Раздел физики молекул что изучает. Следствия из основного уравнения МКТ. Опытное обоснование основных положений МКТ

Основные положения МКТ:

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химических веществ.

В основе молекулярно-кинетической теории лежат три основных положения:

    Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул, которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными, т.е. состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы.

    Атомы и молекулы находятся в непрерывном хаотическом движении.

    Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Диффузия:

Диффузия - процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией.

Броуновское движение:

Броуновское движение -беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Постоянная Авогадро:

П остоянная Авогадро - физическая величина, численно равная количеству специфицированных структурных единиц (атомов,молекул,ионов,электронов или любых других частиц) в 1 молевещества. Определяется как количество атомов в 12граммах(точно) чистогоизотопауглерода-12. Обозначается обычно как N A , реже как L .

N A = 6,022 141 29(27)·10 23 моль −1 .

Количество вещества:

Количество вещества - физическая величина, характеризующая количество однотипных структурных единиц, содержащихся ввеществе. Под структурными единицами понимаются любые частицы, из которых состоит вещество (атомы,молекулы,ионы,электроныили любые другие частицы).Единица измеренияколичества вещества вСИ-моль.

    Взаимодействие молекул. Природа сил межмолекулярного взаимодействия. График зависимости их от расстояния.

Взаимодействие молекул:

Газы : расстояние между атомами или молекулами в среднем во много раз превышает размеры самих молекул. Газы легко сжимаются. Молекулы с огромными скоростями движутся в пространстве. Газы не сохраняют обьема и формы. Мнодественные удары молекул газа о стенки сосуда создают давление газа (молекулы стоят свободно).Жидкости : Молекулы жидкости расположены почти вплотную друг к другу. Жидкости текучи, не сохраняют формы, но сохраняют обьем (молекулы стоят не очень плотно друг к другу).Твердые тела : Сохраняют и обьем и форму. Если соеденить центры положения равновесий атомов или ионов твердого тела, то получится правильная пространственная решетка называемая кристалической (молекулы стоят очень плотно друг к другу).

Природа сил межмолекулярного взаимодействия:

Межмолекулярное взаимодействие имеет электростатическую природу. Предположение о его существовании было впервые использовано Я. Д. Ван-дер-Ваальсомв1873 годудля объяснения свойствреальных газов и жидкостей. В наиболее широком смысле под ним можно понимать такие взаимодействия между любыми частицами (молекулами, атомами, ионами), при которых не происходит образования химических, то есть ионных, ковалентных или металлических связей. Иными словами, эти взаимодействия существенно слабее ковалентных и не приводят к существенной перестройке электронного строения взаимодействующих частиц.

На больших расстояниях преобладают силы притяжения, которые могут иметь ориентационную, поляризационную (индукционную) и дисперсионную природу (см. подробнее в статьях ван-дер-ваальсово взаимодействиеидисперсионные силы). При усреднении по вращению частиц, происходящему вследствие теплового движения, потенциал межмолекулярных сил обратно пропорционален шестой степени расстояния, а ион-дипольных (как с постоянным, так и с наведенным диполем) - четвёртой степени. На малых расстояниях начинают преобладать силы отталкивания электронных оболочек частиц. Особым случаем является водородная связь - возникающее на малом расстоянии взаимодействие между атомом водорода одной молекулы и электроотрицательным атомом другой, когда эти атомы несут достаточно большой эффективный заряд.

График зависимости их от расстояния:

    Идеальный газ. Основное уравнение МКТ идеального газа.

Идеальный газ:

Идеальный газ - математическая модельгаза, в которой предполагается, что: 1)потенциальной энергиейвзаимодействиямолекулможно пренебречь по сравнению с ихкинетической энергией; 2) суммарный объем молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосудаабсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сферилиэллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др.

Основное уравнение МКТ идеального газа:

Молекулярно-кинетическая теория (сокращённо МКТ) - теория, возникшая в XIX веке и рассматривающая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

все тела состоят из частиц: атомов,молекулиионов;

частицы находятся в непрерывном хаотическомдвижении (тепловом);

частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

МКТ стала одной из самых успешных физических теорий и была подтверждена целым рядом опытных фактов. Основными доказательствами положений МКТ стали:

    Диффузия

    Броуновское движение

    Изменение агрегатных состояний вещества

Где k являетсяпостоянной Больцмана(отношениеуниверсальной газовой постоянной R кчислу АвогадроNA), i - число степеней свободы молекул ( в большинстве задач про идеальные газы, где молекулы предполагаются сферами малого радиуса, физическим аналогом которых могут служить инертные газы), а T - абсолютная температура.

Основное уравнение МКТ связывает макроскопические параметры (давление,объём,температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

    Молекулярно-кинетический смысл температуры. Энергия и скорость теплового движения молекул.

Молекулярно-кинетический смысл температуры:

Если два тела находятся в тепловом равновесии, то температуры этих тел одинаковы. А это означает, что результирующий поток энергии от одного тела к другому равен нулю. Это условие выполняется при равенстве средних значений кинетической энергии движения молекул контактирующих тел.

Энергия и скорость теплового движения молекул:

Энергия :

Все молекулы вещества находятся в беспрерывном хаотическом движении (перемещаются, колеблются около положения равновесия и т.д.). Молекулы, находясь в движении, обладают кинетическими энергиями. Сумма кинетических энергий движущихся молекул составляет часть внутренней энергии тела (потенциальную энергию взаимодействия молекул пока не рассматриваем). Так вот эта "внутренняя энергия" и называется энергией теплового движения. Ею и определяется температура тела. (Т.е. ТЕМПЕРАТУРА- является мерой средней кинетической энергии молекул тела.)

Тепловое:

Движение молекул в разных телах происходит по-разному. Молекулы газов беспорядочно движутся с большими скоростями (сотни м/с) по всему объему газа. Сталкиваясь, они отскакивают друг от друга, изменяя величину и направление скоростей. Молекулы жидкости колеблются около равновесных положений (т.к. расположены почти вплотную друг к другу) и сравнительно редко перескакивают из одного равновесного положения в другое. Движение молекул в жидкостях является менее свободным, чем в газах, но более свободным, чем в твердых телах. В твердых телах частицы колеблются около положения равновесия. С ростом температуры скорость частиц увеличивается, поэтому хаотическое движение частиц принято называть тепловым.

    Испарение и конденсация. Насыщенные и ненасыщенные пары.

Испарение и конденсация:

Парообразование - процесс превращения жидкости в пар.

Конденсация - процесс превращения пара в жидкость.

ИСПАРЕНИЕ - процесс парообразования с поверхности жидкости или твердого тела.

Заключается в вылетании частиц (молекул, атомов), которых превышает потенциальную энергию их связи с остальными частицами вещества. Скорость испарения зависит от:

1. площади поверхности жидкости,

2. температуры (увеличивается), хотя происходит при любой температуре и не требует постоянного притока тепла. Температура жидкости уменьшается.

3. движения молекул над поверхностью жидкости или газа,

4. рода вещества.

Насыщенные и ненасыщенные пары:

Насыщенный:

Насыщенный пар - пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава. Давление насыщенного пара зависит от температуры и рода жидкости и не зависит от объема.

Ненасыщенный :

Ненасыщенный пар - пар, не достигший динамического равновесия со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше. Давление ненасыщенного пара зависит от температуры, объема и рода жидкости.

    Кипение. Зависимость температуры кипения от давления.

Кипение:

Кипение - процесс парообразования в жидкости (переход вещества из жидкого в газообразное состояние), с возникновением границ разделения фаз. Температура кипения при атмосферном давлении приводится обычно как одна из основных физико-химических характеристик химически чистого вещества.

Кипение отличается от испарения, тем, что может происходить при определённой температуре и давлении. Кипение, как и испарение, является одним из способов парообразования.

Кипение является фазовым переходом первого рода. Кипение происходит гораздо более интенсивно, чем испарение с поверхности, из-за образования очагов парообразования, обусловленных как достигнутой температурой кипения, так и наличием примесей.

Зависимость температуры кипения от давления:

Температу́ра кипе́ния, точка кипения - температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения соответствует температуре насыщенного пара над плоской поверхностью кипящей жидкости, так как сама жидкость всегда несколько перегрета относительно температуры кипения.

Согласно уравнению Клапейрона - Клаузиуса с ростом давления температура кипения увеличивается, а с уменьшением давления температура кипения соответственно уменьшается. Предельной температурой кипения является критическая температура вещества. Так температура кипения воды будет изменяться на Земле в зависимости от высоты

    Влажность воздуха. Точка росы.

Влажность воздуха:

Влажность воздуха - это величина, характеризующая содержание водяных паров в атмосфере Земли - одна из наиболее существенных характеристик погоды и климата.

Влажность воздуха в земной атмосфере колеблется в широких пределах. Так, у земной поверхности содержание водяного пара в воздухе составляет в среднем от 0,2 % по объёму в высоких широтах до 2,5 % в тропиках. Упругость пара в полярных широтах зимой меньше 1 мбар (иногда лишь сотые доли мбар) и летом ниже 5 мбар; в тропиках же она возрастает до 30 мбар, а иногда и больше. В субтропических пустынях упругость пара понижена до 5-10 мбар.

Абсолютная влажность воздуха (f) - это количество водяного пара, фактически содержащегося в 1 м³ воздуха. Определяется как отношение массы содержащегося в воздухе водяного пара к объёму влажного воздуха.

Обычно используемая единица абсолютной влажности - грамм на метр кубический, г/м³

Относительная влажность воздуха (φ) - это отношение его текущей абсолютной влажности к максимальной абсолютной влажности при данной температуре. Она также определяется как отношение парциального давления водяного пара в газе к равновесному давлениюнасыщенного пара.

Точка росы:

Температура точки росы газа (точка росы) - это значение температуры газа, ниже которой водяной пар, содержащийся в газе, охлаждаемом изобарически, становится насыщенным над плоской поверхностью воды.

    Линейное тепловое расширение твердых тел. Коэффициент линейного расширения. Объемное тепловое расширение твердых тел. Связь между α и γ .

Линейное тепловое расширение твердых тел:

Тепловое расширение - изменение линейных размеров и формы тела при изменении его температуры. Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.

Раздел физики изучающий данное свойство называется дилатометрией.

Тепловое расширение тел учитывается при конструировании всех установок, приборов и машин, работающих в переменных температурных условиях.

Основной закон теплового расширения гласит, что тело с линейным размером в соответствующем измерении при увеличении его температуры на расширяется на величину , равную:

где - так называемый коэффициент линейного теплового расширения. Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

Коэффициент линейного расширения:

Коэффициент теплового расширения - безразмерная величина, характеризующая относительное изменение объёма или линейных размеров тела с увеличением температуры на 1 К при постоянном давлении.

Коэффициент линейного теплового расширения показывает относительное изменение длины тела при нагревании на температуру ΔT:

- относительное изменение линейного размера тела при нагревании его на dT градусов при постоянном давлении.

Объемное тепловое расширение твердых тел:

??????????????????????????????????????????????????????????????????????????????

Cвязь между коэффициентами линейного и объемного расширения:

Пусть кубик со стороной l расширяется от нагревания. Его начальный объем равен V=l3. При нагревании на t каждая его сторона сделается равной l(1+at) и объем V" = l3(l+at)3. Следовательно, Мы видели, что a- величина весьма малая. Так как, кроме того, мы рассматриваем только небольшие изменения температуры, то члены 3a2t и a3t2 малы по сравнению с 3a (например, при a=2,0 10-5 К-1 и t=100 К член 3a2t в 500 раз меньше 3a, a член a3t2 в 750 000 раз меньше 3a). Поэтому мы можем пренебречь членами 3a2t и a3t2 по сравнению с 3a и считать, что b=3a. Итак, коэффициент объемного расширения равен утроенному коэффициенту линейного расширения. Например, для железа он равен 3,6 10-5 К-1.

    Термодинамическое равновесие. Термодинамические параметры системы. Температура. Шкала температур Кельвина. Абсолютный нуль.

Термодинамическое равновесие:

Термодинамическое равновесие - состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз.

Термодинамические параметры системы:

Т ермодинамические параметры - физ. величины, характеризующие равновесное состояние термодинамич. системы: темп-pa, объём, плотность, давление, намагниченность, электрич. поляризация и др. Различают экстенсивные П. с., пропорциональные объёму(или массе) системы (внутренняя энергия U, энтропия S, энтальпия Н,Гельмголъцаэнергия, или свободная энергия F, Гиббса энергия G), и интенсивныеП. с., не зависящие от массы системы (темп-pa Т, давление Р,концептрация с, хим. потенциал ).В состоянии термодинамич. равновесия П. с. не зависят от времени и пространств. координат. В неравновесном состоянии П. с. могут зависеть от координат и времени.

Температура:

Температура - скалярная физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Температура всех частей системы, находящейся в равновесии, одинакова. Если система не находится в равновесии, то между её частями, имеющими различную температуру, происходит теплопередача (переход энергии от более нагретых частей системы к менее нагретым), приводящая к выравниванию температур в системе.

Температура определяет: распределение образующих систему частиц по уровням энергии (см. Статистика Максвелла - Больцмана) и распределение частиц по скоростям (см. Распределение Максвелла); степень ионизации вещества (см.Уравнение Саха); спектральную плотность излучения (см. Формула Планка); полную объёмную плотность излучения (см. Закон Стефана - Больцмана) и т. д. Температуру, входящую в качестве параметра в распределение Больцмана, часто называют температурой возбуждения, в распределение Максвелла - кинетической температурой, в формулу Саха - ионизационной температурой, в закон Стефана - Больцмана - радиационной температурой. Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы .

Температура относится к интенсивным величинам, не зависящим от массы системы.

Шкала температур Кельвина:

Абсолютная шкала температур, не зависящая от свойств термометрического вещества (начало отсчета - абсолютный нуль температур, он же по шкале Цельсия равен 273,16 градусов).

Абсолютный нуль:

Абсолютный нуль температуры - минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия, абсолютному нулю соответствует температура −273,15 °C.

    Закон Бойля-Мариотта. Графическое изображение изотермического процесса.

Закон Бойля-Мариотта:

Закон Бойля-Мариотта - один из основных газовых законов, открытый в 1662 году Робертом Бойлем и независимо переоткрытый Эдмом Мариоттом в 1676 году. Описывает поведение газа в изотермическом процессе. Закон является следствием уравнения Клапейрона.

Закон Бойля-Мариотта гласит:

При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

В математической форме это утверждение записывается следующим образом

где - давление газа; - объём газа.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Закон Бойля-Мариотта, закон Шарля и закон Гей-Люссака, дополненные законом Авогадро, образуют уравнение состояния идеального газа.

Графическое изображение изотермического процесса:

    Закон Гей-Люссака. Графическое изображение изохорного процесса.

Закон Гей-Люссака:

Закон Гей-Люссака - закон пропорциональной зависимости объёма газа от абсолютной температуры при постоянном давлении, названный в честь французского физика и химика Жозефа Луи Гей-Люссака, впервые опубликовавшего его в 1802 году.

Изобарический закон, открытый Гей-Люссаком в 1802 году утверждает, что при постоянном давлении объём постоянной массы газа пропорционален абсолютной температуре. Математически закон выражается следующим образом:

где - объём газа, - температура.

Если известно состояние газа при неизменном давлении и двух разных температурах, закон может быть записан в следующей форме:

.

Графическое изображение изохорного процесса:

    Закон Шарля. Графическое изображение изобарного процесса.

Закон Шарля:

Закон Шарля или второй закон Гей-Люссака - один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Экспериментальным путем зависимость давления газа от температуры при постоянном объёме установлена в 1787 году Шарлем и уточнена Гей-Люссаком в 1802 году.

Формулировка закона Шарля следующая:

Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа.

Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина. Математически закон записывают так:

P - давление газа,

T - температура газа (в градусах Кельвина),

k - константа.

Этот закон справедлив, поскольку температура является мерой средней кинетической энергии вещества. Если кинетическая энергия газа увеличивается, его частицы сталкиваются со стенками сосуда быстрее, тем самым создавая более высокое давление.

Для сравнения того же вещества при двух различных условиях, закон можно записать в виде:

Графическое изображение изобарного процесса:

    Уравнение состояния идеального газа. Универсальная газовая постоянная. Плотность газа.

Уравнение состояния идеального газа. Универсальная газовая постоянная:

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева - Клапейрона ) - формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температуройидеального газа. Уравнение имеет вид :

Давление,

Молярный объём,

Универсальная газовая постоянная

Абсолютная температура,К.

Так как , где - количество вещества, а , где - масса, - молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева - Клапейрона.

Уравнение, выведенное Клапейроном содержало некую неуниверсальную газовую постоянную , значение которой необходимо было измерять для каждого газа:

Менделеев же обнаружил, что прямо пропорциональна , коэффициент пропорциональности он назвал универсальной газовой постоянной.

Плотность газа:

    Понятие внутренней энергии в термодинамике. Способы изменения внутренней энергии. Работа газа в термодинамике.

Совершение работы и выделение энегргии при термодинамических процессах говорит о том, что термодинамические системы обладают запасом внутренней энергии. Существует два способа изменения внутренней энергии:

    Совершение механической работы А’ внешними силами над системой или самой системой над внешними телами А(А=А’)

    Теплообмен. Количество энергии, полученное или отданное телом при таком процессе, называется количеством теплоты и обозначается Q

Изменение внутренней энергии U может быть найдено по формуле

U=U 1 +U 2 , где

U 2 и U 1 – внутренняя энергия в первом и во втором состояниях

    Первое начало термодинамики. Применение 1-ого начала термодинамики к изопроцессам.

Первое начало термодинамаики:

Количество теплоты, сообщенное системе, расходуется на увеличение ее внутренней энергии и на работу, совершаемую системой против внешних сил:

Изменение внутренней энергии системы равно сумме сообщенного телу количества теплоты и работы, произведенной над системой внешними силами

В качестве примера его применения рассмотрим процесс торможения бруска силами трения на горизонтальной поверхности- механическая энергия бруска не исчезает, а превращается во внутреннюю энергию системы «стоп-брусок», т.е трущие поверхности при этом нагреваются.

Первое начало термодинамики запрещает существование древней мечты человечества- вечного двигателя. невозможен вечный двигатель первого рода- устройство, которое может совершать полезную работу, превышающую затраченную.

    Адиабатный процесс.

Адиабатный процесс- термодинамический процесс в теплоизолированной системе Q=0.

Такой процесс происходит при хорошей теплоизоляции системы либо при малой длительности процесса, когда теплообмена практически не происходит. В применении к адиабатным процессам первое начало термодинамики принимает вид

Согласно определению адиабатному процессу соответствует теплоемкость, равная 0 (С А =0)

    Принципиальная схема устройства тепловой машины. Максимальный КПД тепловых двигателей. Второе начало термодинамики.

Принципиальная схема устройства тепловой машины

Любая тепловая машина- из трех честей:

КПД цикла Карно

Где Т 1 – температура нагревателя, Т 2 - температура холодильника

Второе начало термодинамики:

Невозможен такой циклический процесс, единственным результатом которого было бы превращение теплоты, получаемой системой от внешней среды, в работу, без изменений в окружающей среде.

    Строение жидкостей. Поверхностное натяжение. Коэффициент поверхностного натяжения. Методы определения коэффициента поверхностного натяжения.

Работа А по образованию S=1м2.поверхности жидкости при постоянной температуре называется поверхностным натяжением

поверхностное натяжение зависит от рожа жидкости, ее температуры, наличия примесей. С ростом температуры оно уменьшается или исчезает вовсе.

    Явление смачивания и несмачивания. Краевой угол. Капиллярные явления. Капиллярность в быту, природе, технике.

Смачивание- явление межмолекулярного взаимодействия частиц твердого тела и жидкости на их границе, а жидкость называется смачивающей.

Если силы притяжения между молекулами жидкости и твердого тела меньше, чем между молекулами самой жидкости, то прилегающие слои жидкости « отталкиваются «от его поверхности- явление несмачивания, а жидкость- несмачивающая.

Явление смачивания и несмачивания приводят к искривлению поверхности жидкости у стенок сосуда, так называевым краевым эффектом.

Количественной характеристикой эффектов служит краевой угол ɵ между плоскостью касательной к поверхности жидкости и поверхности твердого тела.

Подъем и опускание жидкости в капиллярах под действием сил поверхностного натяжения называется капиллярным явлением.

Капиллярные явления играют существенную роль в водоснабжении растений, в подъеме влаги в почве, в проникновении жидкости в пористые тела, в системе кровообращения легких.

    Механические свойства твердых тел. Закон Гука. Модуль Юнга

Твердым телом в механике называется неизменимая система материальных точек, т.е. такая идеализированная система, при любых движениях которой взаимные расстояния между материальными точками системы остаются неизменными (материальные точки - достаточно малые макроскопические частицы).

Силы притяжения и отталкивания обуславливают механическую прочность твердых тел. т. е. их способность противодействовать изменению формы и объема. Растяжению тел препятствуют силы межатомного притяжения, а сжатию - силы отталкивания.

Недеформируемых тел в природе не существует.

