяется по формуле.