Применяя метод разложения вычислить интеграл. Приближенное вычисление определенного интеграла с помощью разложения подынтегральной функции в ряд маклорена. Общий вид разложения рациональной дроби на простейшие

Пусть у нас имеется правильная рациональная дробь многочленов от переменной x :
,
где Р m (x) и Q n (x) - многочлены степеней m и n , соответственно, m < n . Мы считаем, что нам известно разложение многочлена Q n (x) на множители:
Q n (x) = s (x-a) n a (x-b) n b ... (x 2 +ex+f) n e (x 2 +gx+k) n g ... .
См. подробнее: Методы разложения многочленов на множители >>>
Примеры разложения многочленов на множители >>>

Общий вид разложения рациональной дроби на простейшие

Общий вид разложения рациональной дроби на простейшие следующий:
.
Здесь A i , B i , E i , ... - действительные числа (неопределенные коэффициенты), которые нужно определить.

Например,
.

Еще один пример:
.

Методы разложения рациональной дроби на простейшие

Сначала мы записываем разложение с неопределенными коэффициентами в общем виде. . Затем освобождаемся от знаменателей дробей, умножая уравнение на знаменатель исходной дроби Q n . В результате получаем уравнение, содержащее и слева и справа многочлены от переменной x . Это уравнение должно выполняться для всех значений x . Далее существует три основных метода определения неопределенных коэффициентов.

1) Можно присвоить переменной x определенные значения. Задавая несколько таких значений, мы получим систему уравнений, из которой можно определить неизвестные коэффициенты A i , B i , ... .
2) Поскольку полученное уравнение и с лева и справа содержит многочлены, то можно приравнять коэффициенты при одинаковых степенях переменной x . Из полученной системы можно определить неопределенные коэффициенты.
3) Можно продифференцировать уравнение и присвоить переменной x определенные значения.

На практике, удобно комбинировать эти методы. Разберем их применение на конкретных примерах.

Пример

Разложить правильную рациональную дробь на простейшие.

Решение

1. Устанавливаем общий вид разложения.
(1.1) ,
где A, B, C, D, E - коэффициенты, которые нужно определить.

2. Избавимся от знаменателей дробей. Для этого умножим уравнение на знаменатель исходной дроби (x-1) 3 (x-2)(x-3) . В результате получаем уравнение:
(1.2)
.

3. Подставим в (1.2) x = 1 . Тогда x - 1 = 0 . Остается
.
Отсюда .
Подставим в (1.2) x = 2 . Тогда x - 2 = 0 . Остается
.
Отсюда .
Подставим x = 3 . Тогда x - 3 = 0 . Остается
.
Отсюда .

4. Осталось определить два коэффициента: B и C . Это можно сделать тремя способами.
1) Подставить в формулу (1.2) два определенных значения переменной x . В результате получим систему из двух уравнений, из которой можно определить коэффициенты B и C .
2) Открыть скобки и приравнять коэффициенты при одинаковых степенях x .
3) Продифференцировать уравнение (1.2) и присвоить переменной x определенное значение.

В нашем случае, удобно применить третий способ. Возьмем производную от левой и правой частей уравнения (1.2) и подставим x = 1 . При этом замечаем, что члены, содержащие множители (x-1) 2 и (x-1) 3 дают нуль, поскольку, например,
, при x = 1 .
В произведениях вида (x-1) g(x) , дифференцировать нужно только первый множитель, поскольку
.
При x = 1 второй член обращается в нуль.

Дифференцируем (1.2) по x и подставляем x = 1 :
;
;
;
3 = -3 A + 2 B ; 2 B = 3 + 3 A = 6 ; B = 3 .

Итак, мы нашли B = 3 . Остается найти коэффициент C . Поскольку при первом дифференцировании мы отбросили некоторые члены, то дифференцировать второй раз уже нельзя. Поэтому применим второй способ. Поскольку нам нужно получить одно уравнение, то нам не нужно находить все члены разложения уравнения (1.2) по степеням x . Мы выбираем самый легкий член разложения - x 4 .