Деформация - изменение формы или объема тела под действием внешних сил. Деформация может быть упругая или неупругая.

Упругая деформация - деформация, при которой после прекращения действия силы размеры и форма тела восстанавливаются.

Виды деформаций :

1. Линейная:

а) Растяжение (тросы подъемных кранов, канатных дорог, буксирные тросы)

б) Сжатие (колонны, стены, фундаменты зданий).

2. Сдвиг (заклепки, болты, соед. металлические конструкции, процесс разрезания ножницами бумаги).

3. Кручение (завинчивание гаек, работа валов машин, сверление металлов и т.п.).

4. Изгиб (формально деформация растяжения и сжатия, различная в разных частях тела. Нейтральный слой - слой, не подвергающийся ни растяжению, ни сжатию, при изгибе.)

Деформацию растяжения и сжатия можно охарактеризоватьабсолютной деформацией , равной разности длин образца после растяжения и до него 0 : = ℓ – ℓ 0

Отношение абсолютной деформации к первоначальной длине образца o называют относительной деформацией :

Если деформация упругая, а относительная деформацияИз опыта: - закон Гука.Сила упругости прямо пропорциональна абсолютной деформации .

С учетом направления:

k - коэффициент жесткости (упругости) . Зависит от материала, формы и размеров тела (Например, чем длиннее и тоньше пружина, тем ее жесткость меньше.)

Единицы коэффициента упругости в СИ: .

Движение под действием силы упругости.

Ускорение изменяется с координатой! Это неравнопеременноедвижение. Такое движение является колебательным.

Частные случаи силы упругости:

1. Сила реакции опоры - направлена всегда перпендикулярно поверхности.

2. Сила натяжения (нити, сцепки)

Физическая величина, равная отношению модуля силы упругости F упр, возникающей при деформации, к площади сечения S образца, перпендикулярного вектору силы F. называется механическим напряжением: . За единицу механического напряжения в СИ принята единица паскаль (Па): 1 Па= 1Н/м 2 .

Отношение механического напряжения к относительному удлинению,при малых упругих деформациях растяжения и сжатия, называетсямодулем упругости Е (модулем Юнга): .

Из выше написанной формулы видно, что модуль Юнга Е величина не зависящая от формы и размеров предмета, изготовленных из данного материала. [Е]=Па . Модуль Юнга показывает, какое надо создать механическое напряжение, чтобы деформировать тело в 2 раза (Если - на самом деле нереально).

Если обозначить ,

то получим F упр =k|l | - закон Гука. Другая форма записи этого закона: = E | | - механическое напряжение прямо пропорционально модулю относительной деформации.

Что изучает молекулярная физика

Молекулярная физика изучает макроскопические процессы в телах с точки зрения атомно-молекулярного строения вещества. Она рассматривает теплоту, как беспорядочное движение микрочастиц. Вообще говоря, этот раздел физики уделяет внимание так же свойствам и строению отдельных молекул и атомов. Молекулярную физику часто называют молекулярно - кинетической теорией вещества (МКТ).

В XIX веке в эпоху зарождения МКТ, во времена, когда само существование молекул и атомов подвергалось сомнению, строгое отделение молекулярной физики от термодинамики было оправдано. Следовало отделить достоверные факты от гипотез неверных. Но когда XX век неопровержимо доказал и нашел методы структурного исследования вещества, МКТ утратила свой гипотетический характер, который имела в начале своего зарождения. Гипотетический элемент молекулярной физики остался только в отношении упрощенных моделей, которыми до сих пор она пользуется при описании и объяснении тех или иных явлений.

Необходимость в таких моделях не утратила своей актуальности, поскольку мы до сих пор не обладаем всей полнотой информации о молекулярной структуре тел. Однако, надо сказать, что теперь четкое отделение МКТ от термодинамики стало не актуальным. В настоящее время при изложении тех или иных положений термодинамики используют выводы, которые получены в МКТ и наоборот. Говорят, что МКТ и термодинамика дополняют друг друга.

Изучать процессы, которые протекают в больших системах весьма сложно из-за огромного числа частиц и их малых размеров. Рассмотреть отдельно каждую частицу практически невозможно, вводятся статистические величины: средняя скорость частиц, их концентрация, масса частицы. Возникает необходимость, установления математической связи (уравнения) между микро параметрами, которые относят к отдельным частицам (масса молекулы, ее скорость и т.д.) и макро параметрами описывающими систему в целом (температура, давление) Формула, характеризующая состояние системы с учетом микроскопических и макроскопических параметров, называется основным уравнением молекулярно-кинетической теории газов).

Статистический метод

Определение

Метод, который часто использует молекулярная физика, при рассмотрении предметов или явлений называется статистическим. Статистический метод состоит в изучении свойств макроскопических систем на основе анализа, с помощью методов математической статистики, законов теплового движения большого числа частиц, образующих эти системы.

Самой простой, но информативной моделью, которую мы часто будем использовать в МКТ, будет модель -- идеальный газ. В таком газе молекулы совершают свободное (изолированное от других молекул) движение, лишь время от времени сталкиваясь друг с другом или со стенками сосуда.

Пример 1

Задание: В начальный момент времени t=0 газ температуры T занимает полупространство $x

Запишем кинетическое уравнение с учетом того, столкновений молекул нет:

$\frac{\partial f}{\partial t}+\overrightarrow{v}\frac{\partial f}{\partial \overrightarrow{r}}=0$ (1.1)

общее решение уравнения (1.1) есть$:\ f=f\left(\overrightarrow{r}-\overrightarrow{v}t,\ \overrightarrow{v}\right).\ $ Используем начальное условие, запишем: $f=f_0\left(v\right)\ при\ v_x>\frac{x}{t},\ f=0\ при\ v_x

где $f_0\left(v\right)$ распределение Максвелла молекул по скоростям ($dN_{v_xv_yv_z}=Nf\left(v\right)dv_x{dv}_y{dv}_z$).

Плотность газа:

\,\]

где $S\left(\varepsilon \right)=\frac{2}{\sqrt{\pi }}\int\nolimits^{\varepsilon }_0{e^{-y^2}dy}$, $N_0\ $- начальная плотность.

Необходимо отметить, что если пренебречь столкновениями молекул, то полученные формулы верны, лишь в области $\left|x\right|\ll l.$

Ответ: Распределение плотности молекул, если молекулы не сталкиваются между собой, определяется формулой: $N\left(t,x\right)=\int\nolimits^{\infty }{\int\nolimits_{-\infty }{\int\nolimits^{\infty }_{\frac{x}{t}}{f_0\left(v\right)m^3dv_xdv_ydv_z}=\frac{N_0}{2}}}\left,$

где $S\left(\varepsilon \right)=\frac{2}{\sqrt{\pi }}\int\nolimits^{\varepsilon }_0{e^{-y^2}dy}$.

Пример 2

Задание: На рис. 1 представлен процесс в идеальном газе при постоянном объеме и переменной массе. Как изменяется масса газа в данном процессе?

Процесс, заданный на рис. 2 аналитически представим в виде:

где $b$, $a$ -- постоянные величины, $p$ -- давление, $T$ -- термодинамическая температура.

