Записать размерность единицы физической величины. Большая энциклопедия нефти и газа

Размерности физических величин в системе СИ

В таблице приведены размерности различных физических величин в Международной системе единиц (СИ) .

В столбцах «Показатели степени» указаны показатели степени в выражении единицы измерения через соответствующие единицы системы СИ. Например, для фарада указано (−2 | −1 | 4 | 2 | |), значит

1 фарад = м −2 ·кг −1 ·с 4 ·A 2 .

Название и обозначение
величины
Единица
измерения
Обозначение Формула Показатели степени
русское международное м кг с А К кд
Длина L метр м m L 1
Масса m килограмм кг kg m 1
Время t секунда с s t 1
Сила электрического тока I ампер А A I 1
Термодинамическая температура T кельвин К K T 1
Сила света I v кандела кд cd J 1
Площадь S кв. метр м 2 m 2 S 2
Объём V куб. метр м 3 m 3 V 3
Частота f герц Гц Hz f = 1/t −1
Скорость v м/с m/s v = dL/dt 1 −1
Ускорение a м/с 2 m/s 2 ε = d 2 L/dt 2 1 −2
Плоский угол φ рад rad φ
Угловая скорость ω рад/с rad/s ω = dφ/dt −1
Угловое ускорение ε рад/с 2 rad/s 2 ε = d 2 φ/dt 2 −2
Сила F ньютон Н N F = ma 1 1 −2
Давление P паскаль Па Pa P = F/S −1 1 −2
Работа, знергия A джоуль Дж J A = F·L 2 1 −2
Имульс p кг·м/с kg·m/s p = m·v 1 1 −1
Мощность P ватт Вт W P = A/t 2 1 −3
Электрический заряд q кулон Кл C q = I·t 1 1
Электрическое напряжение, электрический потенциал U вольт В V U = A/q 2 1 −3 −1
Напряжённость электрического поля E В/м V/m E = U/L 1 1 −3 −1
Электрическое сопротивление R ом Ом Ω R = U/I 2 1 −3 −2
Электрическая ёмкость C фарад Ф F C = q/U −2 −1 4 2
Магнитная индукция B тесла Тл T B = F/I·L 1 −2 −1
Напряжённость магнитного поля H А/м A/m −1 1
Магнитный поток Ф вебер Вб Wb Ф = B·S 2 1 −2 −1
Индуктивность L генри Гн H L = U·dt/dI 2 1 −2 −2

См. также


Wikimedia Foundation . 2010 .

  • Размер жёсткого диска
  • Границы отображения

Смотреть что такое "Размерности физических величин в системе СИ" в других словарях:

    ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН - конкретные физ. величины, к рым по определению присвоены числовые значения, равные единице. Многие Е. ф. в. воспроизводятся мерами, применяемыми для измерений (напр., метр, килограмм). Исторически сначала появились Е. ф. в. для измерения длины,… … Физическая энциклопедия

    Размерность физической величины - Термин «размерность» имеет и другие значения, см. Размерность (значения). Размерность физической величины выражение, показывающее, во сколько раз изменится единица физической величины при изменении единиц величин, принятых в данной системе… … Википедия

    Моделирование - исследование объектов познания на их моделях (См. Модель); построение и изучение моделей реально существующих предметов и явлений (живых и неживых систем, инженерных конструкций, разнообразных процессов физических, химических,… …

    Геобаротермометрия - Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (11 мая 2011) … Википедия

    Размерность (физич.)

    Физическая размерность - Термин «размерность» имеет и другие значения, см. Размерность (значения). В физике размерность физической величины – выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и … Википедия

    Размерностей анализ - метод установления связи между физическими величинами, существенными для изучаемого явления, основанный на рассмотрении размерностей (См. Размерность) этих величин. В основе Р. а. лежит требование, согласно которому уравнение,… … Большая советская энциклопедия

    Едини́цы физи́ческих величи́н - конкретные физические величины, условно принятые за единицы физических величин. Под физической величиной понимают характеристику физического объекта, общую для множества объектов в качественном отношении (например, длина, масса, мощность) и… … Медицинская энциклопедия

    система - 4.48 система (system): Комбинация взаимодействующих элементов, организованных для достижения одной или нескольких поставленных целей. Примечание 1 Система может рассматриваться как продукт или предоставляемые им услуги. Примечание 2 На практике… … Словарь-справочник терминов нормативно-технической документации

    СИСТЕМА ЕДИНИЦ - физических величин, совокупность основных и производных единиц нек рой системы физ. величин, образованная в соответствии с принятыми принципами. С. е. строится на основе физ. теорий, отражающих существующую в природе взаимосвязь физ. величин. При … Физическая энциклопедия

Книги

  • Сборник задач и упражнений по физической и коллоидной химии , Гамеева Ольга Стефановна. Сборник содержит 800 задач и упражнений, относящихся к следующим разделам данного курса: газы и жидкости, первый и второй законы термодинамики, термохимия, фазовые равновесия и растворы,…

Когда мы говорим о размерности величины, мы имеем в виду основные единицы или основные величины, с помощью которых можно построить данную величину.
 Размерность площади, например, всегда равна квадрату длины (сокращенно ; квадратные скобки здесь и далее обозначают размерность); единицами измерения площади могут быть квадратный метр, квадратный сантиметр, квадратный фут и т.п.
 Скорость же может измеряться в единицах км/ч, м/с и миль/ч, но размерность ее всегда равна размерности длины [L] , деленной на размерность времени [Т] , т. е. мы имеем . Формулы, описывающие величину, в разных случаях могут быть различны, но размерность сохраняется той же самой. Например, площадь треугольника с основанием b и высотой h равна S = (1/2)bh , а площадь круга радиусом r равна S = πr 2 . Эти формулы отличаются друг от друга, но размерности в обоих случаях совпадают и равны .
 При определении размерности величины обычно пользуются размерностями основных, а не производных величин. Например, сила, как мы увидим ниже, имеет размерность массы [М] , умноженной на ускорение т.е. ее размерность равна .
 Правило подбора размерностей может помочь при выводе различных соотношений; такая процедура называется анализом размерностей. Один из полезных методов − это применение анализа размерностей для проверки правильности того или иного соотношения. В этом случае используются два простых правила. Во-первых, складывать или вычитать можно величины только одинаковой размерности (нельзя складывать сантиметры и граммы); во-вторых, величины, стоящие в обеих частях любого равенства, должны иметь одинаковые размерности.
 Пусть, например, получено выражение v = v o + (1/2)at 2 , где v − скорость тела по прошествии времени t , v o − начальная скорость тела, а − испытываемое им ускорение. Для проверки правильности этой формулы произведем анализ размерностей. Запишем равенство для размерности, учитывая, что скорость имеет размерность , а ускорение - размерность :

В этой формуле с размерностью не все в порядке; в правой части равенства стоит сумма величин, размерности которых не совпадают. Отсюда можно сделать вывод о том, что при выводе исходного выражения была допущена ошибка.
 Совпадение размерности в обеих частях еще не доказывает правильности выражения в целом. Например, может быть неверным безразмерный числовой множитель вида 1/2 или . Поэтому проверка размерности может указать только на ошибочность выражения, но не может служить доказательством его правильности.
 Анализ размерностей можно также использовать как быструю проверку правильности соотношения, в котором вы не уверены. Предположим, вы не можете вспомнить выражение для периода Т (времени, необходимого для совершения полного колебания) простого математического маятника длиной l : то ли эта формула выглядит как

то ли

где g − ускорение свободного падения, размерность которого, как и у любого ускорения, равна .
 Нас будет только интересовать, входят ли в нее величины l и g в виде отношения l/g или g/l .) Анализ размерностей показывает, что верна первая формула:

в то время как вторая ошибочна, поскольку

 Обратите внимание на то, что постоянный множитель является безразмерным и не входит в окончательный результат.
 Наконец, важное применение анализа размерностей (которое, впрочем, требует большой осторожности) − это нахождение вида искомого соотношения. Такая необходимость может возникнуть, если требуется определить лишь то, как одна величина зависит от других.
 Рассмотрим конкретный пример получения формулы для периода Т колебаний математического маятника. Сначала определим, от каких величин может зависеть Т . Период может зависеть от длины нити l , масса на конце маятника m , угла отклонения маятника α и ускорение свободного падения g . Он может также зависеть от сопротивления воздуха (мы будем использовать здесь вязкость воздуха), силы гравитационного притяжения Луны и т.д. Однако повседневный опыт указывает на то, что сила притяжения к Земле значительно превышает все остальные силы, которыми поэтому мы пренебрежем. Предположим, что период Т является функцией величин l , m , α и g , причем каждая из этих величин возведена в некоторую степень:

здесь С − безразмерная постоянная; α , β , и δ − показатели степени, которые нужно определить.
Запишем формулу размерности для этого соотношения:

После некоторых упрощений мы получаем

 В силу того что семь основных величин системы СИ (Система Интернациональная) − международная система единиц, вариант метрической системы используемый с 1960 г., когда на XI Генеральной конференции по мерам и весам был принят стандарт, который впервые получил название «Международная система единиц (СИ)». СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике
Основные единицы СИ, названия единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится.

Задача 3 . Определите энергию взаимодействия двух точечных масс m 1 и m 2 , находящихся на расстоянии r друг от друга.

Задача 4 . Определите силу взаимодействия двух точечных зарядов q 1 и q 2 , находящихся на расстоянии r друг от друга.

Задача 5 . Определите напряженность гравитационного поля бесконечного цилиндра радиусом r o и плотностью ρ на расстоянии R (R > r o ) от оси цилиндра.

Задача 6 . Оценить дальность полета и высоту тела, брошенного под углом α к горизонту. Сопротивлением воздуха пренебречь.

Вывод:
1. Метод размерностей может быть использован в случае, если искомая величина может быть представлена в виде степенной функции.
2. Метод размерностей позволяет качественно решить задачу и получить ответ с точностью до коэффициента.
3. В некоторых случаях метод размерностей является единственным способом решить задачу и хотя бы оценить ответ.
4. Анализ размерностей при решении задачи широко используется в научных исследованиях.
5. Решение задач методом размерностей является дополнительным или вспомогательным методом, позволяющим лучше понять взаимодействие величин, их влияние друг на друга.

Читайте еще статьи из

Метрология

Промежуточный отдел

Хвостик

Плазмолемма

Митохондрии

Аксонема жгутика

Дистальная центриоль, формирующая аксонему жгутика

Проксимальная центриоль

Связующий отдел

Ядро


Разме́рность физической величины - выражение, показывающее связь этой величины с основными величинами данной системы физических величин; записывается в виде произведения степеней сомножителей, соответствующих основным величинам, в котором численные коэффициенты опущены.

Говоря о размерности, следует различать понятия система физических величин и система единиц. Под системой физических величин понимается совокупность физических величин вместе с совокупностью уравнений, связывающих эти величины между собой. В свою очередь, система единиц представляет собой набор основных и производных единиц вместе с их кратными и дольными единицами, определенными в соответствии с установленными правилами для данной системы физических величин.

Все величины, входящие в систему физических величин, делят на основные и производные. Под основными понимают величины, условно выбранные в качестве независимых так, что никакая основная величина не может быть выражена через другие основные. Все остальные величины системы определяются через основные величины и называются производными.

Каждой основной величине сопоставляется символ размерности в виде заглавной буквы латинского или греческого алфавита, далее размерности производных величин обозначаются с использованием этих символов.

Основная величина Символ для размерности

Электрический ток I

Термодинамическая температура Θ

Количество вещества N

Сила света J

В общем случае размерность физической величины представляет собой произведение размерностей основных величин, возведённых в различные (положительные или отрицательные, целые или дробные) степени. Показатели степеней в этом выражении называют показателями размерности физической величины. Если в размерности величины хотя бы один из показателей размерности не равен нулю, то такую величину называют размерной, если все показатели размерности равны нулю - безразмерной.

Размер физической величины - значения чисел, фигурирующих в значении физической величины.

Например, автомобиль может быть охарактеризован с помощью такой физической величины, как масса. При этом, значением этой физической величины будет, например, 1 тонна, а размером - число 1, или же значением будет 1000 килограмм, а размером - число 1000. Этот же автомобиль может быть охарактеризован с помощью другой физической величины - скорости. При этом, значением этой физической величины будет, например, вектор определённого направления 100 км/ч, а размером - число 100



Размерность физической величины - единица измерения, фигурирующая в значении физической величины. Как правило, у физической величины много различных размерностей: например, у длины - метр, миля, дюйм, парсек, световой год и т. д. Часть таких единиц измерения (без учёта своих десятичных множителей) могут входить в различные системы физических единиц - СИ, СГС и др.

Cтраница 3


И Размерностью физической величины называется выражение, характеризующее связь этой физической величины с основными величинами данной системы единиц. Физическая величина называется безразмерной величиной, если в выражение ее размерности все основные величины входят в нулевой степени. Числовое значение безразмерной величины не зависит от выбора системы единиц.  

Под размерностью физической величины следует понимать выражение, отражающее связь рассматриваемой величины с основными величинами системы, если принять коэффициент пропорциональности в этом выражении равным безразмерной единице. Размерность представляет собой произведение размерностей основных величин системы, возведенных с соответствующие степени.  

Итак, размерность физической величины указывает, как в данной абсолютной системе единиц изменяются единицы, служащие для измерения этой физической величины, при изменении масштабов основных единиц. Например, сила в системе LMT имеет размерность LMT 2; это значит, что при увеличении единицы длины в п раз единица силы также увеличивается в п раз; при увеличении единицы массы в п раз единица силы также увеличивается в п раз и, наконец, при увеличении единицы времени в п раз единица силы уменьшается в 2 раз.  

Соображения, касающиеся размерности физических величин, помогают в решении задач огромной практической важности, например задачи о стационарном обтекании жидкостью или газом препятствия, или, что то же самое, о движении тела в среде.  

Для указания размерности физических величин пользуются символическими обозначениями, например LpM. Это означает, что в системе LMT число, выражающее результат измерения данной физической величины, уменьшится в пр раз, если единицу длины увеличить в п раз, увеличится в п 1 раз, если единицу массы увеличить в п раз, и, наконец, увеличится в пг раз, если единицу времени увеличить в п раз.  

Результат определения размерности физической величины принято записывать условным равенством, в котором эта величина заключается в квадратные скобки.  

Если посмотреть на размерности физических величин, фактически встречающихся в физике, то нетрудно заметить, что во всех случаях числа р, q, r оказываются рациональными. Это не обязательно с, точки зрения теории размерности, а является результатом соответствующих определений физических величин.  

Таким образом, размерность физической величины представляет собой функцию, которая определяет, во сколько раз изменится численное значение этой величины при переходе от исходной системы единиц измерения к другой системе внутри данного класса.  

Определим теперь понятие размерности физической величины. Размерность показывает, как связана данная величина с основными физическими величинами. В Международной системе единиц СИ основным физическим величинам соответствуют основные единицы измерения: длина, масса, время, сила тока, температура, количество вещества и сила света.  

Путем использования анализа размерностей физических величин устанавливают функциональную связь между обобщенными переменными (уравнение подобия), а количественную зависимость получают в результате обработки экспериментальных данных.  

Если при определении размерности физической величины составляющие ее основные единицы измерения сокращаются, то такая величина называется безразмерной. Безразмерными величинами являются относительные координаты точек тела, аэродинамические коэффициенты профиля крыла, относительные деформации упругой конструкции. Постоянные и переменные безразмерные величины занимают особое место при изучении подобия физических явлений.  

Строго говоря, размерностью физической величины называются показатели степени в символическом уравнении, выражающем эту величину через основные физические величины.  

Некоторое значение физической величины принимается за единицу этой величины. Размер физической величины определяется соотношением, где - числовое значение этой величины. Это соотношение называют основным уравнением измерения, так как целью измерения, по существу, является определение числа.

Обеспечение единства измерений предполагает прежде всего повсеместное использование общепринятых и строго определенных единиц физических величин. Между различными физическими величинами объективно существует разного рода взаимосвязи количественно выражаемые соответствующими уравнениями. Эти уранения используются для выражения единиц одних физических величин через другие. Однако число таких уравнений в любом разделе науке меньше числа входящих в них физических величин. Поэтому для создания системы единиц этих величин некоторая их основополагающая часть, равная, должна быть оговорена и строго определена вне зависимости от других величин. Такие входящие в систему физические величины, условно принятые в качестве независимых от других величин, называются основными физическими величинами. Остальные величины, входящие в систему и определяемы через основные физические величины, называются производными физическими величинами. В соответствии с этим единицы физических величин также разделяются на основные и производные единицы.

