Периодический закон химических элементов дмитрия ивановича менделеева. Периодический закон Д. И. Менделеева и периодическая система химических элементов

Периодический закон сформулирован Д. И. Менделеевым в \(1869\) году. К этому времени было известно \(63\) химических элемента. В качестве основного свойства элементов Менделеев выбрал относительную атомную массу . Учитывал также состав, физические и химические свойства образованных элементом простых и сложных веществ.

Расположив все известные химические элементы в порядке возрастания атомных масс, Менделеев обнаружил, что свойства повторяются через определённое число элементов.

Повторим действия Менделеева с учётом того факта, что благородные газы в его время ещё не были известны. Расположим элементы по возрастанию атомной массы (вторая строчка таблицы), укажем металлические и неметаллические свойства, формулы и свойства высших оксидов и гидроксидов, а также формулы газообразных водородных соединений.

Если внимательно проанализировать полученные последовательности, то можно увидеть повторяемость металлических и неметаллических свойств, состава и свойств соединений. Через семь элементов от щелочного металла лития в ряду располагается щелочной металл натрий, а через семь элементов от галогена фтора - галоген хлор. Через семь элементов появляются одинаковые формулы оксидов и водородных соединений, так как повторяются значения валентностей в соединениях с кислородом и водородом. Можем составить их общие формулы.

Формулы высших оксидов: R 2 O , RO , R 2 O 3 , R O 2 , R 2 O 5 , R O 3 , R 2 O 7 .

Летучие водородные соединения (для неметаллов): R H 4 , R H 3 , R H 2 , RH .

Таким образом Менделеев установил периодичность изменения свойств с возрастанием атомной массы. В статье «Периодическая закономерность химических элементов» Д. И. Менделеев дал следующую формулировку периодического закона:

«Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от атомного веса».

В переводе на современный научный язык это звучит так:

«Свойства простых веществ, а также состав и свойства соединений элементов находятся в периодической зависимости от относительных атомных масс».

Все элементы Менделеев разделил на периоды.

Период - ряд элементов, расположенных в порядке возрастания относительной атомной массы, начинающийся щелочным металлом и заканчивающийся галогеном и инертным газом.

В периоде:

  • постепенно ослабляются металлические свойства простых веществ и усиливаются неметаллические;
  • высшая валентность элементов по кислороду возрастает от I (у щелочных металлов) до VII (у галогенов);
  • валентность элементов неметаллов в летучих водородных соединениях уменьшается от IV до I (у галогенов);
  • свойства высших оксидов и гидроксидов постепенно изменяются от основных через амфотерные до кислотных.

Периодический закон получил дальнейшее развитие после изучения физиками строения атома. Оказалось, что главной характеристикой химического элемента является не относительная атомная масса, а заряд ядра атома. Современная формулировка периодического закона несколько изменена:

«Свойства химических элементов и их соединений находятся в периодической зависимости от зарядов атомных ядер».

Д.И. Менделеев сформулировал Периодический закон в 1869 году, в основе которого была одна из главнейших характеристик атома – атомная масса. Последующее развитие Периодического закона, а именно, получение большого экспериментальных данных, несколько изменило первоначальную формулировку закона, однако эти изменения не противоречат главному смыслу, заложенному Д.И. Менделеевым. Эти изменения только придали закону и Периодической системе научную обоснованность и подтверждение правильности.

Современная формулировка Периодического закона Д.И. Менделеева такова: свойства химических элементов, а также свойства и формы соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов.

Структура Периодической системы химических элементов Д.И. Менделеева

К настоящему мнению известно большое количество интерпретаций Периодической системы, но наиболее популярная – с короткими (малыми) и длинными (большими) периодами. Горизонтальные ряды называют периодами (в них расположены элементы с последовательным заполнением одинакового энергетического уровня), а вертикальные столбцы – группами (в них расположены элементы, имеющие одинаковое количество валентных электронов – химические аналоги). Так же все элементы можно разделить на блоки по по типу внешней (валентной) орбитали: s-, p-, d-, f-элементы.