Выпишем еще раз уравнение (1.2) :
(1.2)
.
Раскрываем скобки и оставляем только члены вида x 4 .
.
Отсюда 0 = C + D + E , C = - D - E = 6 - 3/2 = 9/2 .

Сделаем проверку. Для этого определим C первым способом. Подставим в (1.2) x = 0 :
0 = 6 A - 6 B+ 6 C + 3 D + 2 E ;
;
. Все правильно.

Ответ

Определение коэффициента при старшей степени 1/(x-a)

В предыдущем примере мы сразу определили коэффициенты у дробей , , , присваивая, в уравнении (1.2) , переменной x значения x = 1 , x = 2 и x = 3 . В более общем случае, всегда можно сразу определить коэффициент при старшей степени дроби вида .

То есть если исходная дробь имеет вид:
,
то коэффициент при равен . Таким образом, разложение по степеням начинается с члена .

Поэтому в предыдущем примере мы сразу могли искать разложение в виде:


.

В некоторых простых случаях, можно сразу определить коэффициенты разложения. Например,


.

Пример с комплексными корнями знаменателя

Теперь разберем пример, в котором знаменатель имеет комплексные корни.

Пусть требуется разложить дробь на простейшие:
.

Решение

1. Устанавливаем общий вид разложения:
.
Здесь A, B, C, D, E - неопределенные коэффициенты (действительные числа), которые нужно определить.

2. Освобождаемся от знаменателей дробей. Для этого умножаем уравнение на знаменатель исходной дроби :
(2.1) .

3. Заметим, что уравнение x 2 + 1 = 0 имеет комплексный корень x = i , где i - комплексная единица, i 2 = -1 . Подставим в (2.1) , x = i . Тогда члены, содержащие множитель x 2 + 1 дают 0 . В результате получаем:
;
.
Сравнивая левую и правую части, получаем систему уравнений:
-A + B = -1 , A + B = -1 .
Складываем уравнения:
2 B = -2 , B = -1 , A = -B -1 = 1 - 1 = 0 .
Итак, мы нашли два коэффициента: А = 0 , B = -1 .

4. Заметим, что x + 1 = 0 при x = -1 . Подставим в (2.1) , x = -1 :
;
2 = 4 E , E = 1/2 .

5. Далее удобно подставить в (2.1) два значения переменной x и получить два уравнения, из которых можно определить C и D . Подставим в (2.1) x = 0 :
0 = B + D + E , D = -B - E = 1 - 1/2 = 1/2 .

6. Подставим в (2.1) x = 1 :
0 = 2(A + B) + 4(C + D) + 4 E ;
2(C + D) = -A - B - 2 E = 0 ;
C = -D = -1/2 .

С помощью свойств неопределенного интеграла и таблицы интегралов от элементарных функций становится возможным отыскание первообразных для несложных алгебраических выражений. Например,

В большинстве случае для приведения к табличным интегралам необходимо выполнить предварительное преобразование подынтегрального выражения:

Метод замены переменной

Если подынтегральное выражение является достаточно сложным, то привести его к табличному виду часто удается одним из основных методов интегрирования - методом замены переменной (или методом подстановки ). Основная идея метода состоит в том, что в выражение
вместо переменнойx вводится вспомогательная переменная u , связанная с х известной зависимостью
. Тогда подынтегральное выражение преобразуется к новому виду
, т.е. имеем

.

Здесь, по правилу дифференцирования сложной функции,
=
.

Если, после такого преобразования, интеграл
является табличным или значительно проще исходного, то замена переменной достигла своей цели.

К сожалению, нельзя указать общих правил выбора "удачной" подстановки: такой выбор зависит от структуры конкретного подынтегрального выражения. В разделе 9.12 приводятся примеры, поясняющие различные способы выбора подстановки в ряде частных случаев.

Метод интегрирования по частям

Следующим основным общим методом является интегрирование по частям. Пусть u = u (х) и v=v(x) - дифференцируемые функции. Для произведения этих функций имеем, по свойству дифференциала:

d(uv) = v du + u dv или u dv = d(uv) - v du.

Интегрируя левую и правую части последнего равенства и учитывая свойство 3 неопределенного интеграла, получаем

Эта формула называется формулой интегрирования по частям для неопределенного интеграла. Для ее применения фиксируется разбиение подынтегрального выражения на два сомножителя и и dv. При переходе к правой части формулы первый из них дифференцируется (при нахождении дифференциала: du=u"dx), второй интегрируется:
. Такой прием приводит к цели, если
интегрируется легче, чем
. Пример:

Иногда для получения результата формулу интегрирования по частям приходится применять несколько раз. Отметим, что при промежуточном вычислении
можно не дописывать произвольную постояннуюC ; легко убедиться, что в ходе решения она уничтожится.

Интегрирование рациональных дробей

Если подынтегральная функция представляет собой алгебраическую дробь, то на практике достаточно часто встречаются два типовых случая:

1.Степень числителя дроби больше или равна степени знаменателя (неправильная дробь ). Для такой дроби можно разделить числитель на знаменатель известным из школьного курса методом деления углом (иначе – выделение целой части ), после чего выполнить интегрирование. Пример:

Здесь использовалась и замена переменной:

.

Для промежуточного расчет произвольную С можно не указывать, но в окончательном ответе она обязательна.

2. Метод неопределенных коэффициентов . Если дробь – правильная и знаменатель разлагается на множители, то этот метод позволяет представить подынтегральную функцию суммой простых дробей, проинтегрировать которые уже несложно. Метод имеет большое значение не только в интегрировании. Покажем его суть на примере вычисления интеграла
.

Разложив знаменатель дроби на множители, имеем:
. Введем теперьпредположение , что эту дробь можно представить суммой простых дробей:

Здесь А и В – неизвестные коэффициенты, которые следует найти (неопределенные коэффициенты ). Для этого приведем правую часть равенства к общему знаменателю:

Сократив знаменатели и раскрыв скобки, получим

Теперь используем теорему : чтобы два алгебраических выражения были тождественно равны , необходимо и достаточно равенство их соответственных коэффициентов . Таким образом, получим систему из двух уравнений и решим ее:

.

Следовательно,

.

Возвращаясь к задаче интегрирования, получим

Первообразная F(x) от функции f(x) - это такая функция, производная которой равна f(x) :
F′(x) = f(x), x ∈ Δ ,
где Δ - промежуток, на котором выполняется данное уравнение.

Совокупность всех первообразных называется неопределенным интегралом:
,
где C - постоянная, не зависящая от переменной x .

Основные формулы и методы интегрирования

Таблица интегралов

Конечная цель вычисления неопределенных интегралов - путем преобразований, привести заданный интеграл к выражению, содержащему простейшие или табличные интегралы.
См. Таблица интегралов >>>

Правило интегрирования суммы (разности)

Вынесение постоянной за знак интеграла

Пусть c - постоянная, не зависящая от x . Тогда ее можно вынести за знак интеграла:

Замена переменной

Пусть x - функция от переменной t , x = φ(t) , тогда
.
Или наоборот, t = φ(x) ,
.

С помощью замены переменной можно не только вычислить простые интегралы, но и упростить вычисление более сложных.

Правило интегрирования по частям

Интегрирование дробей (рациональных функций)

Введем обозначение. Пусть P k (x), Q m (x), R n (x) обозначают многочлены степеней k, m, n , соответственно, относительно переменной x .

Рассмотрим интеграл, состоящий из дроби многочленов (так называемая рациональная функция):

Если k ≥ n , то сначала нужно выделить целую часть дроби:
.
Интеграл от многочлена S k-n (x) вычисляется по таблице интегралов.

Остается интеграл:
, где m < n .
Для его вычисления, подынтегральное выражение нужно разложить на простейшие дроби.

Для этого нужно найти корни уравнения:
Q n (x) = 0 .
Используя полученные корни, нужно представить знаменатель в виде произведения сомножителей:
Q n (x) = s (x-a) n a (x-b) n b ... (x 2 +ex+f) n e (x 2 +gx+k) n g ... .
Здесь s - коэффициент при x n , x 2 + ex + f > 0 , x 2 + gx + k > 0 , ... .