Если A, B, C, … - полный набор основных физических величин данной системы, то для любой производной величины может быть определена ее размерность (dimension), отражающая ее связь в основными величинами системы, в виде

В этом соотношении показатели степени,… для каждой конкретной производной физической величины находятся из уравнений, связывающих ее с основными величинами (часть этих показателей обычно оказывается равной нулю). Соотношение (1), называется формулой размерности, показывает, во сколько раз изменится значение производной величины при определенном изменении значений основных величин. Например, если значения величин A, B, C увеличились соответственно в 2, 3 и 4 раза, то при этом, согласно (1), значение величины увеличится в раз.

Основное практическое значение формулы размерности состоит в том, что она позволяет непосредственно определять любую производную единицу через основные единицы данной системы,…

Правда, в этом выражении постоянный сомножитель требует дополнительного определения. Однако в большинстве практических случаев стараются выбирать. При таком условии производная единица называется когерентной.

Международная система единиц SI является когерентной системой (поскольку когерентны все ее производные единицы). Основные физические величины и их единицы в системе SI представлены в таблице 1.

Таблица 1

Кроме этого, система SI включает в себя две дополнительные единицы, которые определены также независимо от остальных единиц, но не участвуют в образовании производных единиц. Это -- единица плоского угла -- радиан (рад) и единица телесного угла -- стерадиан (ср). Все остальные единицы системы SI являются производными, причем часть из них имеет собственное наименование, а другие обозначаются в виде произведения степеней других. Например, такая производная физическая величина, как электрическая емкость, в системе SI имеет размерность и единицу, имеющую собственное наименование, -- фарад; а единица напряженности электрического поля, например, собственного наименования не имеет и обозначается как «вольт на метр» .

Совместно с единицами системы SI допускается использование кратных и дольных единиц, которые образуются путем добавления к названию единицы определенной приставки, означающей умножение данной единицы на, где -- целое положительное (для кратных единиц) или отрицательное (для дольных единиц) число. Например, 1 ГГц (гигагерц) = 109 Гц, 1 нс (наносекунда) = 10-9 с, 1 кВт = 103 Вт. В таблице 2 приведены наименования приставок дольных и кратных единиц.

Таблица 2

Дольные множители

Кратные множители

Отношение к главной единице

Наименование приставки

Сокращенное обозначение

приставки

Отношение к главной единице

Наименование приставки

Сокращенное обозначение

приставки

Совместно с системой SI допускается использование -- там, где это целесообразно, -- некоторых внесистемных единиц: для времени -- минута, час, сутки, для плоского угла -- градус, минута, секунда; для массы -- тонна; для объема -- литр; для площади -- гектар; для энергии -- электрон-вольт; для полной мощности -- вольт-ампер и т. д.

Кроме рассмотренных видов единиц достаточно широко применяются относительные и логарифмические величины. Они представляют собой соответственно отношение двух одноименных величин и логарифм этого отношения. К относительным величинам, в частности, относятся атомные и молекулярные массы химические элементов.

Относительные величины могут выражаться в безразличных единицах, в процентах (1% = 0,01) или в промилле (1‰=0,001=0,1%).

Значение логарифмических величин выражается в белах (Б), согласно формуле или в неперах (Нп): . В этих отношениях и -- энергетические величины (мощность, энергия, плотность энергии и т. п.); и -- силовые величины (напряжение, ток, плотность тока, напряженность поля и т. п.); коэффициенты 2 и 0,5 учитывают, что энергетические величины пропорциональны квадрату силовых величин. Из соотношений видно, что один бел (1 Б) соответствует отношению или; один непер (1 Нп) соответствует отношению или. Нетрудно выяснить, что 1 Нп = () Б = 0,8686 Б.

В радиотехнике, электронике, акустике логарифмические величины чаще всего выражают в децибелах (1 дБ = 0,1 Б):

Отношение мощностей в дБ записывается с коэффициентом 10, а отношение напряжений (или токов) -- с коэффициентом 20.

Очевидно, что относительные и логарифмические единицы -- инвариантны к используемой системе единиц, поскольку они определяются отношением однородных единиц.