Всего в системе (таблице) 7 периодов, причем номер периода (обозначается арабской цифрой) равен числу электронных слоев в атоме элемента, номеру внешнего (валентного) энергетического уровня, значению главного квантового числа для высшего энергетического уровня. Каждый период (кроме первого) начинается s-элементом — активным щелочным металлом и заканчивается инертным газом, перед которым стоит p-элемент — активный неметалл (галоген). Если продвигаться по периоду слева направо, то с ростом заряда ядер атомов химических элементов малых периодов будет возрастать число электронов на внешнем энергетическом уровне, вследствие чего свойства элементов изменяются – от типично металлических (т.к. в начале периода стоит активный щелочной металл), через амфотерные (элемент проявляет свойства и металлов и неметаллов) до неметаллических (активный неметалл – галоген в конце периода), т.е. металлические свойства постепенно ослабевают и усиливаются неметаллические.

В больших периодах с ростом заряда ядер заполнение электронов происходит сложнее, что объясняет более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда ядра число электронов на внешнем энергетическом уровне остается постоянным и равным 2 или 1. Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в четных рядах изменяются медленно. При переходе к нечетным рядам, с ростом величины заряда ядра увеличивается число электронов на внешнем энергетическом уровне (от 1 до 8), свойства элементов изменяются также, как в малых периодах.

Вертикальные столбцы в Периодической системе – группы элементов со сходным электронным строением и являющимися химическими аналогами. Группы обозначают римскими цифрами от I до VIII. Выделяют главные (А) и побочные (B) подгруппы, первые из которых содержат s- и p-элементы, вторые – d – элементы.

Номер А подгруппы показывает число электронов на внешнем энергетическом уровне (число валентных электронов). Для элементов В-подгрупп нет прямой связи между номером группы и числом электронов на внешнем энергетическом уровне. В А-подгруппах металлические свойства элементов усиливаются, а неметаллические – уменьшаются с возрастанием заряда ядра атома элемента.

Между положением элементов в Периодической системе и строением их атомов существует взаимосвязь:

— атомы всех элементов одного периода имеют равное число энергетических уровней, частично или полностью заполненных электронами;

— атомы всех элементов А подгрупп имею равное число электронов на внешнем энергетическом уровне.

Периодические свойства элементов

Близость физико-химических и химических свойств атомов обусловлена сходством их электронных конфигураций, причем, главную роль играет распределение электронов по внешней атомной орбитали. Это проявляется в периодическом появлении, по мере увеличения заряда ядра атома, элементов с близкими свойствами. Такие свойства называют периодическими, среди которых наиболее важными являются:

1. Количество электронов на внешней электронной оболочке (заселенность w ). В малых периодах с ростом заряда ядра w внешней электронной оболочки монотонно увеличивается от 1 до 2 (1 период), от 1 до 8 (2-й и 3-й периоды). В больших периодах на протяжении первых 12 элементов w не превышает 2, а затем до 8.

2. Атомный и ионный радиусы (r), определяемые как средние радиусы атома или иона, находимые из экспериментальных данных по межатомным расстояниям в разных соединениях. По периоду атомный радиус уменьшается (постепенно прибавляющиеся электроны описываются орбиталями с почти равными характеристиками, по группе атомный радиус возрастает, поскольку увеличивается число электронных слоев (рис.1.).

Рис. 1. Периодическое изменение атомного радиуса

Такие же закономерности наблюдаются и для ионного радиуса. Следует заметить, что ионный радиус катиона (положительно заряженный ион) больше атомного радиуса, а тот в свою очередь, больше ионного радиуса аниона (отрицательно заряженный ион).

3. Энергия ионизации (Е и) – количество энергии, необходимое для отрыва электрона от атома, т.е. энергия, необходимая для превращения нейтрального атома в положительно заряженный ион (катион).

Э 0 — → Э + + Е и

Е и измеряется в электронвольтах (эВ) на атом. В пределах группы Периодической системы значения энергии ионизации атомов уменьшаются с возрастанием зарядов ядер атомов элементов. От атомов химических элементов можно последовательно отрывать все электроны, сообщив дискретные значения Е и. При этом Е и 1 < Е и 2 < Е и 3 <….Энергии ионизации отражают дискретность структуры электронных слоев и оболочек атомов химических элементов.