Процесс в задаче протекает при постоянном объеме, но назвать его изохорным мы не можем, так как масса является переменной. В качестве основания для решения используем уравнение состояния идеального газа (в виде уравнения Менделеева-Клайперона):

где V-- объем газа, $m$ -- масса газа, $\mu $-- молярная масса газа, $R$ -- универсальная газовая постоянная.

Выразим из (2.2) массу газа, получим:

Учтем, что $V=const$, $\mu =const$ в заданном процессе, тогда запишем:

Подставим вместо давления уравнение (2.1), которое задает процесс, получим пропорциональность:

Исходя из пропорциональности (2.5) видим, что в ходе процесса, который представлен на рис.1, если температура газа увеличивается, масса газа уменьшается.

Ответ: В заданном процессе масса газа уменьшается.

Изучающий физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного строения. В зависимости от молекулярного строения тел, сил межмолекулярного взаимодействия и характера теплового движения частиц, молекулярная физика изучает особенности процессов фазового равновесия и фазовых переходов веществ - кристаллизацию и плавление, испарение и конденсацию и др., явления переноса - диффузию, теплопроводность, внутреннее трение, а также поверхностные явления на границах раздела различных фаз.

Разделами молекулярной физики являются физика газообразного состояния вещества, физика конденсированного состояния вещества (жидкости и твердые тела), физические явления в поверхностных слоях различных соприкасающихся фаз и др. Из молекулярной физики выделились в самостоятельные разделы физика твердого тела , физическая химия , молекулярная биология и т. д.

Первым сформировавшимся разделом молекулярной физики была кинетическая теория газов . В процессе ее развития была создана классическая статистическая физика, которая наряду с термодинамическим методом легла в основу методов теоретического исследования в молекулярной физике.

Статистический метод, используемый и развитый в молекулярной физике, состоит в изучении совокупностей большого числа частиц, участвующих в тепловом движении и образующих физические тела, находящиеся в различных агрегатных состояниях. Законы поведения совокупностей большого числа частиц, исследуемых статистическими методами, называются статистическими закономерностями. Математическим аппаратом метода является теория случайных величин и процессов. То есть статистический метод является методом исследования систем, состоящих из большого количества частиц, и использующий статистические закономерности и средние значения физических величин, характеризующих всю совокупность частиц.

Статистический подход является по сути молекулярно-кинетической теорией, основанной на определенных представлениях о строении вещества. Задачей статистической механики является установление законов поведения макроскопических систем, состоящих из большого числа частиц, на основе известных динамических законов поведения отдельных частиц. При этом статистическая механика дает возможность установить связь между макроскопическими параметрами большой системы и средними значениями микроскопических величин, характеризующих отдельные молекулы. Так как макроскопические параметры системы зависят от движения молекул, задачей статистической физики заключается в том, чтобы выразить свойства системы в целом через характеристики отдельных молекул.

Термодинамический метод исследования систем, состоящих из большого числа частиц, отличается от статистического тем, что оперирует величинами, характеризующими систему в целом, такими как, например, температура и давление. Термодинамические методы не рассматривают процессы, происходящие на микроуровне.

Термодинамический метод исследования систем, состоящих из большого числа структурных элементов, строится на основе применения к системам нескольких принципов, гипотез, аксиом, которые либо являются обобщением опыта, либо их применение не противоречит ему. Термодинамика представляет собой феноменологическую теорию, основанную на небольшом числе установленных законов, таких, как, например, закон сохранения энергии. В методе не рассматривают микроструктуру систем и механизм совершающихся в них микропроцессов. Основные понятия термодинамики вводятся на основе физического эксперимента, при этом связь между различными макроскопическими параметрами устанавливается опытным путем. Поэтому результаты и методы термодинамики могут быть применимы для любых систем без конкретизации деталей их устройств. Термодинамический подход дает возможность решать конкретные задачи, не имея сведений о свойствах атомов или молекул.

На основе общих теоретических представлений молекулярной физики получили развитие такие специальные области науки, как физика металлов, физика полимеров, физика плазмы, кристаллофизика , физико-химическую механика, физико-химия дисперсных систем и поверхностных явлений, теория тепло- и массопереноса. При всём различии объектов и методов исследования сохраняется основная идея молекулярной физики - описание макроскопических свойств вещества, исходя из особенностей микроскопической (молекулярной) картины его строения.

Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества. В основе молекулярно-кинетической теории лежат три основных положения:

  • Все вещества – жидкие, твердые и газообразные – образованы из мельчайших частиц – молекул , которые сами состоят из атомов («элементарных молекул»). Молекулы химического вещества могут быть простыми и сложными и состоять из одного или нескольких атомов. Молекулы и атомы представляют собой электрически нейтральные частицы. При определенных условиях молекулы и атомы могут приобретать дополнительный электрический заряд и превращаться в положительные или отрицательные ионы (соответственно, анионы и катионы).
  • Атомы и молекулы находятся в непрерывном хаотическом движении и взаимодействии, скорость которого зависит от температуры, а характер – от агрегатного состояния вещества.
  • Частицы взаимодействуют друг с другом силами, имеющими электрическую природу. Гравитационное взаимодействие между частицами пренебрежимо мало.

Атом – наименьшая химически неделимая частица элемента (атом железа, гелия, кислорода). Молекула наименьшая частица вещества, сохраняющая его химические свойства. Молекула состоит из одного и более атомов (вода – Н 2 О – 1 атом кислорода и 2 атома водорода). Ион – атом или молекула, у которых один или несколько электронов лишние (или электронов не хватает).

Молекулы имеют чрезвычайно малые размеры. Простые одноатомные молекулы имеют размер порядка 10 –10 м. Сложные многоатомные молекулы могут иметь размеры в сотни и тысячи раз больше.

Беспорядочное хаотическое движение молекул называется тепловым движением. Кинетическая энергия теплового движения растет с возрастанием температуры. При низких температурах молекулы конденсируются в жидкое или твердое вещество. При повышении температуры средняя кинетическая энергия молекулы становится больше, молекулы разлетаются, и образуется газообразное вещество.

В твердых телах молекулы совершают беспорядочные колебания около фиксированных центров (положений равновесия). Эти центры могут быть расположены в пространстве нерегулярным образом (аморфные тела) или образовывать упорядоченные объемные структуры (кристаллические тела).

В жидкостях молекулы имеют значительно большую свободу для теплового движения. Они не привязаны к определенным центрам и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей.

В газах расстояния между молекулами обычно значительно больше их размеров. Силы взаимодействия между молекулами на таких больших расстояниях малы, и каждая молекула движется вдоль прямой линии до очередного столкновения с другой молекулой или со стенкой сосуда. Среднее расстояние между молекулами воздуха при нормальных условиях порядка 10 –8 м, то есть в сотни раз превышает размер молекул. Слабое взаимодействие между молекулами объясняет способность газов расширяться и заполнять весь объем сосуда. В пределе, когда взаимодействие стремится к нулю, мы приходим к представлению об идеальном газе.

Идеальный газ – это газ, молекулы которого не взаимодействуют друг с другом, за исключением процессов упругого столкновения и считаются материальными точками.

В молекулярно-кинетической теории количество вещества принято считать пропорциональным числу частиц. Единица количества вещества называется молем (моль). Моль – это количество вещества, содержащее столько же частиц (молекул), сколько содержится атомов в 0,012 кг углерода 12 C. Молекула углерода состоит из одного атома. Таким образом, в одном моле любого вещества содержится одно и то же число частиц (молекул). Это число называется постоянной Авогадро: N А = 6,022·10 23 моль –1 .

Постоянная Авогадро – одна из важнейших постоянных в молекулярно-кинетической теории. Количество вещества определяется как отношение числа N частиц (молекул) вещества к постоянной Авогадро N А, или как отношение массы к молярной массе:

Массу одного моля вещества принято называть молярной массой M . Молярная масса равна произведению массы m 0 одной молекулы данного вещества на постоянную Авогадро (то есть на количество частиц в одном моле). Молярная масса выражается в килограммах на моль (кг/моль). Для веществ, молекулы которых состоят из одного атома, часто используется термин атомная масса. В таблице Менделеева молярная масса указана в граммах на моль. Таким образом имеем еще одну формулу:

где: M – молярная масса, N A – число Авогадро, m 0 – масса одной частицы вещества, N – число частиц вещества содержащихся в массе вещества m . Кроме этого понадобится понятие концентрации (количество частиц в единице объема):

Напомним также, что плотность, объем и масса тела связаны следующей формулой:

Если в задаче идет речь о смеси веществ, то говорят о средней молярной массе и средней плотности вещества. Как и при вычислении средней скорости неравномерного движения, эти величины определяются полными массами смеси:

Не забывайте, что полное количество вещества всегда равно сумме количеств веществ, входящих в смесь, а с объемом надо быть аккуратными. Объем смеси газов не равен сумме объемов газов, входящих в смесь. Так, в 1 кубометре воздуха содержится 1 кубометр кислорода, 1 кубометр азота, 1 кубометр углекислого газа и т.д. Для твердых тел и жидкостей (если иное не указано в условии) можно считать, что объем смеси равен сумме объемов ее частей.

Основное уравнение МКТ идеального газа

При своем движении молекулы газа непрерывно сталкиваются друг с другом. Из-за этого характеристики их движения меняются, поэтому, говоря об импульсах, скоростях, кинетических энергиях молекул, всегда имеют в виду средние значения этих величин.

Число столкновений молекул газа в нормальных условиях с другими молекулами измеряется миллионами раз в секунду. Если пренебречь размерами и взаимодействием молекул (как в модели идеального газа), то можно считать, что между последовательными столкновениями молекулы движутся равномерно и прямолинейно. Естественно, подлетая к стенке сосуда, в котором расположен газ, молекула испытывает столкновение и со стенкой. Все столкновения молекул друг с другом и со стенками сосуда считаются абсолютно упругими столкновениями шариков. При столкновении со стенкой импульс молекулы изменяется, значит на молекулу со стороны стенки действует сила (вспомните второй закон Ньютона). Но по третьему закону Ньютона с точно такой же силой, направленной в противоположную сторону, молекула действует на стенку, оказывая на нее давление. Совокупность всех ударов всех молекул о стенку сосуда и приводит к возникновению давления газа. Давление газа – это результат столкновений молекул со стенками сосуда. Если нет стенки или любого другого препятствия для молекул, то само понятие давления теряет смысл. Например, совершенно антинаучно говорить о давлении в центре комнаты, ведь там молекулы не давят на стенку. Почему же тогда, поместив туда барометр, мы с удивлением обнаружим, что он показывает какое-то давление? Правильно! Потому, что сам по себе барометр является той самой стенкой, на которую и давят молекулы.

Поскольку давление есть следствие ударов молекул о стенку сосуда, очевидно, что его величина должна зависеть от характеристик отдельно взятых молекул (от средних характеристик, конечно, Вы ведь помните про то, что скорости всех молекул различны). Эта зависимость выражается основным уравнением молекулярно-кинетической теории идеального газа :

где: p - давление газа, n - концентрация его молекул, m 0 - масса одной молекулы, v кв - средняя квадратичная скорость (обратите внимание, что в самом уравнении стоит квадрат средней квадратичной скорости). Физический смысл этого уравнения состоит в том, что оно устанавливает связь между характеристиками всего газа целиком (давлением) и параметрами движения отдельных молекул, то есть связь между макро- и микромиром.

Следствия из основного уравнения МКТ

Как уже было отмечено в предыдущем параграфе, скорость теплового движения молекул определяется температурой вещества. Для идеального газа эта зависимость выражается простыми формулами для средней квадратичной скорости движения молекул газа:

где: k = 1,38∙10 –23 Дж/К – постоянная Больцмана , T – абсолютная температура. Сразу же оговоримся, что далее во всех задачах Вы должны, не задумываясь, переводить температуру в кельвины из градусов Цельсия (кроме задач на уравнение теплового баланса). Закон трех постоянных :

где: R = 8,31 Дж/(моль∙К) – универсальная газовая постоянная . Следующей важной формулой является формула для средней кинетической энергии поступательного движения молекул газа :

Оказывается, что средняя кинетическая энергия поступательного движения молекул зависит только от температуры, одинакова при данной температуре для всех молекул. Ну и наконец, самыми главными и часто применяемыми следствиями из основного уравнения МКТ являются следующие формулы:

Измерение температуры

Понятие температуры тесно связано с понятием теплового равновесия. Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты.

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии.

Для измерения температуры используются физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину, характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).

Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура 0°С, а точке кипения воды: 100°С. Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками 0°С и 100°С принимается равным 1°С.

Английский физик У.Кельвин (Томсон) в 1848 году предложил использовать точку нулевого давления газа для построения новой температурной шкалы (шкала Кельвина). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

При этом изменение температуры на 1ºС соответствует изменению температуры на 1 К. Изменения температуры по шкале Цельсия и Кельвина равны. В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой К. Например, комнатная температура T С = 20°С по шкале Кельвина равна T К = 293 К. Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.

Уравнение состояния идеального газа или уравнение Клапейрона-Менделеева

Уравнение состояние идеального газа является очередным следствие из основного уравнения МКТ и записывается в виде:

Данное уравнение устанавливает связь между основными параметрами состояния идеального газа: давлением, объемом, количеством вещества и температурой. Очень важно, что эти параметры взаимосвязаны, изменение любого из них неизбежно приведет к изменению еще хотя бы одного. Именно поэтому данное уравнение и называют уравнением состояния идеального газа. Оно было открыто сначала для одного моля газа Клапейроном, а впоследствии обобщено на случай большего количество молей Менделеевым.

Если температура газа равна T н = 273 К (0°С), а давление p н = 1 атм = 1·10 5 Па, то говорят, что газ находится при нормальных условиях .

Газовые законы

Решение задач на расчет параметров газа значительно упрощается, если Вы знаете, какой закон и какую формулу применить. Итак, рассмотрим основные газовые законы.

1. Закон Авогадро. В одном моле любого вещества содержится одинаковое количество структурных элементов, равное числу Авогадро.