После этого разложить дробь на простейшие:

Интегрируя, получаем выражение, состоящее из более простых интегралов.
Интегралы вида

приводятся к табличным подстановкой t = x - a .

Рассмотрим интеграл:

Преобразуем числитель:
.
Подставляя в подынтегральное выражение, получаем выражение, в которое входят два интеграла:
,
.
Первый, подстановкой t = x 2 + ex + f приводится к табличному.
Второй, по формуле приведения:

приводится к интегралу

Приведем его знаменатель к сумме квадратов:
.
Тогда подстановкой , интеграл

также приводится к табличному.

Интегрирование иррациональных функций

Введем обозначение. Пусть R(u 1 , u 2 , ... , u n) означает рациональную функцию от переменных u 1 , u 2 , ... , u n . То есть
,
где P, Q - многочлены от переменных u 1 , u 2 , ... , u n .

Дробно-линейная иррациональность

Рассмотрим интегралы вида:
,
где - рациональные числа, m 1 , n 1 , ..., m s , n s - целые числа.
Пусть n - общий знаменатель чисел r 1 , ..., r s .
Тогда интеграл сводится к интегралу от рациональных функций подстановкой:
.

Интегралы от дифференциальных биномов

Рассмотрим интеграл:
,
где m, n, p - рациональные числа, a, b - действительные числа.
Такие интегралы сводятся к интегралам от рациональных функций в трех случаях.

1) Если p - целое. Подстановка x = t N , где N - общий знаменатель дробей m и n .
2) Если - целое. Подстановка a x n + b = t M , где M - знаменатель числа p .
3) Если - целое. Подстановка a + b x - n = t M , где M - знаменатель числа p .

Если ни одно из трех чисел не является целым числом, то по теореме Чебышева интегралы данного вида не могут быть выражены конечной комбинацией элементарных функций.

В ряде случаев, сначала бывает полезным привести интеграл к более удобным значениям m и p . Это можно сделать с помощью формул приведения:
;
.

Интегралы, содержащие квадратный корень из квадратного трехчлена

Здесь мы рассматриваем интегралы вида:
,

Подстановки Эйлера

Такие интегралы могут быть сведены к интегралам от рациональных функций одной из трех подстановок Эйлера:
, при a > 0 ;
, при c > 0 ;
, где x 1 - корень уравнения a x 2 + b x + c = 0 . Если это уравнение имеет действительные корни.

Тригонометрические и гиперболические подстановки

Прямые методы

В большинстве случаев, подстановки Эйлера приводят к более длинным вычислениям, чем прямые методы. С помощью прямых методов интеграл приводится к одному из перечисленных ниже видов.

I тип

Интеграл вида:
,
где P n (x) - многочлен степени n .

Такие интегралы находятся методом неопределенных коэффициентов, используя тождество:

Дифференцируя это уравнение и приравнивая левую и правую части, находим коэффициенты A i .

II тип

Интеграл вида:
,
где P m (x) - многочлен степени m .

Подстановкой t = (x - α) -1 этот интеграл приводится к предыдущему типу. Если m ≥ n , то у дроби следует выделить целую часть.

III тип

Третий и наиболее сложный тип:
.

Здесь нужно сделать подстановку:
.
После чего интеграл примет вид:
.
Далее, постоянные α, β нужно выбрать такими, чтобы коэффициенты при t обратились в нуль:
B = 0, B 1 = 0 .
Тогда интеграл распадается на сумму интегралов двух видов:
;
,
которые интегрируются, соответственно подстановками:
z 2 = A 1 t 2 + C 1 ;
y 2 = A 1 + C 1 t -2 .

Общий случай

Интегрирование трансцендентных (тригонометрических и показательных) функций

Заранее отметим, что те методы, которые применимы для тригонометрических функций, также применимы и для гиперболических функций. По этой причине мы не будем рассматривать интегрирование гиперболических функций отдельно.

Интегрирование рациональных тригонометрических функций от cos x и sin x

Рассмотрим интегралы от тригонометрических функций вида:
,
где R - рациональная функция. Сюда также могут входить тангенсы и котангенсы, которые следует преобразовать через синусы и косинусы.