4. Сродство к электрону (Е е) – количество энергии, выделяющееся при присоединении дополнительного электрона к атому, т.е. энергия процесса

Э 0 + → Э —

Е е также выражается в эВ и, как и Е и зависит от радиуса атома, поэтому характер изменения Е е по периодам и группам Периодической системы близок характеру изменения атомного радиуса. Наибольшим сродством к электрону обладают p-элементы VII группы.

5. Восстановительная активность (ВА) – способность атома отдавать электрон другому атому. Количественная мера – Е и. Если Е и увеличивается, то ВА уменьшается и наоборот.

6. Окислительная активность (ОА) – способность атома присоединять электрон от другого атома. Количественная мера Е е. Если Е е увеличивается, то ОА также увеличивается и наоборот.

7. Эффект экранирования – уменьшение воздействия на данный электрон положительного заряда ядра из-за наличия между ним и ядром других электронов. Экранирование растет с увеличением числа электронных слоев в атоме и уменьшает притяжение внешних электронов к ядру. Экранированию противоположен эффект проникновения , обусловленный тем, что электрон может находиться в любой точке атомного пространства. Эффект проникновения увеличивает прочность связи электрона с ядром.

8. Степень окисления (окислительное число) – воображаемый заряд атома элемента в соединении, который определяется из предположения ионного строения вещества. Номер группы Периодической системы указывает высшую положительную степень окисления, которую могут иметь элементы данной группы в своих соединениях. Исключение – металлы подгруппы меди, кислород, фтор, бром, металлы семейства железа и другие элементы VIII группы. С ростом заряда ядра в периоде максимальная положительная степень окисления растет.

9. Электроотрицательность, составы высших водородных и кислородных соединений, термодинамические, электролитические свойства и т.д.

Примеры решения задач

ПРИМЕР 1

Задание Охарактеризуйте элемент (Z=23) и свойства его соединений (оксидов и гидроксидов) по электронной формуле: семейство, период, группа, число валентных электронов, электронно-графическая формула для валентных электронов в основном и возбужденном состоянии, основные степени окисления (максимальная и минимальная), формулы оксидов и гидроксидов.
Решение 23 V 1s 2 2s 2 2p 6 3s 3 3p 6 3d 3 4s 2

d-элемент, металл, находится в ;-м периоде, в V группе, В подгруппе. Валентные электроны 3d 3 4s 2 . Оксиды VO, V 2 O 3 , VO 2 , V 2 O 5 . Гидроксиды V(OH) 2 , V(OH) 3 , VO(OH) 2 , HVO 3 .

Основное состояние

Возбужденное состояние

Минимальная степень окисления «+2», максимальная – «+5».

Здесь читатель найдет информацию об одном из важнейших законов, когда-либо открытых человеком в научной области - периодическом законе Менделеева Дмитрия Ивановича. Вы ознакомитесь с его значением и влиянием на химию, будут рассмотрены общие положения, характеристика и детали периодического закона, история открытия и основные положения.

Что такое периодический закон

Периодический закон - это природный закон фундаментального характера, который был открыт впервые Д. И. Менделеевым еще в 1869 году, а само открытие произошло благодаря сравнению свойств некоторых химических элементов и величин массы атома, известных в те времена.

Менделеев утверждал, что, согласно его закону, простые и сложные тела и разнообразные соединения элементов зависят от их зависимости периодического типа и от веса их атома.

Периодический закон является уникальным в своем роде и это связано с тем фактом, что он не выражается математическими уравнениями в отличие от других фундаментальных законов природы и вселенной. Графически свое выражение он находит в периодической системе химических элементов.

История открытия

Открытие периодического закона произошло в 1869 году, но попытки систематизировать все известные х-кие элементы начались задолго до этого.

Первую попытку создать такую систему предпринял И. В. Деберейнер в 1829. Он классифицировал все известные ему химические элементы в триады, связанные между собой близостью половины суммы атомных масс, входящих в эту группу трех компонентов. Следом за Деберейнером предприняли попытку создать уникальную таблицу классификации элементов А. де Шанкуртуа, он назвал свою систему «земной спиралью», а после него была составлена Джоном Ньюлендсом октава Ньюлендса. В 1864 практически одновременно Уильям Олдинг и Лотар Мейер опубликовали созданные независимо друг от друга таблицы.

Периодический закон был представлен научному сообществу на обозрение восьмого марта 1869, и произошло это во время заседания Русского х-кого общества. Менделеев Дмитрий Иванович заявил при всех о своем открытии и в том же году был выпущен менделеевский учебник «Основы химии», где впервые была показана периодическая таблица, созданная им. Годом позже, в 1870, он написал статью и отдал ее на обозрение в РХО, где впервые было употреблено понятие периодического закона. В 1871 Менделеев дал исчерпывающую характеристику своего з-на в знаменитой статье периодической законности химических элементов.

Неоценимый вклад в развитие химии

Значение периодического закона невероятно велико для научного сообщества всего мира. Это связано с тем, что открытие его дало мощный толчок развитию, как химии, так и других наук о природе, например, физике и биологии. Открытой была взаимосвязь элементов с их качественными химическими и физическими характеристиками, также это позволило понять суть построения всех элементов по одному принципу и дало начало современной формулировке понятий о химических элементах, конкретизировать знания представление о веществах сложного и простого строения.

Использование периодического закона позволило решать проблему химического прогнозирования, определить причину поведения известных химических элементов. Атомная физика, а в том числе и ядерная энергетика, стали возможными вследствие этого же закона. В свою очередь, данные науки позволили расширить горизонты сущности этого закона и углубиться в его понимание.

Химические свойства элементов периодической системы

По сути, химические элементы взаимосвязаны между собой характеристиками, свойственными им в состоянии свободного как атома, так и иона, сольватированного или гидратированного, в простом веществе и форме, которую могут образовать их многочисленные соединения. Однако х-кие свойства обычно заключаются в двух явлениях: свойства, характерные для атома в свободном состоянии, и простого вещества. К такому роду свойств относится множество их видов, но самые важные это:

  1. Атомная ионизация и ее энергия, зависящая от положения элемента в таблице, его порядкового числа.
  2. Энергетическое родство атома и электрона, которая так же, как и атомная ионизация, зависит от места нахождения элемента в периодической таблице.
  3. Электроотрицательность атома, не носящая постоянное значение, а способная изменяться в зависимости от различного рода факторов.
  4. Радиусы атомов и ионов - тут, как правило, используются эмпирические данные, что связано с волновой природой электронов в состоянии движения.
  5. Атомизация простых веществ - описание возможностей элемента к реакционной способности.
  6. Степени окисления - формальная характеристика, однако фигурирующая как одна из важнейших характеристик элемента.
  7. Потенциал окисления для простых веществ - это измерение и показание потенциала вещества к действию его в водных растворах, а также уровень проявления свойств окислительно-восстановительного характера.

Периодичность элементов внутреннего и вторичного типа

Периодический закон дает понимание еще одной немаловажной составной частицы природы - внутренней и вторичной периодичности. Вышеупомянутые области изучения атомных свойств, на самом деле, гораздо сложнее, чем можно подумать. Связано это с тем фактом, что элементы s, p, d таблицы меняют свои качественные характеристики в зависимости от положения в периоде (периодичность внутреннего характера) и группе (периодичность вторичного характера). Например, внутренний процесс перехода элемента s от первой группы до восьмой к p-элементу сопровождается точками минимума и максимума на кривой линии энергии ионизированного атома. Данное явление показывает внутреннюю непостоянность периодичности изменения свойств атома по положению в периоде.

Итоги

Теперь читатель имеет четкое понимание и определение того, что являет собой периодический закон Менделеева, осознает его значение для человека и развития различных наук и имеет представление о его современных положениях и истории открытия.

В результате изучения данной темы вы узнаете:

  • почему водород помещают одновременно в первой и в седьмой группах периодической системы;
  • почему у некоторых элементов (например, Cr и Cu) происходит «провал» внешнего s – электрона на предвнешнюю d – оболочку;
  • что является основным различием в свойствах элементов главных и побочных подгрупп;
  • какие электроны являются валентными для элементов главных и побочных подгрупп;
  • чем обусловлено неравномерное увеличение энергии ионизации при переходе от Li к Ne;
  • какое основание является более сильным: LiOH или KOH; какая кислота сильнее: HCl или HI.

В результате изучения данной темы вы научитесь:

  • записывать электронные конфигурации элементов;
  • устанавливать электронную структуру атома элемента по его положению в соответствующем периоде и подгруппе периодической системы, а значит, и его свойства;
  • из рассмотрения электронной структуры невозбужденных атомов определять число электронов, которые могут участвовать в образовании химических связей, а также возможные степени окисления элементов;
  • сравнивать относительную силу кислот и оснований.

Учебные вопросы:


4.1. Периодический закон Д.И. Менделеева

Периодический закон – величайшее достижение химической науки, основа всей современной химии. С его открытием химия перестала быть описательной наукой, в ней стало возможным научное предвидение.

Периодический закон открыт Д. И. Менделеевым в 1869 г. Ученый сформулировал этот закон так: «Свойства простых тел, также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».

Более детальное изучение строения вещества показало, что периодичность свойств элементов обусловлена не атомной массой, а электронным строением атомов.

Заряд ядра является характеристикой, определяющей электронное строение атомов, а следовательно, и свойства элементов. Поэтому в современной формулировке Периодический закон звучит так: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от порядкового номера (от величины заряда ядра их атомов).

Выражением Периодического закона является периодическая система элементов.

4.2. Периодическая система Д. И. Менделеева

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра. Периоды 1, 2, 3, 4, 5, 6 содержат соответственно 2, 8, 8, 18, 18, 32 элемента. Седьмой период не завершен. Периоды 1, 2 и 3 называют малыми, остальные - большими.

Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородным газом (Ne, Ar, Kr, Xe, Rn), которому предшествует типичный неметалл. В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства, поскольку с ростом положительного заряда ядер атомов возрастает число электронов на внешнем уровне.

В первом периоде, кроме гелия, имеется только один элемент - водород. Его условно размещают в IA или VIIA подгруппе, так как он проявляет сходство и со щелочными металлами, и с галогенами. Сходство водорода со щелочными металлами проявляется в том, что водород, как и щелочные металлы является восстановителем и, отдавая один электрон, образует однозарядный катион. Больше общего у водорода с галогенами: водород, как и галогены неметалл, его молекула двухатомна, он может проявлять окислительные свойства, образуя с активными металлами солеподобные гидриды, например, NaH, CaH 2 .

В четвертом периоде вслед за Са расположены 10 переходных элементов (декада Sc - Zn), за которыми находятся остальные 6 основных элементов периода (Ga - Кг). Аналогично построен пятый период. Понятие переходный элемент обычно используется для обозначения любого элемента с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположена вставная декада d–элементов (La - Hg), причем после первого переходного элемента La следуют14 f–элементов - лантаноидов (Се - Lu). После Hg располагаются остальные 6 основных р-элементов шестого периода (Тl - Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th - Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

Таким образом, каждый элемент в периодической системе занимает строго определенное положение, которое отмечается порядковым, или атомным, номером.

В периодической системе по вертикали расположены восемь групп (I – VIII), которые в свою очередь делятся на подгруппы - главные, или подгруппы А и побочные, или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

Сходство элементов внутри каждой подгруппы - наиболее заметная и важная закономерность в периодической системе. В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические. При этом происходит увеличение устойчивости соединений элементов в низшей для данной подгруппы степени окисления. В побочных подгруппах – наоборот – сверху вниз металлические свойства ослабевают и увеличивается устойчивость соединений с высшей степенью окисления.

4.3. Периодическая система и электронные конфигурации атомов

Поскольку при химических реакциях ядра реагирующих атомов не изменяются, то химические свойства атомов зависят от строения их электронных оболочек.

Заполнение электронных слоев и электронных оболочек атомов происходит в соответствии с принципом Паули и правилом Хунда.

Принцип Паули (запрет Паули)

Два электрона в атоме не могут иметь четыре одинаковых квантовых числа (на каждой атомной орбитали может находиться не более двух электронов).

Принцип Паули определяет максимальное число электронов, обладающих данным главным квантовым числом n (т.е. находящихся на данном электронном слое): N n = 2n 2 . На первом электронном слое (энергетическом уровне) может быть не больше 2 электронов, на втором – 8, на третьем – 18 и т. д.

В атоме водорода, например, имеется один электрон, который находится на первом энергетическом уровне в 1s – состоянии. Спин этого электрона может быть направлен произвольно (m s = +1/2 или m s = –1/2). Следует подчеркнуть еще раз, что первый энергетический уровень состоит из одного подуровня – 1s, второй энергетический уровень – из двух подуровней – 2s и 2р, третий – из трех подуровней – 3s, 3p, 3d и т.д. Подуровень, в свою очередь, содержит орбитали, число которых определяется побочным квантовым числом l и равно (2l + 1). Каждая орбиталь условно обозначается клеткой, находящийся на ней электрон – стрелкой, направление которой указывает на ориентацию спина этого электрона. Значит, состояние электрона в атоме водорода можно представить как 1s 1 или изобразить в виде квантовой ячейки, рис. 4.1:

Рис. 4.1. Условное обозначение электрона в атоме водорода на 1s орбитали

Для обоих электронов атома гелия n = 1, l = 0, m l = 0, m s = +1/2 и –1/2. Следовательно, электронная формула гелия 1s 2 . Электронная оболочка гелия завершена и очень устойчива. Гелий - благородный газ.

Согласно принципу Паули, на одной орбитали не может быть двух электронов с параллельными спинами. Третий электрон в атоме лития занимает 2s-орбиталь. Электронная конфигурация Li: 1s 2 2s 1 , а у бериллия 1s 2 2s 2 . Поскольку 2s-орбиталь заполнена, то пятый электрон у атома бора занимает 2р-орбиталь. При n = 2 побочное (орбитальное) квантовое число l принимает значения 0 и 1. При l = 0 (2s-состояние) m l = 0, а при l = 1 (2p – состояние) m l может быть равным +1; 0; –1. Состоянию 2р соответствуют три энергетические ячейки, рис. 4.2.

Рис. 4.2. Расположение электронов атома бора на орбиталях

Для атома азота (электронная конфигурация 1s 2 2s 2 2p 3 два электрона на первом уровне, пять - на втором) возможны два следующих варианта электронного строения, рис. 4.3:

Рис. 4.3. Возможные варианты расположения электронов атома азота на орбиталях

В первой схеме, рис.4.3а, суммарный спин равен 1/2 (+1/2 –1/2 +1/2), во второй (рис.4.3б) суммарный спин равен 3/2 (+1/2 +1/2 +1/2). Расположение спинов определяется правилом Хунда , которое гласит: заполнение энергетических уровней происходит таким образом, чтобы суммарный спин был максимальным.

Таким образом, из двух приведенных схем строения атома азота устойчивому состоянию (с наименьшей энергией) отвечает первая, где все р-электроны занимают различные орбитали. Орбитали подуровня заполняются так: сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами.

Начиная с натрия, заполняется третий энергетический уровень с n = 3. Распределение электронов атомов элементов третьего периода на орбиталях показано на рис. 4.4.

Рис. 4.4. Распределение электронов на орбиталях для атомов элементов третьего периода в основном состоянии

В атоме каждый электрон занимает свободную орбиталь с наиболее низкой энергией, отвечающей его наибольшей связи с ядром. В 1961 г. В.М. Клечковский сформулировал общее положение, согласно которому энергия электронных орбиталей возрастает в порядке увеличения суммы главного и побочного квантовых чисел (n + l), причем в случае равенства этих сумм, меньшей энергией обладает орбиталь с меньшим значением главного квантового числа n .

Последовательность энергетических уровней в порядке возрастания энергии примерно следующая:

1s < 2s < 2p < 3s < 3р < 4s ≈ 3d < 4p < 5s ≈ 4d < 5p < 6s ