Табл м. Периодическая система химических элементов Д.И.Менделеева

Периодическая система химических элементов - это классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

Д. И. Менделеев

Согласно современной формулировке этого закона, в непрерывном ряду элементов, расположенных в порядке возрастания величины положительного заряда ядер их атомов, периодически повторяются элементы со сходными свойствами.

Периодическая система химических элементов, представленная в виде таблицы, состоит из периодов, рядов и групп.

В начале каждого периода (за исключением первого) находится элементе ярко выраженными металлическими свойствами (щелочной металл).


Условные обозначения к цветной таблице: 1 - химический знак элемента; 2 - название; 3 - атомная масса (атомный вес); 4 - порядковый номер; 5 - распределение электронов по слоям.

По мере возрастания порядкового номера элемента, равного величине положительного заряда ядра его атома, постепенно ослабевают металлические и нарастают неметаллические свойства. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (), а последним - инертный газ. В I периоде находятся 2 элемента, во II и III - по 8 элементов, в IV и V - по 18, в VI - 32 и в VII (не завершенном периоде) - 17 элементов.

Первые три периода называют малыми периодами, каждый из них состоит из одного горизонтального ряда; остальные - большими периодами, каждый из которых (исключая VII период) состоит из двух горизонтальных рядов - четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов находятся только металлы. Свойства элементов в этих рядах с возрастанием порядкового номера изменяются слабо. Свойства элементов в нечетных рядах больших периодов меняются. В VI периоде за лантаном следуют 14 элементов, весьма сходных по химическим свойствам. Эти элементы, называемые лантаноидами, приведены отдельно под основной таблицей. Аналогично представлены в таблице и актиноиды - элементы, следующие за актинием.


В таблице имеется девять вертикальных групп. Номер группы, за редким исключением, равен высшей положительной валентности элементов данной группы. Каждая группа, исключая нулевую и восьмую, подразделяется на подгруппы. - главную (расположена правее) и побочную. В главных подгруппах с увеличением порядкового номера усиливаются металлические и ослабевают неметаллические свойства элементов.

Таким образом, химические и ряд физических свойств элементов определяются местом, которое занимает данный элемент в периодической системе.

Биогенные элементы, т. е. элементы, входящие в состав организмов и выполняющие в нем определенную биологическую роль, занимают верхнюю часть таблицы Менделеева. В голубой цвет окрашены клетки, занимаемые элементами, составляющими основную массу (более 99%) живого вещества, в розовый цвет - клетки, занимаемые микроэлементами (см.).

Периодическая система химических элементов является крупнейшим достижением современного естествознания и ярким выражением наиболее общих диалектических законов природы.

См. также , Атомный вес.

Периодическая система химических элементов - естественная классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

В первоначальной формулировке периодический закон Д. И. Менделеева утверждал: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомных весов элементов. В дальнейшем с развитием учения о строении атома было показано, что более точной характеристикой каждого элемента является не атомный вес (см.), а величина положительного заряда ядра атома элемента, равная порядковому (атомному) номеру этого элемента в периодической системе Д. И. Менделеева. Число положительных зарядов ядра атома равно числу электронов, окружающих ядро атома, поскольку атомы в целом электронейтральны. В свете этих данных периодический закон формулируется так: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины положительного заряда ядер их атомов. Это значит, что в непрерывном ряду элементов, расположенных в порядке возрастания положительных зарядов ядер их атомов, будут периодически повторяться элементы со сходными свойствами.

Табличная форма периодической системы химических элементов представлена в ее современном виде. Она состоит из периодов, рядов и групп. Период представляет последовательный горизонтальный ряд элементов, расположенных в порядке возрастания положительного заряда ядер их атомов.

В начале каждого периода (за исключением первого) находится элемент с ярко выраженными металлическими свойствами (щелочной металл). Затем по мере увеличения порядкового номера постепенно ослабевают металлические и нарастают неметаллические свойства элементов. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (галоген), а последним - инертный газ. I период состоит из двух элементов, роль щелочного металла и галогена здесь одновременно выполняет водород. II и III периоды включают по 8 элементов, названных Менделеевым типическими. IV и V периоды насчитывают по 18 элементов, VI-32. VII период еще не завершен и пополняется искусственно создаваемыми элементами; в настоящее время в этом периоде насчитывается 17 элементов. I, II и III периоды называют малыми, каждый из них состоит из одного горизонтального ряда, IV-VII- большими: они (за исключением VII) включают два горизонтальных ряда - четный (верхний) и нечетный (нижний). В четных рядах больших периодов находятся только металлы, и изменение свойств элементов в ряду слева направо выражено слабо.

В нечетных рядах больших периодов свойства элементов в ряду изменяются так же, как свойства типических элементов. В четном ряду VI периода после лантана следует 14 элементов [называемых лантанидами (см.), лантаноидами, редкоземельными элементами], сходных по химическим свойствам с лантаном и между собой. Перечень их приводится отдельно под таблицей.

Отдельно выписаны и приведены под таблицей элементы, следующие за актинием- актиниды (актиноиды).

В периодической системе химических элементов по вертикалям расположено девять групп. Номер группы равен высшей положительной валентности (см.) элементов этой группы. Исключение составляют фтор (бывает только отрицательно одновалентным) и бром (не бывает семивалентным); кроме того, медь, серебро, золото могут проявлять валентность больше +1 (Cu-1 и 2, Ag и Au-1 и 3), а из элементов VIII группы валентностью +8 обладают только осмий и рутений. Каждая группа, за исключением восьмой и нулевой, делится на две подгруппы: главную (расположена правее) и побочную. В главные подгруппы входят типические элементы и элементы больших периодов, в побочные - только элементы больших периодов и притом металлы.

По химическим свойствам элементы каждой подгруппы данной группы значительно отличаются друг от друга и только высшая положительная валентность одинакова для всех элементов данной группы. В главных подгруппах сверху вниз усиливаются металлические свойства элементов и ослабевают неметаллические (так, франций является элементом с наиболее ярко выраженными металлическими свойствами, а фтор - неметаллическими). Таким образом, место элемента в периодической системе Менделеева (порядковый номер) определяет его свойства, которые представляют собой среднее из свойств соседних элементов по вертикали и горизонтали.

Некоторые группы элементов носят особые названия. Так, элементы главных подгрупп I группы называют щелочными металлами, II группы - щелочноземельными металлами, VII группы - галогенами, элементы, расположенные за ураном,- трансурановыми. Элементы, которые входят в состав организмов, принимают участие в процессах обмена веществ и обладают явно выраженной биологической ролью, называют биогенными элементами. Все они занимают верхнюю часть таблицы Д. И. Менделеева. Это в первую очередь О, С, Н, N, Са, Р, К, S, Na, Cl, Mg и Fe, составляющие основную массу живого вещества (более 99%). Места, занимаемые этими элементами в периодической системе, окрашены в светло-голубой цвет. Биогенные элементы, которых в организме очень мало (от 10 -3 до 10 -14 %), называют микроэлементами (см.). В клетках периодической системы, окрашенных в желтый цвет, помещены микроэлементы, жизненно важное значение которых для человека доказано.

Согласно теории строения атомов (см. Атом) химические свойства элементов зависят в основном от числа электронов на внешней электронной оболочке. Периодическое изменение свойств элементов с увеличением положительного заряда атомных ядер объясняется периодическим повторением строения наружной электронной оболочки (энергетического уровня) атомов.

В малых периодах с увеличением положительного заряда ядра возрастает число электронов на внешней оболочке от 1 до 2 в I периоде и от 1 до 8 во II и III периодах. Отсюда изменение свойств элементов в периоде от щелочного металла до инертного газа. Внешняя электронная оболочка, содержащая 8 электронов, является завершенной и энергетически устойчивой (элементы нулевой группы химически инертны).

В больших периодах в четных рядах с ростом положительного заряда ядер число электронов на внешней оболочке остается постоянным (1 или 2) и идет заполнение электронами второй снаружи оболочки. Отсюда медленное изменение свойств элементов в четных рядах. В нечетных рядах больших периодов с увеличением заряда ядер идет заполнение электронами внешней оболочки (от 1 до 8) и свойства элементов изменяются так, как и у типических элементов.

Число электронных оболочек в атоме равно номеру периода. Атомы элементов главных подгрупп имеют на внешних оболочках число электронов, равное номеру группы. Атомы элементов побочных подгрупп содержат на внешних оболочках один или два электрона. Этим объясняется различие в свойствах элементов главной и побочной подгрупп. Номер группы указывает возможное число электронов, которые могут участвовать в образовании химических (валентных) связей (см. Молекула), поэтому такие электроны называют валентными. У элементов побочных подгрупп валентными являются не только электроны внешних оболочек, но и предпоследних. Число и строение электронных оболочек указано в прилагаемой периодической системе химических элементов.

Периодический закон Д. И. Менделеева и основанная на нем система имеют исключительно большое значение в науке и практике. Периодический закон и система явились основой для открытия новых химических элементов, точного определения их атомных весов, развития учения о строении атомов, установления геохимических законов распределения элементов в земной коре и развития современных представлений о живом веществе, состав которого и связанные с ним закономерности находятся в соответствии с периодической системой. Биологическая активность элементов и их содержание в организме также во многом определяются местом, которое они занимают в периодической системе Менделеева. Так, с увеличением порядкового номера в ряде групп возрастает токсичность элементов и уменьшается их содержание в организме. Периодический закон является ярким выражением наиболее общих диалектических законов развития природы.

Как пользоваться таблицей Менделеева?Для непосвященного человека читать таблицу Менделеева – все равно, что для гнома смотреть на древние руны эльфов. А таблица Менделеева, между прочим, если ей правильно пользоваться, может рассказать о мире очень многое. Помимо того, что сослужит Вам службу на экзамене, она еще и просто незаменима при решении огромного количества химических и физических задач. Но как ее читать? К счастью, сегодня этому искусству может научиться каждый. В этой статье расскажем, как понять таблицу Менделеева.

Периодическая система химических элементов (таблица Менделеева) – это классификация химических элементов, которая устанавливает зависимость различных свойств элементов от заряда атомного ядра.

История создания Таблицы

Дмитрий Иванович Менделеев был не простым химиком, если кто-то так думает. Это был химик, физик, геолог, метролог, эколог, экономист, нефтяник, воздухоплаватель, приборостроитель и педагог. За свою жизнь ученый успел провести фундаментально много исследований в самых разных областях знаний. Например, широко распространено мнение, что именно Менделеев вычислил идеальную крепость водки – 40 градусов. Не знаем, как Менделеев относился к водке, но точно известно, что его диссертация на тему «Рассуждение о соединении спирта с водой» не имела к водке никакого отношения и рассматривала концентрации спирта от 70 градусов. При всех заслугах ученого, открытие периодического закона химических элементов – одного их фундаментальных законов природы, принесло ему самую широкую известность.

Существует легенда, согласно которой периодическая система приснилась ученому, после чего ему осталось лишь доработать явившуюся идею. Но, если бы все было так просто.. Данная версия о создании таблицы Менделеева, по-видимому, не более чем легенда. На вопрос о том, как была открыта таблица, сам Дмитрий Иванович отвечал: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово»

В середине девятнадцатого века попытки упорядочить известные химические элементы (известно было 63 элемента) параллельно предпринимались несколькими учеными. Например, в 1862 году Александр Эмиль Шанкуртуа разместил элементы вдоль винтовой линии и отметил циклическое повторение химических свойств. Химик и музыкант Джон Александр Ньюлендс предложил свой вариант периодической таблицы в 1866 году. Интересен тот факт, что в расположении элементов ученый пытался обнаружить некую мистическую музыкальную гармонию. В числе прочих попыток была и попытка Менделеева, которая увенчалась успехом.

В 1869 году была опубликована первая схема таблицы, а день 1 марта 1869 года считается днем открытия периодического закона. Суть открытия Менделеева состояла в том, что свойства элементов с ростом атомной массы изменяются не монотонно, а периодически. Первый вариант таблицы содержал всего 63 элемента, но Менделеев предпринял ряд очень нестандартных решений. Так, он догадался оставлять в таблице место для еще неоткрытых элементов, а также изменил атомные массы некоторых элементов. Принципиальная правильность закона, выведенного Менделеевым, подтвердилась очень скоро, после открытия галлия, скандия и германия, существование которых было предсказано ученым.

Современный вид таблицы Менделеева

Ниже приведем саму таблицу

Сегодня для упорядочения элементов вместо атомного веса (атомной массы) используется понятие атомного числа (числа протонов в ядре). В таблице содержится 120 элементов, которые расположены слева направо в порядке возрастания атомного числа (числа протонов)

Столбцы таблицы представляют собой так называемые группы, а строки – периоды. В таблице 18 групп и 8 периодов.

  • Металлические свойства элементов при движении вдоль периода слева направо уменьшаются, а в обратном направлении – увеличиваются.
  • Размеры атомов при перемещении слева направо вдоль периодов уменьшаются.
  • При движении сверху вниз по группе увеличиваются восстановительные металлические свойства.
  • Окислительные и неметаллические свойства при движении вдоль периода слева направо увеличиваютс я.

Что мы узнаем об элементе по таблице? Для примера, возьмем третий элемент в таблице – литий, и рассмотрим его подробно.

Первым делом мы видим сам символ элемента и его название под ним. В верхнем левом углу находится атомный номер элемента, в порядке которого элемент расположен в таблице. Атомный номер, как уже было сказано, равен числу протонов в ядре. Число положительных протонов, как правило, равно числу отрицательных электронов в атоме (за исключением изотопов).

Атомная масса указана под атомным числом (в данном варианте таблицы). Если округлить атомную массу до ближайшего целого, мы получим так называемое массовое число. Разность массового числа и атомного числа дает количество нейтронов в ядре. Так, число нейтронов в ядре гелия равно двум, а у лития – четырем.

Вот и закончился наш курс "Таблица Менделеева для чайников". В завершение, предлагаем Вам посмотреть тематическое видео, и надеемся, что вопрос о том, как пользоваться периодической таблицей Менделеева, стал Вам более понятен. Напоминаем, что изучать новый предмет всегда эффективнее не одному, а при помощи опытного наставника. Именно поэтому, никогда не стоит забывать о , которые с радостью поделятся с Вами своими знаниями и опытом.

Инструкция

Периодическая система представляет собой многоэтажный «дом», в котором располагается большое количество квартир. Каждый «жилец» или в своей собственной квартире под определенным номером, который является постоянным. Помимо этого элемент имеет «фамилию» или название, например кислород, бор или азот. Кроме этих данных в каждой «квартире» или указана такая информация, как относительная атомная масса, которая может иметь точные или округленные значения.

Как в любом доме, здесь имеются «подъезды», а именно группы. Причем в группах элементы располагаются слева и справа, образуя . В зависимости от того, с какой стороны их больше, та называется главной. Другая подгруппа, соответственно, будет побочной. Также в таблице имеются «этажи» или периоды. Причем периоды могут быть как большими (состоят из двух рядов) так и малыми (имеют только один ряд).