При интегрировании таких функций полезно иметь в виду три правила:
1) если R(cos x, sin x) умножается на -1 от перемены знака перед одной из величин cos x или sin x , то полезно другую из них обозначить через t .
2) если R(cos x, sin x) не меняется от перемены знака одновременно перед cos x и sin x , то полезно положить tg x = t или ctg x = t .
3) подстановка во всех случаях приводит к интегралу от рациональной дроби. К сожалению, эта подстановка приводит к более длинным вычислениям чем предыдущие, если они применимы.

Произведение степенных функций от cos x и sin x

Рассмотрим интегралы вида:

Если m и n - рациональные числа, то одной из подстановок t = sin x или t = cos x интеграл сводится к интегралу от дифференциального бинома.

Если m и n - целые числа, то интегралы вычисляются интегрированием по частям. При этом получаются следующие формулы приведения:

;
;
;
.

Интегрирование по частям

Применение формулы Эйлера

Если подынтегральное выражение линейно относительно одной из функций
cos ax или sin ax , то удобно применить формулу Эйлера:
e iax = cos ax + isin ax (где i 2 = -1 ),
заменив эту функцию на e iax и выделив действительную (при замене cos ax ) или мнимую часть (при замене sin ax ) из полученного результата.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Интегрирование дробно-рациональной функции.
Метод неопределенных коэффициентов

Продолжаем заниматься интегрированием дробей. Интегралы от некоторых видов дробей мы уже рассмотрели на уроке , и этот урок в некотором смысле можно считать продолжением. Для успешного понимания материала необходимы базовые навыки интегрирования, поэтому если Вы только приступили к изучению интегралов, то есть, являетесь чайником, то необходимо начать со статьи Неопределенный интеграл. Примеры решений .

Как ни странно, сейчас мы будем заниматься не столько нахождением интегралов, сколько… решением систем линейных уравнений. В этой связи настоятельно рекомендую посетить урок А именно – нужно хорошо ориентироваться в методах подстановки («школьном» методе и методе почленного сложения (вычитания) уравнений системы).

Что такое дробно-рациональная функция? Простыми словами, дробно-рациональная функция – это дробь, в числителе и знаменателе которой находятся многочлены либо произведения многочленов. При этом дроби являются более навороченными, нежели те, о которых шла речь в статье Интегрирование некоторых дробей .

Интегрирование правильной дробно-рациональной функции

Сразу пример и типовой алгоритм решения интеграла от дробно-рациональной функции.

Пример 1


Шаг 1. Первое, что мы ВСЕГДА делаем при решении интеграла от дробно-рациональной функции – это выясняем следующий вопрос: является ли дробь правильной? Данный шаг выполняется устно, и сейчас я объясню как:

Сначала смотрим на числитель и выясняем старшую степень многочлена:

Старшая степень числителя равна двум.

Теперь смотрим на знаменатель и выясняем старшую степень знаменателя. Напрашивающийся путь – это раскрыть скобки и привести подобные слагаемые, но можно поступить проще, в каждой скобке находим старшую степень

и мысленно умножаем: – таким образом, старшая степень знаменателя равна трём. Совершенно очевидно, что если реально раскрыть скобки, то мы не получим степени, больше трёх.

Вывод : Старшая степень числителя СТРОГО меньше старшей степени знаменателя, значит, дробь является правильной.

Если бы в данном примере в числителе находился многочлен 3, 4, 5 и т.д. степени, то дробь была бы неправильной .

Сейчас мы будем рассматривать только правильные дробно-рациональные функции . Случай, когда степень числителя больше либо равна степени знаменателя, разберём в конце урока.

Шаг 2. Разложим знаменатель на множители. Смотрим на наш знаменатель:

Вообще говоря, здесь уже произведение множителей, но, тем не менее, задаемся вопросом: нельзя ли что-нибудь разложить еще? Объектом пыток, несомненно, выступит квадратный трехчлен. Решаем квадратное уравнение:

Дискриминант больше нуля, значит, трехчлен действительно раскладывается на множители:

Общее правило: ВСЁ, что в знаменателе МОЖНО разложить на множители – раскладываем на множители

Начинаем оформлять решение:

Шаг 3. Методом неопределенных коэффициентов раскладываем подынтегральную функцию в сумму простых (элементарных) дробей. Сейчас будет понятнее.

Смотрим на нашу подынтегральную функцию:

И, знаете, как-то проскакивает интуитивная мысль, что неплохо бы нашу большую дробь превратить в несколько маленьких. Например, вот так:

Возникает вопрос, а можно ли вообще так сделать? Вздохнем с облегчением, соответствующая теорема математического анализа утверждает – МОЖНО. Такое разложение существует и единственно .

Только есть одна загвоздочка, коэффициенты мы пока не знаем, отсюда и название – метод неопределенных коэффициентов.

Как вы догадались, последующие телодвижения так, не гоготать! будут направлены на то, чтобы как раз их УЗНАТЬ – выяснить, чему же равны .

Будьте внимательны, подробно объясняю один раз!

Итак, начинаем плясать от:

В левой части приводим выражение к общему знаменателю:

Теперь благополучно избавляемся от знаменателей (т.к. они одинаковы):

В левой части раскрываем скобки, неизвестные коэффициенты при этом пока не трогаем:

Заодно повторяем школьное правило умножение многочленов. В свою бытность учителем, я научился выговаривать это правило с каменным лицом: Для того чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена .

С точки зрения понятного объяснения коэффициенты лучше внести в скобки (хотя лично я никогда этого не делаю в целях экономии времени):

Составляем систему линейных уравнений.
Сначала разыскиваем старшие степени:

И записываем соответствующие коэффициенты в первое уравнение системы:

Хорошо запомните следующий нюанс . Что было бы, если б в правой части вообще не было ? Скажем, красовалось бы просто без всякого квадрата? В этом случае в уравнении системы нужно было бы поставить справа ноль: . Почему ноль? А потому что в правой части всегда можно приписать этот самый квадрат с нулём: Если в правой части отсутствуют какие-нибудь переменные или (и) свободный член, то в правых частях соответствующих уравнений системы ставим нули .

Записываем соответствующие коэффициенты во второе уравнение системы:

И, наконец, минералка, подбираем свободные члены.

Эх,…что-то я расшутился. Шутки прочь – математика наука серьезная. У нас в институтской группе никто не смеялся, когда доцент сказала, что разбросает члены по числовой прямой и выберет из них самые большие. Настраиваемся на серьезный лад. Хотя… кто доживет до конца этого урока, все равно будет тихо улыбаться.

Система готова:

Решаем систему:

(1) Из первого уравнения выражаем и подставляем его во 2-е и 3-е уравнения системы. На самом деле можно было выразить (или другую букву) из другого уравнения, но в данном случае выгодно выразить именно из 1-го уравнения, поскольку там самые маленькие коэффициенты .

(2) Приводим подобные слагаемые во 2-м и 3-м уравнениях.

(3) Почленно складываем 2-е и 3-е уравнение, при этом, получая равенство , из которого следует, что

(4) Подставляем во второе (или третье) уравнение, откуда находим, что

(5) Подставляем и в первое уравнение, получая .

Если возникли трудности с методами решения системы отработайте их на уроке Как решить систему линейных уравнений?

После решения системы всегда полезно сделать проверку – подставить найденные значения в каждое уравнение системы, в результате всё должно «сойтись».

Почти приехали. Коэффициенты найдены, при этом:

Чистовое оформление задание должно выглядеть примерно так:




Как видите, основная трудность задания состояла в том, чтобы составить (правильно!) и решить (правильно!) систему линейных уравнений. А на завершающем этапе всё не так сложно: используем свойства линейности неопределенного интеграла и интегрируем. Обращаю внимание, что под каждым из трёх интегралов у нас «халявная» сложная функция, об особенностях ее интегрирования я рассказал на уроке Метод замены переменной в неопределенном интеграле .

Проверка: Дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.
В ходе проверки пришлось приводить выражение к общему знаменателю, и это не случайно. Метод неопределенных коэффициентов и приведение выражения к общему знаменателю – это взаимно обратные действия .

Пример 2

Найти неопределенный интеграл.

Вернемся к дроби из первого примера: . Нетрудно заметить, что в знаменателе все множители РАЗНЫЕ. Возникает вопрос, а что делать, если дана, например, такая дробь: ? Здесь в знаменателе у нас степени, или, по-математически кратные множители . Кроме того, есть неразложимый на множители квадратный трехчлен (легко убедиться, что дискриминант уравнения отрицателен, поэтому на множители трехчлен никак не разложить). Что делать? Разложение в сумму элементарных дробей будет выглядеть наподобие с неизвестными коэффициентами вверху или как-то по-другому?

Пример 3

Представить функцию

Шаг 1. Проверяем, правильная ли у нас дробь
Старшая степень числителя: 2
Старшая степень знаменателя: 8
, значит, дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен не раскладывается в произведение по указанным выше причинам. Гуд. Работы меньше.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей.
В данном случае, разложение имеет следующий вид:

Смотрим на наш знаменатель:
При разложении дробно-рациональной функции в сумму элементарных дробей можно выделить три принципиальных момента:

1) Если в знаменателе находится «одинокий» множитель в первой степени (в нашем случае ), то вверху ставим неопределенный коэффициент (в нашем случае ). Примеры №1,2 состояли только из таких «одиноких» множителей.

2) Если в знаменателе есть кратный множитель , то раскладывать нужно так:
– то есть последовательно перебрать все степени «икса» от первой до энной степени. В нашем примере два кратных множителя: и , еще раз взгляните на приведенное мной разложение и убедитесь, что они разложены именно по этому правилу.

3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае ), то при разложении в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае с неопределенными коэффициентами и ).

На самом деле, есть еще 4-й случай, но о нём я умолчу, поскольку на практике он встречается крайне редко.

Пример 4

Представить функцию в виде суммы элементарных дробей с неизвестными коэффициентами.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Строго следуйте алгоритму!

Если Вы разобрались, по каким принципам нужно раскладывать дробно-рациональную функцию в сумму, то сможете разгрызть практически любой интеграл рассматриваемого типа.

Пример 5

Найти неопределенный интеграл.

Шаг 1. Очевидно, что дробь является правильной:

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Можно. Здесь сумма кубов . Раскладываем знаменатель на множители, используя формулу сокращенного умножения

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Обратите внимание, что многочлен неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию с неизвестными коэффициентами, а не просто одну буковку.

Приводим дробь к общему знаменателю:

Составим и решим систему:

(1) Из первого уравнения выражаем и подставляем во второе уравнение системы (это наиболее рациональный способ).

(2) Приводим подобные слагаемые во втором уравнении.

(3) Почленно складываем второе и третье уравнения системы.

Все дальнейшие расчеты, в принципе, устные, так как система несложная.

(1) Записываем сумму дробей в соответствии с найденными коэффициентами .

(2) Используем свойства линейности неопределенного интеграла. Что произошло во втором интеграле? С этим методом Вы можете ознакомиться в последнем параграфе урока Интегрирование некоторых дробей .

(3) Еще раз используем свойства линейности. В третьем интеграле начинаем выделять полный квадрат (предпоследний параграф урока Интегрирование некоторых дробей ).

(4) Берём второй интеграл, в третьем – выделяем полный квадрат.

(5) Берём третий интеграл. Готово.

На данном уроке мы научимся находить интегралы от некоторых видов дробей. Для успешного усвоения материала Вам должны быть хорошо понятны выкладки статей и .

Как уже отмечалось, в интегральном исчислении нет удобной формулы для интегрирования дроби:

И поэтому наблюдается грустная тенденция: чем «навороченнее» дробь, тем труднее найти от нее интеграл. В этой связи приходится прибегать к различным хитростям, о которых сейчас и расскажем.

Метод разложения числителя

Пример 1

Найти неопределенный интеграл

Выполнить проверку.

На уроке Неопределенный интеграл. Примеры решений мы избавлялись от произведения функций в подынтегральном выражении, превращая её в сумму, удобную для интегрирования. Оказывается, что иногда в сумму (разность) можно превратить и дробь!

Анализируя подынтегральную функцию, мы замечаем, что и в числителе и в знаменателе у нас находятся многочлены первой степени: x и (x +3). Когда в числителе и знаменателе находятся многочлены одинаковой степени, то помогает следующий искусственный приём: в числителе мы должны самостоятельно организовать такое же выражение, что и в знаменателе:

.

Рассуждение может быть следующим: «В числителе надо организовать(x + 3), чтобы привести интеграл к табличным, но если я прибавлю к «иксу» тройку, то, для того, чтобы выражение не изменилось – я обязан вычесть такую же тройку».

Теперь можно почленно разделить числитель на знаменатель:

В результате мы добились того, чего и хотели. Используем первые два правила интегрирования:

Готово. Проверку при желании выполните самостоятельно. Обратите внимание, что

во втором интеграле – это «простая» сложная функция. Особенности ее интегрирования обсуждались на уроке Метод замены переменной в неопределенном интеграле .

Кстати, рассмотренный интеграл можно решить и методом замены переменной, обозначая , но запись решения получится значительно длиннее.



Пример 2

Найти неопределенный интеграл

Выполнить проверку

Это пример для самостоятельного решения. Следует заметить, что здесь метод замены переменной уже не пройдёт.

Внимание, важно! Примеры №№1,2 являются типовыми и встречаются часто .

В том числе, подобные интегралы нередко возникают в ходе решения других интегралов, в частности, при интегрировании иррациональных функций (корней).

Рассмотренный приём работает и в случае, если старшая степень числителя больше старшей степени знаменателя .

Пример 3

Найти неопределенный интеграл

Выполнить проверку.

Начинаем подбирать числитель. Алгоритм подбора числителя примерно такой:

1) В числителе нам нужно организовать 2x -1, но там x 2 . Что делать? Заключаю 2x -1 в скобки и умножаю на x , как: x (2x -1).

2) Теперь пробуем раскрыть эти скобки, что получится? Получится: (2x 2 -x ). Уже лучше, но никакой двойки при x 2 изначально в числителе нет. Что делать? Нужно домножить на (1/2), получим:

3) Снова раскрываем скобки, получаем:

Получился нужный x 2 ! Но проблема в том, что появилось лишнее слагаемое (-1/2)x . Что делать? Чтобы выражение не изменилось, мы обязаны прибавить к своей конструкции это же (1/2)x :

. Жить стало легче. А нельзя ли еще раз в числителе организовать (2x -1)?

4) Можно. Пробуем: . Раскрываем скобки второго слагаемого:

. Простите, но у нас было на предыдущем шаге (+1/2)x , а не(+x) . Что делать? Нужно домножить второе слагаемое на (+1/2):

.

5) Снова для проверки раскрываем скобки во втором слагаемом:

. Вот теперь нормально: получено (+1/2)x из окончательной конструкции пункта 3! Но опять есть маленькое «но», появилось лишнее слагаемое (-1/4), значит, мы обязаны прибавить к своему выражению (1/4):

.

Если всё выполнено правильно, то при раскрытии всех скобок у нас должен получиться исходный числитель подынтегральной функции. Проверяем:

Получился.

Таким образом:

Готово. В последнем слагаемом мы применили метод подведения функции под дифференциал.

Если найти производную от ответа и привести выражение к общему знаменателю, то у нас получится в точности исходная подынтегральная функция

Рассмотренный метод разложения x 2 в сумму есть не что иное, как обратное действие к приведению выражения к общему знаменателю.

Алгоритм подбора числителя в подобных примерах лучше выполнять на черновике. При некоторых навыках будет получаться и мысленно.

Помимо алгоритма подбора можно использовать деление столбиком многочлена на многочлен, но, боюсь, объяснения займут еще больше места, поэтому - как-нибудь в другой раз.

Пример 4

Найти неопределенный интеграл

Выполнить проверку.

Это пример для самостоятельного решения.