Примеры окислителей и восстановителей. Примеры окислительно-восстановительных реакций с решением. ОВР: схемы Как определить является ли реакция окислительно восстановительной

Как узнать где в химической реакции окислитель а где восстановитель? и получил лучший ответ

Ответ от ули.[активный]
если после реакции (после знака равно) вещество приобретает положительный заряд значит он восстановитель
а если приобретает отрицательный заряд значит окислитель
вот например
H2 + O2 = H2O
до реакции и у водорода и у кислорода заряд нулевой
после реакции
водород приобретает заряд +1 а кислород -2 значит водород восстановитель
а кислород окислитель!!
Источник: =)) если что непонятно пиши)

Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Как узнать где в химической реакции окислитель а где восстановитель?

Ответ от BeardMax [гуру]
Для этого надо знать, что такое степень окисления.
Научиться определять степень окисления у любого атома в химическом соединении.
Далее смотреть, у каких атомов СО увеличивается в реакции, а у какого уменьшается. Первые - восстановители, вторые - окислители.
В общем химию не надо было прогуливать.


Ответ от ООО [новичек]
Восстановитель - это вещество, отдающее электроны. Н-р, Са (2+) - 2е = Са (0)
Окислитель - вещ-во, принимающее электроны.


Ответ от Маришка [новичек]
Чтобы это узнать, нужно смотреть, что является реагентами, а что добавлено в виде среды. Например, если в исходных веществах есть Mn (+4) и вода, то Mn поменяет степень окисления на (+6), если не ошибаюсь. Кроме того, можно посмотреть, в какой степени окисления находятся элементы (вдруг где-то она минимальная или наоборот максимальная).

Многие вещества обладают особыми свойствами, которые в химии принято называть окислительными или восстановительными.

Одни химические вещества проявляют свойства окислителей, другие - восстановителей, при этом некоторые соединения могут проявлять те и другие свойства одновременно (например – перекись водорода Н 2 О 2).

Что же такое окислитель и восстановитель, окисление и восстановление?

Окислительно-восстановительные свойства вещества связаны с процессом отдачи и приема электронов атомами, ионами или молекулами.

Окислитель - это вещество, которое в ходе реакции принимает электроны, т. е. восстанавливается; восстановитель - отдает электроны, т. е. окисляется. Процессы передачи электронов от одних веществ к другим, обычно называют окислительно-восстановительными реакциями.

Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами

Что ответить человеку, которого интересует, как решать окислительно-восстановительные реакции? Они нерешаемы. Впрочем, как и любые другие. Химики вообще не решают ни реакции, ни их уравнения. Для окислительно-восстановительной реакции (ОВР) можно составить уравнение и расставить в нём коэффициенты. Рассмотрим, как это сделать.

Окислитель и восстановитель

Окислительно-восстановительной называют такую реакцию, в ходе которой изменяются степени окисления реагирующих веществ. Это происходит потому, что одна из частиц отдаёт свои электроны (её называют восстановителем), а другая – принимает их (окислитель).

Восстановитель, теряя электроны, окисляется, то есть повышает значение степени окисления. Например, запись: означает, что цинк отдал 2 электрона, то есть окислился. Он восстановитель. Степень окисления его, как видно из приведённого примера, повысилась. – здесь сера принимает электроны, то есть восстанавливается. Она окислитель. Степень окисления ее понизилась.

У кого-то может возникнуть вопрос, почему при добавлении электронов степень окисления понижается, а при их потере, напротив, повышается? Всё логично. Элеrтрон – частица с зарядом -1, поэтому с математической точки зрения запись следует читать так: 0 – (-1) = +1, где (-1) – и есть электрон. Тогда означает: 0 + (-2) = -2, где (-2) – это и есть те два электрона, которые принял атом серы.

Теперь рассмотрим реакцию, в которой происходят оба процесса:

Натрий взаимодействует с серой с образованием сульфида натрия. Атомы натрия окисляются, отдавая по одному электрону, серы – восстанавливаются, присоединяя по два. Однако такое может быть только на бумаге. На самом же деле, окислитель должен присоединить к себе ровно столько электронов, сколько их отдал восстановитель. В природе соблюдается баланс во всем, в том числе и в окислительно-восстановительных процессах. Покажем электронный баланс для данной реакции:

Общее кратное между количеством отданных и принятых электронов равно 2. Разделив его на число электронов, которые отдает натрий (2:1=1) и сера (2:2=1) получим коэффициенты в данном уравнении. То есть в правой и в левой частях уравнения атомов серы должно быть по одному (величина, которая получилась в результате деления общего кратного на число принятых серой электронов), а атомов натрия – по два. В записанной схеме же слева пока только один атом натрия. Удвоим его, поставив коэффициент 2 перед формулой натрия. В правой части атомов натрия уже содержится 2 (Na2S).

Мы составили уравнение простейшей окислительно-восстановительной реакции и расставили в нем коэффициенты методом электронного баланса.

Рассмотрим, как “решать” оислительно-восстановительные реакции посложнее. Например, при взаимодействии концентрированной серной кислоты с тем же натрием образуются сероводород, сульфат натрия и вода. Запишем схему:

Определим степени окисления атомов всех элементов:

Изменили ст.о. только натрий и сера. Запишем полуреакции окисления и восстановления:

Найдём наименьшее общее кратное между 1 (столько электронов отдал натрий) и 8 (количество принятых серой отрицательных зарядов), разделим его на 1, затем на 8. Результаты – это и есть количество атомов Na и S как справа, так и слева.

Запишем их в уравнение:

Перед формулой серной кислоты коэффициенты из баланса пока не ставим. Считаем другие металлы, если они есть, затем – кислотные остатки, потом Н, и в самую последнюю очередь проверку делаем по кислороду.

В данном уравнении атомов натрия справа и слева должно быть по 8. Остатки серной кислоты используются два раза. Из них 4 становятся солеобразователями (входят в состав Na2SO4)и один превращается в H2S,то есть всего должно быть израсходовано 5 атомов серы. Ставим 5 перед формулой серной кислоты.

Проверяем H: атомов H в левой части 5×2=10, в правой – только 4, значит перед водой ставим коэффициент 4 (перед сероводородом его ставить нельзя, так как из баланса следует, что молекул H2S должно быть по 1 справа и слева. Проверку делаем по кислороду. Слева 20 атомов О, справа их 4×4 из серной кислоты и еще 4 из воды. Все сходится, значит действия выполнены правильно.

Это один вид действий, которые мог иметь в виду тот, кто спрашивал, как решать окислительно-восстановительные реакции. Если же под этим вопросом подразумевалось “закончите уравнение ОВР” или ” допишите продукты реакции “, то для выполнения такого задания мало уметь составлять электронный баланс. В некоторых случаях нужно знать, каковы продукты окисления/восстановления, как на них влияет кислотность среды и различные факторы, о которых пойдет речь в других статьях.

Окислительно-восстановительные реакции – видео

Окислительно-восстановительные реакции - это реакции, которые идут с изменением степеней окисления элементов. Степень окисления - это условный заряд атома в молекуле, где все полярные связи считаются ионными.

Восстановление - это процесс присоединения электронов.

Окислитель - это атом, молекула или ион, который принимает электроны и понижает свою степень окисления, т.е. восстанавливается.

Восстановитель - это атом, молекула или ион, который отдаёт электроны и повышает свою степень окисления, т.е. окисляется.

Восстановители: а) металлы - чем меньше потенциал ионизации, тем сильнее восстановительные свойства; б) соединения элементов в низших степенях окисления (NH 3 , H 2 S, HBr, HI и др.), у которых все орбитали заполнены и могут только отдавать электроны.

Окислители: а) неметаллы (F 2 , Cl 2 , Br 2 , O 2 и др.) - чем больше сродство к электрону, тем сильнее окислительные свойства; б) ионы металлов в высоких степенях окисления (Fe 3+ , Sn 4+ , Mn 4+ и др.); в) соединения элементов в высших степенях окисления (KMnO 4 , K 2 Cr 2 O 7 , NaBiO 3 , HNO 3 , H 2 SO 4 (конц.) и др.), у которых уже отданы все валентные электроны и могут быть только окислителями.

Соединения элементов в промежуточных степенях окисления (HNO 2 , H 2 SO 3 , H 2 O 2 и др.) могут проявлять окислительные и восстановительные свойства в зависимости от окислительно-восстановительных свойств второго реагента .

H 2 SO 3 + 2H 2 S = 3S + 3H 2 O

окисл. восст.

H 2 SO 3 + Br 2 + H 2 O = H 2 SO 4 + 2HBr

восст. окисл.

Окислители, принимая электроны, то есть, восстанавливаясь, переходят в восстановленную форму:

F 2 + 2e ® 2F -

окисл. восст.

Восстановители, отдавая электроны, то есть, окисляясь, переходят в окисленную форму:

Na 0 - 1e ® Na +

восст. окисл.

Таким образом, как окислители, так и восстановители существуют в окисленной (с более высокой степенью окисления элемента) и восстановленной (с более низкой степенью окисления элемента) формах. При этом для окислителей более характерен переход из окисленной в восстановленную форму, а для восстановителей характерен переход из восстановленной в окисленную форму. Обратные процессы не характерны, и мы не считаем, например, что F - является восстановителем, а Na + - окислителем.

Равновесие между окисленной и восстановленной формами характеризуется с помощью окислительно-восстановительного потенциала, который зависит от концентраций окисленной и восстановленной форм, реакции среды, температуры и т.д.


E = E o +

где - молярная концентрация окисленной формы;

[Восст.] - молярная концентрация восстановленной формы;

n - число электронов, участвующих в полуреакции;

Е 0 - стандартное значение окислительно-восстановительного потенциала; Е = Е 0 , если [Восст.] = [Ок] = 1 моль/л;

Величины стандартных электродных потенциалов Е 0 приведены в таблицах и характеризуют окислительные и восстановительные свойства соединений: Чем положительнее величина Е 0 , тем сильнее окислительные свойства, и чем отрицательнее значение Е 0 , тем сильнее восстановительные свойства.

Например:

F 2 + 2e ® 2F - Е 0 = 2,87 в - сильный окислитель

Na + + 1e ® Na 0 Е 0 = -2,71 в - сильный восстановитель

(процесс всегда записывается для реакций восстановления).

Поскольку окислительно-восстановительная реакция представляет собой совокупность двух полуреакций, окисления и восстановления, то она характеризуется значением разности стандартных электродных потенциалов окислителя (Е 0 ок) и восстановителя (Е 0 восст) - электродвижущей силой (э.д.с.) DЕ 0:

DЕ 0 = Е 0 ок - Е 0 восст,

Э.д.с. реакции DЕ 0 связана с изменением свободной энергии Гиббса DG: DG = -nFDЕ 0 , а с другой стороны, DG связана с константой равновесия К реакции уравнением DG = -2,3RTlnK.

Из последних двух уравнений следует зависимость между э.д.с. и константой равновесия реакции:

DЕ = (2,3RT/nF)lnK.

Э.д.с. реакции при концентрациях отличных от стандартных (т.е. не равных 1 моль/л) DЕ равна:

DЕ = DЕ 0 - (2,3RT/nF)lgK или DЕ= DЕ 0 - (0,059/n)lgK.

В случае равновесия DG = 0 и следовательно DЕ = 0. Откуда DЕ = (0,059/n)lgK и К = 10 n D Е /0,059 .

Для самопроизвольного протекания реакции должно выполняться требование: DG >1, которым соответствует условие DЕ 0 > 0. Поэтому для определения возможности протекания данной окислительно-восстановительной реакции необходимо вычислить значение DЕ 0 . Если DЕ 0 > 0, реакция идет. Если DЕ 0 < 0, реакция не идет.

Пример 1. Определить возможность протекания реакции

2FeCl 3 + 2KI ® 2FeCl 2 + 2KCl + I 2

Решение: Находим, что окислителем является ион Fe +3 , восстанавливающийся до Fe +2 , а восстановителем - I - , окисляющийся до I 2 . Находим по таблице значения стандартных электродных потенциалов: E 0 (Fe +3 /Fe +2) = 0,77 в и E 0 (I 2 /2I -) = 0,54 в. Вычисляем DЕ 0:

DЕ 0 = Е 0 ок - Е 0 восст = 0,77 - 0,54 = 0,23 в >0.

Реакция возможна, так как DЕ 0 > 0.

Пример 2 . Определить возможность протекания реакции

2 KMnO 4 + 16 HCl ® 2 KCl + 2 MnCl 2 + 5 Cl 2 + 8 H 2 O.

Решение. Находим, что окислителем является перманганат-ион MnO 4 - , переходящий в Mn +2 , а восстановителем - хлорид-ион, переходящий в газообразный хлор Cl 2 . Определяем по таблице их потенциалы: E 0 (MnO 4 - /Mn +2) = 1,51 в и E 0 (Cl 2 /2Cl -) = 1,36 в. Вычисляем

DЕ 0 = Е 0 ок - Е 0 восст = 1,51 - 1,36 = 0,15 в >0.

Реакция возможна, так как DЕ 0 > 0.

По их функции в окислительно-восстановительных процессах их участники делятся на окислителей и восстановителей.

Окислители – это атомы, молекулы или ионы, принимающие электроны от других атомов. Степень окисления окислителя уменьшается.

Восстановители – атомы, молекулы или ионы, отдающие электроны другим атомам. Степень окисления восстановителя повышается. При протекании ОВР окислитель восстанавливается, восстановитель – окисляется, причем оба процесса протекают одновременно.

Соответственно, окислители и восстановители взаимодействуют в таких соотношениях, чтобы числа принятых и отданных электронов были одинаковы.

Конкретное проявление окислительных или восстановительных свойств атомами различных элементов зависит от многих факторов. К важнейшим из них следует отнести положение элемента в таблице Менделеева, степень окисления элемента в данном веществе, особые свойства других участников реакции (характер среды для растворов, концентрация реагентов, температура, стереохимические свойства сложных частиц и др.)

Окислители.

Окислителями могут быть как простые, так и сложные вещества. Попытаемся определить, какие факторы определяют окислительные (и восстановительные) свойства веществ.

Об окислительной способности простых веществ можно судить по значениям относительной электроотрицательности (χ ). Это понятие отражает способность атома смещать к себе электронную плотность от других атомов, т.е. фактически является мерой окислительной способности простых веществ. Действительно, наиболее сильные окислительные свойства проявляют активные неметаллы с максимальными значениями электроотрицательности. Так,фтор F 2 проявляет только свойства окислителя , поскольку имеет самое большое значениеχ , равное 4,1 (по шкале Оллреда-Рохова). Второе место занимает кислород О 2 , для негоχ = 3,5, еще более сильные окислительные свойства проявляет озон О 3 . Третье место занимает азот (χ =3,07), но его окислительные свойства проявляются только при высоких температурах, поскольку молекула азотаN 2 обладает очень высокой прочностью, т.к. атомы связаны тройной связью. Достаточно сильные окислительные свойства имеют хлор и бром.

С другой стороны, минимальные значения электроотрицательности присущи металлам (χ = 0,8-1,6). Это означает, что собственные электроны атомов металлов удерживаются очень слабо и легко могут переходить к атомам с большей электроотрицательностью. Атомы металлов в нулевой степени могут проявлятьтолько восстановительные свойства и не могут принимать электроны. Наиболее выраженные восстановительные свойства проявляют металлыIА иIIА групп.

Окислительно-восстановительные свойства сложныхвеществ

Критерием окислительной способности атомов может служить степень окисления. Максимальная степень окисления соответствует переходу всех валентных электронов к другим атомам. Такой атом больше не может отдавать электроны, а может только принимать их. Таким образом, в максимальной степени окисления элемент может проявлять только окислительные свойств а. Тем не менее, необходимо отметить, что максимальная степень окисления не означает автоматическое проявление ярко выраженных окислительных свойств. Чтобы реализовались свойства сильного окислителя, частица должна быть неустойчивой, максимально несимметричной, с неравномерным распределением электронной плотности. Так, в разбавленных растворах сульфат-ионSO 4 2- , содержащий атом серы в максимальной степени окисления+6 , вообще не проявляет окислительных свойств, так как имеет высокосимметричное тетраэдрическое строение. Тогда как в концентрированных растворах серной кислоты заметная доля частиц находится в виде недиссоциированных молекул и ионовHSO 4 - , имеющих несимметричное строение с неравномерным распределением электронной плотности. Как следствие этого, концентрированная серная кислота, особенно при нагревании, очень сильный окислитель.

С другой стороны, минимальная степень окисления элемента означает, что атом неметалла принял максимально возможное число электронов на валентные подуровни и больше не может принимать электроны. Следовательно,

атомы неметаллов в минимальной степени окисления могут проявлять только восстановительные свойства .

Можно напомнить, что минимальная степень окисления неметалла равна номеру группы –8 . Как и в случае с серной кислотой, для реализации восстановительных свойств недостаточно иметь только минимальную степень окисления. В качестве примера можно привести азот в степени окисления –3. Высокосимметричный ион аммонияNH 4 + в растворе крайне слабый восстановитель. Молекула аммиака, обладающая меньшей симметричностью, проявляет достаточно сильные восстановительные свойства при нагревании. Можно привести реакцию восстановления из оксидов:

3FeO+ 2NH 3 = 3Fe+3H 2 O+N 2 .

Что же касается простых веществ с промежуточными значениями электроотрицательности (χ = 1,9 – 2,6), то для неметаллов можно ожидать реализации и окислительных, и восстановительных свойств. К таким веществам относятся водородH 2 , углеродC, фосфорP, сераS, иодI 2 и другие неметаллы средней активности. Естественно,металлы из этой категории простых веществ исключаются, так какне могут принимать электроны .

Эти вещества при взаимодействии с активными окислителями проявляют свойства восстановителей, а при реакциях с восстановителями проявляют свойства окислителей. В качестве примера приведем реакции серы:

0 0 +4 -2 0 0 +2 -2

S+O 2 =SO 2 Fe+S=FeS

как видно, в первой реакции сера-восстановитель, а во второй-окислитель.

Сложные вещества, содержащие атомы в промежуточных степенях окисления, также будут проявлять свойства и окислителей и восстановителей. Таких веществ очень много, поэтому назовем лишь наиболее часто встречающиеся. Это соединения серы (+4): в кислой среде SO 2 , а в щелочной и нейтральнойSO 3 2- иHSO 3 - . Если эти соединения участвуют в реакции в качестве восстановителей, то они будут окисляться до серы +6 (в газовой фазе доSO 3 , а в растворе доSO 4 2- . Если же соединения серы (+4) реагируют с активными восстановителями, то происходит восстановление до элементарной серы, или даже до сероводорода.

SO 2 + 4HI=S+ 2I 2 +2H 2 O

Многие соединения азота также проявляют окислительно-восстановительную двойственность. Представляет определенный интерес поведение нитрит-ионов NO 2 - . При их окислении образуется нитрат-ионNO 3 - , а при восстановлении газообразный монооксид азотаNO. Пример: 2NaNO 2 + 2NaI+2H 2 SO 4 =I 2 +NO+ 2Na 2 SO 4 +2H 2 O.

Рассмотрим еще один пример, на этот раз возьмем пероксид водорода, в котором степень окисления кислорода (-1). Если имеет место окисление этого вещества, то степень кислорода повысится до 0, и будет наблюдаться выделение газообразного водорода:

H 2 O 2 +Cl 2 = 2HCl+O 2 .

В реакциях окисления степень окисления кислорода в пероксидах понижается до (-2), что соответствует или воде H 2 O, или гидроксид –ионуOH - . В качестве примера приведем реакцию, часто используемую в реставрационных работах, при которых черный сульфид свинца при действии разбавленного раствора пероксида водорода превращается в белый сульфат:PbS (черный) +4H 2 O 2 =PbSO 4 (белый) +4H 2 O.

Таким образом, завершая вводную часть, приведем основные окислители, восстановители и вещества, могущие проявлять и окислительные и восстановительные свойства.

Окислители :F 2 ,O 2 ,O 3 ,Cl 2 ,Br 2 ,HNO 3 ,H 2 SO 4 (конц.),KMnO 4 ,K 2 Cr 2 O 7 ,PbO 2 ,NаBiO 3 , ионы в водном раствореFe 3+ ,Cu 2+ ,Ag + .

Восстановители :H 2 S,(S 2-),HI(I -),HBr(Br -),HCl(слабый),NH 3 (при высоких температурах), ионы в водном раствореFe 2+ ,Cr 2+ ,Sn 2+ и др.

Вещества с двойственными свойствами :H 2 ,C,P,As,S,I 2 ,CO,H 2 O 2 ,Na 2 O 2 ,NaNO 2 ,SO 2 (SO 3 2-) и, формально, практически все вещества, содержащие атомы с промежуточной степенью окисления.

Составление уравнений окислительно-восстановительных реакций .

Существует несколько способов составления уравнений ОВР. Обычно применяются

а) метод электронного баланса,

б) метод электронно-ионного баланса.

В основе обоих методов лежит нахождение таких количественных отношений между окислителем и восстановителем, при которых соблюдается равенство принятых и отданных электронов.

Метод электронного баланса является более универсальным, хотя и менее наглядным. Он основан на подсчете изменения степеней окисления атомов окислителя и восстановителя в исходных и конечных веществах. При работе с этим методом удобно следовать такому алгоритму.

    Записывается молекулярная схема окислительно-восстановительной реакции,

    Рассчитываются степени окисления атомов (обычно тех, которые ее меняют),

    Определяются окислитель и восстановитель,

    Устанавливаются числа электронов, принимаемых окислителем, и число электронов, отдаваемых восстановителем,

    Находятся коэффициенты, при домножении на которые числа отданных и принятых электронов уравниваются,

    Подбираются коэффициенты для других участников реакции.

Рассмотрим реакцию окисления сероводорода.

H 2 S+O 2 =SO 2 +H 2 O

В этой реакции сера (-2) является восстановителем, а молекулярный кислород - окислителем. Затем составляем электронный баланс.

S -2 -6e - →S +4 2 - коэффициент домножения для восстановителя

O 2 +4e - →2O -2 3 - коэффициент домножения для окислителя

Записываем формулы веществ с учетом коэффициентов домножения

2H 2 S+ 3O 2 = 2SO 2 +2H 2 O

Рассмотрим еще один случай – разложение нитрата алюминия Al(NO 3) 3 . В этом веществе атомы азота имеют высшую степень окисления (+5), а атомы кислорода – низшую (-2). Отсюда следует, что азот будет окислителем, а кислород – восстановителем. Составляем электронный баланс, зная, что весь азот восстанавливается до диоксида азота, а кислород окисляется до молекулярного кислорода. С учетом чисел атомов запишем:

3N +5 +3e - → 3N +4 4

2O -2 -4e - →O 2 o 3

тогда уравнение разложения запишется так: 4Al(NO 3) 3 =Al 2 O 3 + 12NO 2 + 3O 2 .

Метод электронного баланса обычно используют для определения коэффициентов в ОВР, протекающих в гетерогенных системах, содержащих твердые вещества или газы.

Для реакций, протекающих в растворах, обычно применяется метод электронно-ионного баланса , который учитывает влияние различных факторов на состав конечных продуктов.

Данный метод учитывает: а) кислотность среды, б)концентрации реагирующих веществ, в) реальное состояние реагирующих частиц в растворе, г) влияние температуры и др. Кроме того, для данного метода нет необходимости использовать степень окисления.