2. Закон Дальтона. Давление смеси газов равно сумме парциальных давлений газов, входящих в эту смесь:

Парциальным давлением газа называют то давление, которое он бы производил, если бы все остальные газ внезапно исчезли из смеси. Например, давление воздуха равно сумме парциальных давлений азота, кислорода, углекислого газа и прочих примесей. При этом каждый из газов в смеси занимает весь предоставленный ему объем, то есть объем каждого из газов равен объему смеси.

3. Закон Бойля-Мариотта. Если масса и температура газа остаются постоянными, то произведение давления газа на его объем не изменяется, следовательно:

Процесс, происходящий при постоянной температуре, называют изотермическим. Обратите внимание, что такая простая форма закона Бойля-Мариотта выполняется только при условии, что масса газа остается неизменной.

4. Закон Гей-Люссака. Сам закон Гей-Люссака не представляет особой ценности при подготовке к экзаменам, поэтому приведем лишь следствие из него. Если масса и давление газа остаются постоянными, то отношение объема газа к его абсолютной температуре не изменяется, следовательно:

Процесс, происходящий при постоянном давлении, называют изобарическим или изобарным. Обратите внимание, что такая простая форма закона Гей-Люссака выполняется только при условии, что масса газа остается неизменной. Не забывайте про перевод температуры из градусов Цельсия в кельвины.

5. Закон Шарля. Как и закон Гей-Люссака, закон Шарля в точной формулировке для нас не важен, поэтому приведем лишь следствие из него. Если масса и объем газа остаются постоянными, то отношение давления газа к его абсолютной температуре не изменяется, следовательно:

Процесс, происходящий при постоянном объеме, называют изохорическим или изохорным. Обратите внимание, что такая простая форма закона Шарля выполняется только при условии, что масса газа остается неизменной. Не забывайте про перевод температуры из градусов Цельсия в кельвины.

6. Универсальный газовый закон (Клапейрона). При постоянной массе газа отношение произведения его давления и объема к температуре не изменяется, следовательно:

Обратите внимание, что масса должна оставаться неизменной, и не забывайте про кельвины.

Итак, существует несколько газовых законов. Перечислим признаки того, что нужно применять один из них при решении задачи:

  1. Закон Авогадро применяется во всех задачах где речь идет о количестве молекул.
  2. Закон Дальтона применяется во всех задачах, в которых идет речь о смеси газов.
  3. Закон Шарля применяют в задачах, когда объем газа остается неизменным. Обычно это или сказано явно, или в задаче присутствуют слова «газ в закрытом сосуде без поршня».
  4. Закон Гей-Люссака применяют, если неизменным остается давление газа. Ищите в задачах слова «газ в сосуде, закрытом подвижным поршнем» или «газ в открытом сосуде». Иногда про сосуд ничего не сказано, но по условию понятно, что он сообщается с атмосферой. Тогда считается, что атмосферное давление всегда остается неизменным (если в условии не сказано иного).
  5. Закон Бойля-Мариотта. Тут сложнее всего. Хорошо, если в задаче написано, что температура газа неизменна. Чуть хуже, если в условии присутствует слово «медленно». Например, газ медленно сжимают или медленно расширяют. Еще хуже, если сказано, что газ закрыт теплонепроводящим поршнем. Наконец, совсем плохо, если про температуру не сказано ничего, но из условия можно предположить, что она не изменяется. Обычно в этом случае ученики применяют закон Бойля-Мариотта от безысходности.
  6. Универсальный газовый закон. Его используют, если масса газа постоянна (например, газ находится в закрытом сосуде), но по условию понятно, что все остальные параметры (давление, объем, температура) изменяются. Вообще, часто вместо универсального закона можно применять уравнение Клапейрона-Менделеева, вы получите правильный ответ, только в каждой формуле будете писать по две лишние буквы.

Графическое изображение изопроцессов

Во многих разделах физики зависимость величин друг от друга удобно изображать графически. Это упрощает понимание взаимосвязи параметров, происходящих в системе процессов. Такой подход очень часто применяется и в молекулярной физике. Основными параметрами, описывающими состояние идеального газа, являются давление, объем и температура. Графический метод решения задач и состоит в изображении взаимосвязи этих параметров в различных газовых координатах. Существует три основных типа газовых координат: (p ; V ), (p ; T ) и (V ; T ). Заметьте, что это только основные (наиболее часто встречающиеся типы координат). Фантазия составителей задач и тестов не ограничена, поэтому Вы можете встретить и любые другие координаты. Итак, изобразим основные газовые процессы в основных газовых координатах.

Изобарный процесс (p = const)

Изобарным процессом называют процесс, протекающий при неизменным давлении и массе газа. Как следует из уравнения состояния идеального газа, в этом случае объем изменяется прямо пропорционально температуре. Графики изобарического процесса в координатах р V ; V Т и р Т имеют следующий вид:

V T координатах направлено точно в начало координат, однако этот график никогда не сможет начаться прямо из начала координат, так как при очень низких температурах газ превращается в жидкость и зависимость объема от температура меняется.

Изохорный процесс (V = const)

Изохорный процесс – это процесс нагревания или охлаждения газа при постоянном объеме и при условии, что количество вещества в сосуде остается неизменным. Как следует из уравнения состояния идеального газа, при этих условиях давление газа изменяется прямо пропорционально его абсолютной температуре. Графики изохорного процесса в координатах р V ; р Т и V Т имеют следующий вид:

Обратите внимание на то, что продолжение графика в p T координатах направлено точно в начало координат, однако этот график никогда не сможет начаться прямо из начала координат, так как газ при очень низких температурах превращается в жидкость.

Изотермический процесс (T = const)

Изотермическим процессом называют процесс, протекающий при постоянной температуре. Из уравнения состояния идеального газа следует, что при постоянной температуре и неизменном количестве вещества в сосуде произведение давления газа на его объем должно оставаться постоянным. Графики изотермического процесса в координатах р V ; р Т и V Т имеют следующий вид:

Заметим, что при выполнении заданий на графики в молекулярной физике не требуется особой точности в откладывании координат по соответствующим осям (например, чтобы координаты p 1 и p 2 двух состояний газа в системе p (V ) совпадали с координатами p 1 и p 2 этих состояний в системе p (T ). Во–первых, это разные системы координат, в которых может быть выбран разный масштаб, а во–вторых, это лишняя математическая формальность, отвлекающая от главного – от анализа физической ситуации. Основное требование: чтобы качественный вид графиков был верным.

Неизопроцессы

В задачах этого типа изменяются все три основных параметра газа: давление, объем и температура. Постоянной остается только масса газа. Наиболее простой случай, если задача решается «в лоб» с помощью универсального газового закона. Чуть сложнее, если Вам надо отыскать уравнение процесса, описывающего изменение состояния газа, или проанализировать поведение параметров газа по данному уравнению. Тогда действовать надо так. Записать данное уравнение процесса и универсальный газовый закон (или уравнение Клапейрона-Менделеева, что Вам удобнее) и последовательно исключать ненужные величины из них.

Изменение количества или массы вещества

В сущности, ничего сложного в таких задачах нет. Надо только помнить, что газовые законы не выполняются, так как в формулировках любых из них записано «при постоянной массе». Поэтому действуем просто. Записываем уравнение Клапейрона-Менделеева для начального и конечного состояний газа и решаем задачу.