По таблице можно показать строение атома элемента, каждый из которых имеет положительно заряженное ядро, состоящее из протонов и нейтронов, а также вращающихся вокруг него отрицательно заряженных электронов. Число протонов и электронов численно совпадает и определяется в таблице по порядковому номеру элемента. Например, химический элемент сера имеет №16, следовательно, будет иметь 16 протонов и 16 электронов.

Чтобы определить количество нейтронов (нейтральных частиц, также расположенных в ядре) вычтите из относительной атомной массы элемента его порядковый номер. Например, железо имеет относительную атомную массу равную 56 и порядковый номер 26. Следовательно, 56 – 26 = 30 протонов у железа.

Электроны находятся на разном расстоянии от ядра, образуя электронные уровни. Чтобы определить число электронных (или энергетических) уровней, нужно посмотреть на номер периода, в котором располагается элемент. Например, находится в 3 периоде, следовательно, у него будет 3 уровня.

По номеру группы (но только для главной подгруппы) можно определить высшую валентность. Например, элементы первой группы главной подгруппы (литий, натрий, калий и т.д.) имеют валентность 1. Соответственно, элементы второй группы (бериллий, кальций и т.д.) будут иметь валентность равную 2.

Также по таблице можно проанализировать свойства элементов. Слева направо металлические , а неметаллические усиливаются. Это хорошо видно на примере 2 периода: начинается щелочным металлом , затем щелочноземельный металл магний, после него элемент алюминий, затем неметаллы кремний, фосфор, сера и заканчивается период газообразными веществами – хлором и аргоном. В следующем периоде наблюдается аналогичная зависимость.

Сверху вниз также наблюдается закономерность – металлические свойства усиливаются, а неметаллические ослабевают. То есть, например, цезий гораздо активнее по сравнению с натрием.

Полезный совет

Для удобства лучше использовать цветной вариант таблицы.

Открытие периодического закона и создание упорядоченной системы химических элементов Д.И. Менделеевым стали апогеем развития химии в XIX веке. Ученым был обобщен и систематизирован обширный материал знаний о свойствах элементов.

Инструкция

В XIX веке не было никаких представлений о строении атома. Открытие Д.И. Менделеева являлось лишь обобщением опытных фактов, но их физический смысл долгое время оставался непонятным. Когда появились первые данные о строении ядра и распределении электронов в атомах, это взглянуть на закон и систему элементов по-новому. Таблица Д.И. Менделеева дает возможность наглядно проследить свойств элементов, встречающихся в .

Каждому элементу в таблице присвоен определенный порядковый номер (H - 1, Li - 2, Be - 3 и т.д.). Этот номер соответствует ядра (количеству протонов в ядре) и числу электронов, вращающихся вокруг ядра. Число протонов, таким образом, равно числу электронов, и это говорит о том, что в обычных условиях атом электрически .

Деление на семь периодов происходит по числу энергетических уровней атома. Атомы первого периода имеют одноуровневую электронную оболочку, второго - двухуровневую, третьего - трехуровневую и т.д. При заполнении нового энергетического уровня начинается новый период.

Первые элементы всякого периода характеризуются атомами, имеющими по одному электрону на внешнем уровне, - это атомы щелочных металлов. Заканчиваются периоды атомами благородных газов, имеющими полностью заполненный электронами внешний энергетический уровень: в первом периоде инертные газы имеют 2 электрона, в последующих - 8. Именно по причине похожего строения электронных оболочек группы элементов имеют сходные физико- .

В таблице Д.И. Менделеева присутствует 8 главных подгрупп. Такое их количество обусловлено максимально возможным числом электронов на энергетическом уровне.

Внизу периодической системы выделены лантаноиды и актиноиды в качестве самостоятельных рядов.

С помощью таблицы Д.И. Менделеева можно пронаблюдать периодичность следующих свойств элементов: радиуса атома, объема атома; потенциала ионизации; силы сродства с электроном; электроотрицательности атома; ; физических свойств потенциальных соединений.

Четко прослеживаемая периодичность расположения элементов в таблице Д.И. Менделеева рационально объясняется последовательным характером заполнения электронами энергетических уровней.

Источники:

  • Таблица Менделеева

Периодический закон, являющийся основой современной химии и объясняющий закономерности изменения свойств химических элементов, был открыт Д.И. Менделеевым в 1869 году. Физический смысл этого закона вскрывается при изучении сложного строения атома.

В XIX веке считалось, что атомная масса является главной характеристикой элемента, поэтому для классификации веществ использовали именно ее. Сейчас атомы определяют и идентифицируют по величине заряда их ядра (числу и порядковому номеру в таблице Менделеева). Впрочем, атомная масса элементов за некоторыми исключениями (например, атомная масса меньше атомной массы аргона) увеличивается соразмерно их заряду ядра.

При увеличении атомной массы наблюдается периодическое изменение свойств элементов и их соединений. Это металличность и неметалличность атомов, атомный радиус , потенциал ионизации, сродство к электрону, электроотрицательность, степени окисления, соединений (температуры кипения, плавления, плотность), их основность, амфотерность или кислотность.

Сколько элементов в современной таблице Менделеева

Таблица Менделеева графически выражает открытый им закон. В современной периодической системе содержится 112 химических элементов (последние – Мейтнерий, Дармштадтий, Рентгений и Коперниций). По последним данным, открыты и следующие 8 элементов (до 120 включительно), но не все из них получили свои названия, и эти элементы пока еще мало в каких печатных изданиях присутствуют.

Каждый элемент занимает определенную клетку в периодической системе и имеет свой порядковый номер, соответствующий заряду ядра его атома.

Как построена периодическая система

Структура периодической системы представлена семью периодами, десятью рядами и восемью группами. Каждый период начинается щелочным металлом и заканчивается благородным газом. Исключения составляют первый период, начинающийся водородом, и седьмой незавершенный период.

Периоды делятся на малые и большие. Малые периоды (первый, второй, третий) состоят из одного горизонтального ряда, большие (четвертый, пятый, шестой) – из двух горизонтальных рядов. Верхние ряды в больших периодах называются четными, нижние – нечетными.

В шестом периоде таблицы после (порядковый номер 57) находятся 14 элементов, похожих по свойствам на лантан, – лантаноидов. Они вынесены в нижнюю часть таблицы отдельной строкой. То же самое относится и к актиноидам, расположенным после актиния (с номером 89) и во многом повторяющим его свойства.

Четные ряды больших периодов (4, 6, 8, 10) заполнены только металлами.

Элементы в группах проявляют одинаковую высшую в оксидах и других соединениях, и эта валентность соответствует номеру группы. Главные вмещают в себя элементы малых и больших периодов, – только больших. Сверху вниз усиливаются, неметаллические – ослабевают. Все атомы побочных подгрупп – металлы.

Совет 4: Селен как химический элемент таблицы Менделеева

Химический элемент селен относится к VI группе периодической системы Менделеева, он является халькогеном. Природный селен состоит из шести стабильных изотопов. Известно также 16 радиоактивных изотопов селена.

Инструкция

Селен считается очень редким и рассеянным элементом, в биосфере он энергично мигрирует, образуя более 50 минералов. Самые известные из них: берцелианит, науманнит, самородный селен и халькоменит.

Селен содержится в вулканической сере, галените, пирите, висмутине и других сульфидах. Его добывают из свинцовых, медных, никелевых и других руд, в которых он находится в рассеянном состоянии.

В тканях большинства живых существ содержится от 0,001 до 1 мг/кг , некоторые растения, морские организмы и грибы его концентрируют. Для ряда растений селен является необходимым элементом. Потребность человека и животных в составляет 50-100 мкг/кг пищи, этот элемент обладает антиоксидантными свойствами, влияет на множество ферментативных реакций и повышает восприимчивость сетчатки глаза к свету.

Селен может существовать в различных аллотропических модификациях: аморфной (стекловидный, порошкообразный и коллоидный селен), а также кристаллической. При восстановлении селена из раствора селенистой кислоты или быстрым охлаждением его паров получают красный порошкообразный и коллоидный селен.

При нагревании любой модификации этого химического элемента выше 220°С и последующем охлаждении образуется стекловидный селен, он хрупок и обладает стеклянным блеском.

Наиболее устойчив термически гексагональный серый селен, решетка которого построена из расположенных параллельно друг другу спиральных цепочек атомов. Его получают при помощи нагревания других форм селена до плавления и медленным охлаждением до 180-210°С. Внутри цепей гексагонального селена атомы связаны ковалентно.

Селен устойчив на воздухе, на него не действуют: кислород, вода, разбавленная серная и соляная кислоты, однако он хорошо растворяется в азотной кислоте. Взаимодействуя с металлами, селен образует селениды. Известно множество комплексных соединений селена, все они ядовиты.

Получают селен из отходов бумажного или производства, методом электролитического рафинирования меди. В шламах этот элемент присутствует вместе с тяжелыми и металлами, серой и теллуром. Для его извлечения шламы фильтруют, затем нагревают с концентрированной серной кислотой или подвергают окислительному обжигу при температуре 700°С.

Селен используется при производстве выпрямительных полупроводниковых диодов и другой преобразовательной техники. В металлургии с его помощью придают стали мелкозернистую структуру, а также улучшают ее механические свойства. В химической промышленности селен применяется в качестве катализатора.

Источники:

  • ХиМиК.ру, Селен

Кальций представляет собой химический элемент, относящийся ко второй подгруппе периодической таблицы с символическим обозначением Ca и атомной массой в 40,078 г/моль. Он представляет собой довольно мягкий и химически активный щелочноземельный металл с серебристым цветом.

Инструкция

С латинского языка « » переводится как «известь» или «мягкий камень», а своим открытием он обязан англичанину Хэмфри Дэви, который в 1808 году смог выделить кальций электролитическим методом. Ученый тогда взял смесь влажной гашеной извести, «приправленную» оксидом ртути, и подверг ее процессу электролиза на платиновой пластине, фигурирующей в эксперименте в качестве анода. Катодом же выступала проволока, которую химик погрузил в жидкую ртуть. Интересно и то, что такие соединения кальция, как известняк, мрамор и гипс, а также известь, были известны человечеству за много столетий до эксперимента Дэви, в течение которых ученые полагали некоторые из них простыми и самостоятельными телами. Только в 1789 году француз Лавуазье опубликовал труд, в котором он предположил, что известь, кремнезий, барит и глинозем являются сложными веществами.

Кальций обладает высокой степенью химической активности, в силу чего в чистом виде в природе практически не встречается. Но ученые подсчитали, что на долю этого элемента приходятся около 3,38% от общей массы всей земной коры, что делает кальций пятым по распространенности после кислорода, кремний, алюминия и железа. Есть этот элемент в морской воде – около 400 мг на один литр. Входит кальций и в состав силикатов различных горных пород (к примеру, гранит и гнейсы). Много его в полевом шпате, меле и известняках, состоящих из минерала кальцита с формулой СаСО3. Кристаллическая форма кальция – это мрамор. В общей же сложности путем миграции этого элемента в земной коре он образует 385 минералов.

К физическим свойствам кальция относится его способность проявлять ценные полупроводниковые способности, хотя он и не становится полупроводником и металлом в традиционном смысле этого слова. Меняется данная ситуация при постепенном повышении давления, когда кальцию сообщается металлическое состояние и способности проявления сверхпроводящих свойств. Легко взаимодействует кальций с кислородом, влагой воздуха и углекислым газом, в силу чего в лабораториях для работы этот химический элемент хранят в плотно закрытых и химик Джон Александр Ньюленд – однако научное сообщество проигнорировало его достижение. Предложение Ньюленда не приняли всерьез из-за его поисков гармонии и связи между музыкой и химией.

Дмитрий Менделеев впервые опубликовал свою периодическую таблицу в 1869 году на страницах журнала Русского химического общества. Также ученый разослал извещения о своем открытии всем ведущим мировым химикам, после чего он неоднократно улучшал и дорабатывал таблицу, пока она не стала такой, какой ее знают сегодня. Суть открытия Дмитрия Менделеева заключалась в периодическом, а не монотонном изменении химических свойств элементов с ростом атомной массы. Окончательное объединение теории в периодический закон произошло в 1871 году.

Легенды о Менделееве

Наиболее распространенной легендой является открытие таблицы Менделеевым во сне. Сам ученый неоднократно осмеивал данный миф, утверждая, что он придумывал таблицу на протяжении многих лет. По другой легенде Дмитрий Менделеев водку – она появилась после защиты ученым диссертации «Рассуждение о соединении спирта с водою».

Менделеева до сих пор многие считают первооткрывателем , который сам любил творить под водно-спиртовым раствором. Современники ученого часто посмеивались над лабораторией Менделеева, которую тот оборудовал в дупле гигантского дуба.

Отдельным поводом для шуток по слухам являлась страсть Дмитрия Менделеева к плетению чемоданов, которым ученый занимался, проживая в Симферополе. В дальнейшем он мастерил из картона для нужд своей лаборатории, за что его язвительно называли мастером чемоданных дел.

Таблица Менделеева, кроме упорядочивания химических элементов в единую систему, дала возможность предсказать открытие многих новых элементов. Однако в то же время некоторые из них ученые признали несуществующими, поскольку они были несовместимы с концепцией . Наиболее известной историей на тот момент являлось открытие таких новых элементов, как короний и небулий.

Он опирался на труды Роберта Бойле и Антуана Лавузье. Первый ученый ратовал за поиск неразложимых химических элементов. 15 из таковых Бойле перечислил еще в 1668-ом году.

Лавузье прибавил к ним еще 13, но спустя век. Поиски растянулись, поскольку не было стройной теории связи между элементами. Наконец, в «игру» вступил Дмитрий Менделеев. Он решил, что есть связь между атомной массой веществ и их местом в системе.

Эта теория позволила ученому открыть десятки элементов, не обнаруживая их на практике, а природе. Это было возложено на плечи потомков. Но, сейчас не о них. Посвятим статью великому русскому ученому и его таблице.

История создания таблицы Менделеева

Таблица Менделеева началась с книги «Соотношение свойств с атомным весом элементов». Труд выпущен в 1870-ых. Тогда же русский ученый выступил перед химическим обществом страны и разослал первый вариант таблицы коллегам из-за рубежа.

До Менделеева разными учеными были открыты 63 элемента. Наш соотечественник начал со сравнения их свойств. В первую очередь, работал с калием и хлором. Потом, взялся за группу металлов щелочной группы.

Химик обзавелся специальным столом и карточками элементов, чтобы раскладывать их, как пасьянс, ища нужные совпадения и комбинации. В итоге, пришло прозрение: — свойства компонентов зависят от массы их атомов. Так, элементы таблицы Менделеева выстроились в ряды.

Находкой маэстро химии стало решение оставить в этих рядах пустоты. Периодичность перепада между атомными массами заставила ученого предположить, что человечеству известны еще не все элементы. Промежутки в весе между некоторыми «соседями» были слишком велики.

Поэтому, периодическая таблица Менделеева стала похожа на шахматное поле, с обилием «белых» клеток. Время показало, что они, действительно, ждали своих «постояльцев». Ими, к примеру, стали инертные газы. Гелий, неон, аргон, криптон, радиоакт и ксенон открыты лишь в 30-ых годах 20-го века.

Теперь о мифах. Распространено мнение, что химическая таблица Менделеева явилась ему во сне. Это происки университетских педагогов, точнее, одного из них – Александра Иностранцева. Это русский геолог, читавший лекции в Петербургском университете горного дела.

Иностранцев был знаком с Менделеевым, бывал у него в гостях. Однажды, изможденный поисками Дмитрий заснул прямо при Александе. Тот дождался, пока химик проснется и увидел, как Менделеев хватается за листок и записывает окончательный вариант таблицы.

По сути, ученый просто не успел сделать это до того, как его захватил Морфей. Однако, Иностранцеву хотелось позабавить своих студентов. На основе виденного геолог придумал байку, которую благодарные слушатели быстро распространили в массы.

Особенности таблицы Менделеева

С момента первой версии 1969-го года порядковая таблица Менделеева не раз дорабатывалась. Так, с открытием в 1930-ых благородных газов удалось вывести новую зависимость элементов, — от их порядковых номеров, а не массы, как заявлял автор системы.

Понятие «атомный вес» заменили на «атомный номер». Удалось изучить число протонов в ядрах атомов. Эта цифра и есть порядковый номер элемента.

Ученые 20-го века изучили и электронное строение атомов. Оно тоже влияет на периодичность элементов и отражено в поздних редакциях таблицы Менделеева. Фото списка демонстрирует, что вещества в нем расставлены по мере роста атомного веса.

Первооснову менять не стали. Масса увеличивается слева направо. При этом, таблица не едина, а поделена на 7 периоды. Отсюда и название списка. Период – горизонтальный ряд. Его начало – типичные металлы, конец – элементы с неметаллическими свойствами. Убывание постепенное.

Есть большие и малые периоды. Первые находятся в начале таблицы, их 3. Открывает список период из 2-х элементов. Следом идут две колонки, в которых по 8 наименований. Оставшиеся 4 периода большие. Наиболее протяжен 6-ой, в нем 32 элемента. В 4-ом и 5-ом их по 18, а в 7-ом – 24.

Можно сосчитать, сколько элементов в таблице Менделеева. Всего 112 наименований. Именно наименований. Клеток же 118, а есть вариации списка и со 126-ю полями. Все еще остаются пустые клетки для неоткрытых элементов, не имеющих имен.

Не все периоды умещаются в одну строку. Большие периоды состоят из 2-х рядов. Количество металлов в них перевешивает. Поэтому, им полностью посвящены нижние строки. Постепенное убывание от металлов к инертным веществам соблюдается в верхних рядах.

Картинки таблицы Менделеева поделены и вертикально. Это группы в таблице Менделеева , их 8. Вертикально скомпонованы элементы, схожие по химическим свойствам. Они поделены на главную и побочную подгруппы. Последние начинаются только с 4-го периода. В главные подгруппы входят и элементы малых периодов.

Суть таблицы Менделеева

Названия элементов в таблице Менделеева – это 112 позиций. Суть их компоновки в единый список – систематизация первоэлементов. Над этим начали биться еще в античные времена.

Одним из первых понять, из чего составлено все сущее попытался Аристотель. Он взял за основу свойства веществ – холод и тепло. Эмпидокл выделил 4-ре первоосновы по стихиям: воду, землю, огонь и воздух.

Металлы в таблице Менделеева , как и другие элементы, — те самые первоосновы, но с современной точки зрения. Российскому химику удалось открыть большинство составляющих нашего мира и предположить существование еще неизвестных первоэлементов.

Получается, что произношение таблицы Менделеева – озвучивание некой модели нашей реальности, раскладывание ее на составляющие. Однако, выучить их не так-то просто. Попробуем облегчить задачу, описав пару эффективных методов.

Как выучить таблицу Менделеева

Начнем с современного метода. Компьютерщиками разработан ряд флеш-игр, помогающих запомнить список Менделеева. Участникам проекта предлагают находить элементы по разным опциям, например, названию, атомной массе, буквенному обозначению.

Игрок имеет право выбрать поле деятельности – лишь часть таблицы, или ее всю. В нашей воле, так же, исключить имена элементов, другие параметры. Это усложняет поиск. Для продвинутых предусмотрен и таймер, то есть тренировка ведется на скорость.

Игровые условия делают изучение номеров элементов в таблице Менднлеева не нудным, а занятным. Просыпается азарт, и систематизировать знания в голове становится проще. Те же, кто не приемлет компьютерных флеш-проектов, предлагают более традиционный способ заучивания списка.

Его делят на 8 групп, или 18 (в соответствии с редакцией 1989-го года). Для удобства запоминания, лучше создать несколько отдельных таблиц, а не работать по цельному варианту. Помогают и зрительные образы, подобранные к каждому из элементов. Опираться следует на собственные ассоциации.

Так, железо в мозгу может соотноситься, к примеру, с гвоздем, а ртуть – с градусником. Название элемента незнакомо? Пользуемся методом наводящих ассоциаций. , например, составим из начал слов «ириска» и «динамик».

Характеристика таблицы Менделеева не учиться в один присест. Рекомендованы занятия по 10-20 минут в день. Начинать рекомендована с запоминания лишь основных характеристик: названия элемента, его обозначения, атомной массы и порядкового номера.

Школьники предпочитают вешать таблицу Менделеева над рабочим столом, или на стене, на которую часто смотрят. Метод хорош для людей с преобладанием зрительной памяти. Данные из списка невольно запоминаются даже без зубрежки.

Это учитывают и педагоги. Как правило, они не заставляют заучивать список, разрешают смотреть в него даже на контрольных. Постоянное заглядывание в таблицу равнозначно эффекту распечатки на стене, или написанию шпаргалок до экзаменов.

Приступая к изучению, вспомним, что и Менделеев не сразу запомнил свой список. Однажды, когда ученого спросили, как он открыл таблицу, последовал ответ: — «Я над ней, может, 20 лет думал, а вы считаете: сидел и, вдруг, готово». Периодическая система – кропотливый труд, который не осилить в сжатые сроки.

Наука не терпит спешки, ведь она приводит к заблуждениям и досадным ошибкам. Так, одновременно с Менделеевым таблицу составил и Лотар Мейер. Однако, немец немного недоработал список и не был убедителен при доказательстве своей точки зрения. Поэтому, общественность признала труд русского ученого, а не его коллеги-химика из Германии.

Одной из самых популярных таблиц в мире является таблица Менделеева. В каждой ячейке вписаны названия химических элементов. Для ее разработки было приложено много усилий. Ведь это не просто список веществ. Они упорядочены согласно своим свойствам и особенностям. А сколько элементов в таблице Менделеева мы сейчас и узнаем.

История создания таблицы

Менделеев не был первым ученым, который решил структурировать элементы. Пытались многие. Вот только никто не мог сопоставить все в одной слаженной таблице. Датой открытия периодического закона мы можем назвать 17 февраля 1869 года. В этот день Менделеев показал свое творение – целую систему элементов, упорядоченных на основе атомного веса и химических особенностях.

Стоит отметить, что гениальная мысль не пришла ученому в один удачный вечер во время работы. Он действительно трудился около 20 лет. Снова и снова перебирал карточки с элементами, изучал их характеристики. В это же время трудились и другие ученые.

Химик Канниццаро предложил от своего имени теорию атомного веса. Он утверждал, что именно эти данные могут построить все вещества в нужном порядке. Дальше ученые Шантуркуа и Ньюлендс, работая в разных точках мира, пришли к умозаключению, что размещая элементы по атомному весу, они начинают дополнительно объединяться и по другим свойствам.

В 1869 году вместе с Менделеевым были представлены другие примеры таблиц. Но сегодня мы даже не помним имена их авторов. Почему так? Все дело в превосходстве ученого над своими конкурентами:

  1. Таблица имела большее количество открытых элементов, чем у других.
  2. Если какой-то элемент не подходил по атомному весу, ученый помещал его на основе других свойств. И это было правильным решением.
  3. В таблице было много пустых мест. Менделеев сделал пропуски осознано, забрав тем самым частичку славы тех, кто в будущем найдет эти элементы. Он даже дал описание некоторых еще неведомых веществ.

Самое главное достижение в том, что эта таблица неразрушима. Она создано так гениально, что любые открытия в будущем будут ее только дополнять.

Сколько элементов в таблице Менделеева

Каждый человек хотя бы раз в жизни видел эту таблицу. Но вот назвать точное количество веществ сложно. Правильных ответов может быть два: 118 и 126. Сейчас мы разберемся, почему так.

В природе люди обнаружили 94 элемента. Они ничего с ними не делали. Только изучали их свойства и особенности. Большая часть из них была в первоначальной периодической таблице.

Другие 24 элемента были созданы в лабораториях. Всего получается 118 штук. Еще 8 элементов являются лишь гипотетическими вариантами. Их пытаются изобрести или получить. Так что на сегодняшний день и вариант с 118 элементами, и с 126 элементами можно смело называть.

  • Ученый был семнадцатым ребенком в семье. Восемь из них погибли еще в раннем возрасте. Отец рано ушел из жизни. Но мать продолжала бороться за будущее своих детей, так что смогла пристроить их в хорошие учебные заведения.
  • Всегда отстаивал свое мнение. Был уважаемым педагогом в университетах Одессы, Симферополя и Санкт-Петербурга.
  • Он никогда не изобретал водку. Алкогольный напиток был создан задолго до ученого. Но его докторская была посвящена спирту, отсюда и развилась легенда.
  • Периодическая система никогда не снилась Менделееву. Она стала результатом тяжелой работы.
  • Он любил делать чемоданы. И довел свое хобби до высокого уровня мастерства.
  • За всю свою жизнь Менделеев 3 раза мог получить Нобелевскую премию. Но все закончилось лишь номинациями.
  • Многих это удивит, то работы в области химии занимают лишь 10% всех занятий ученого. Также он изучал аэростаты и кораблестроение.

Таблица Менделеева – это удивительная система всех элементов, которые когда-либо были обнаружены людьми. Она делится на ряды и столбцы, чтобы упростить изучение всех элементов.

P.S. Статья — Сколько элементов в таблице Менделеева, опубликована в рубрике — .