Перегородки или поршни

В задачах этого типа опять применяются газовые законы, при этом необходимо учесть следующие замечания:

  • Во-первых, газ через перегородку не проходит, то есть масса газа в каждой части сосуда остается неизменной, и таким образом, для каждой части сосуда выполняются газовые законы.
  • Во-вторых, если перегородка теплонепроводящая, то при нагревании или охлаждении газа в одной части сосуда температура газа во второй части останется неизменной.
  • В-третьих, если перегородка подвижна, то давления по обе ее стороны равны в каждый конкретный момент времени (но это равное с обоих сторон давление может меняться со временем).
  • А дальше пишем газовые законы для каждого газа по отдельности и решаем задачу.

Газовые законы и гидростатика

Специфика задач состоит в том, что в давлении надо будет учитывать «довески», связанные с давлением столба жидкости. Какие тут могут быть варианты:

  • Сосуд с газом погружен под воду. Давление в сосуде будет равно: p = p атм + ρgh , где: h – глубина погружения.
  • Горизонтальная трубка закрыта от атмосферы столбиком ртути (или другой жидкости). Давление газа в трубке точно равно: p = p атм атмосферному, так как горизонтальный столбик ртути не оказывает давления на газ.
  • Вертикальная трубка с газом закрыта сверху столбиком ртути (или другой жидкости). Давление газа в трубке: p = p атм + ρgh , где: h – высота столбика ртути.
  • Вертикальная узкая трубка с газом повернута открытым концом вниз и заперта столбиком ртути (или другой жидкости). Давление газа в трубке: p = p атм – ρgh , где: h – высота столбика ртути. Знак «–» ставится, так как ртуть не сжимает, а растягивает газ. Часто ученики спрашивают, почему ртуть не вытекает из трубки. Действительно, если бы трубка была широкой, ртуть бы стекла вниз по стенкам. А так, поскольку трубка очень узкая, поверхностное натяжение на дает ртути разорваться посередине и пропустить внутрь воздух, а давление газа внутри (меньшее, чем атмосферное) удерживает ртуть от вытекания.

Как только Вы сумели правильно записать давление газа в трубке, применяйте какой-либо из газовых законов (как правило, Бойля-Мариотта, так как большинство таких процессов изотермические, или универсальный газовый закон). Применяйте выбранный закон для газа (ни в коем случае не для жидкости) и решайте задачу.

Тепловое расширение тел

При повышении температуры возрастает интенсивность теплового движения частиц вещества. Это приводит к тому, что молекулы более «активно» отталкиваются друг от друга. Из-за этого большинство тел увеличивает свои размеры при нагревании. Не совершите типичную ошибку, сами атомы и молекулы не расширяются при нагревании. Увеличиваются лишь пустые промежутки между молекулами. Тепловое расширение газов описывается законом Гей-Люссака. Тепловое расширение жидкостей подчиняется следующему закону:

где: V 0 – объем жидкости при 0°С, V – при температуре t , γ – коэффициент объемного расширения жидкости. Обратите внимание, что все температуры в этой теме нужно брать в градусах Цельсия. Коэффициент объемного расширения зависит от рода жидкости (и от температуры, что не учитывается в большинстве задач). Обратите внимание, что численное значение коэффициента, выраженное в 1/°С или в 1/К, одинаково, так как нагреть тело на 1°С это то же самое, что нагреть его на 1 К (а не на 274 К).

Для расширения твердых тел применяются три формулы, описывающие изменение линейных размеров, площади и объема тела:

где: l 0 , S 0 , V 0 – соответственно длина, площадь поверхности и объем тела при 0°С, α – коэффициент линейного расширения тела. Коэффициент линейного расширения зависит от рода тела (и от температуры, что не учитывается в большинстве задач) и измеряется в 1/°С или в 1/К.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

    Статистический и т/д методы исследования .

    Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул.

    Молекулярная физика представляет собой раздел физики, изучающий строение и свойства веществ, исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям:

    1. Любое тело - твердое, жидкое или газообразное состоит из большого количества весьма малых обособленных частиц-молекул.

    2. Молекулы всякого вещества находятся в бесконечном хаотическом движении (например, броуновское движение).

    3. Используется идеализированная модель идеального газа, согласно которой:

    а). Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда (разреженность).

    б). Между молекулами отсутствуют силы взаимодействия.

    в). Столкновение молекул газа между собой и со стенками сосуда абсолютно упругие.

    4. Макроскопические свойства тел (давление, температура и др.) описываются с помощью статистических методов, основным понятием которых является статистический ансамбль, т.е. описывается поведения большого числа частиц через введение средних характеристик (средняя скорость, энергия) всего ансамбля, а не отдельной частицы.

    Термодинамика в отличие от молекулярно-кинетической теории изучает макроскопические свойства тел, не интересуясь их макроскопической картиной.

    Термодинамика - раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями.

    В основе термодинамики лежат 3 фундаментальных закона, называемых началами термодинамики, установленных на основании обобщения большой совокупности опытных фактов.

    Молекулярно-кинетическая теория и термодинамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различными методами исследования.

    Термодинамическая система - совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами. Состояние системы задается термодинамическими параметрами - совокупность физических величин, характеризующих свойства термодинамической системы, обычно в качестве параметров состояния выбирающих температуру, давление и удельный объем.

    Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

    [ T ] = K - термодинамическая шкала, [ t ] = ° C - международная практическая шкала. Связь термодинамической и м/н практической температуры: Т = t + 273, например, при t = 20 ° C T = 293 K .

    Удельный обьем - это обьем единицы массы. Когда тело однородно т. е. ρ = const , то макроскопические свойства однородного тела могут характеризовать обьем тела V .

    Молекулярно-кинетическая теория (м. к. т) идеальных газов.

    §1 Закон идеальных газов .

    В молекулярно - кинетической теории используется идеализированная модель идеального газа.

    Идеальным газом называется газ, молекулы которого не взаимодействуют друг с другом на расстоянии и имеют ничтожно малые собственные размеры.

    У реальных газов молекулы испытывают действия силы межмолекулярного взаимодействия. Однако H 2, He , O 2, N 2 при н. у. (Т=273К, Р=1,01 ·10 5 Па) можно приблизительно считать идеальным газом.

    Процесс, при котором один из параметров (p , V , T , S ) остаются постоянными, называются изопроцессами.

    1. Изотермический процесс Т= const , m = const , описываются законом Бойля-Мариотта :

    pV = const

    1. Изобарический процес p = const описывается законом Гей-Люссака

    V = V 0 (1+ α t );

    V = V 0 α T

    Терметический коэффициент обьемного расширения град -1

    1. Изохорический процесс V = const

    Описывается законом Шарля

    p = p 0 (1+ α t );

    p = p 0 α T

    Характеризует зависимость объёма от температуры. α равен относительному изменению объёма газа при нагревании его на 1 К. Как показывает опыт, одинаков для всех газов и равен .

    4. Моль вещества. Число Авогадро. Закон Авогадро.

    Атомной массой () химического элемента называется отношение массы атома этого элемента к 1/12 массы атома изотопа углерода С 12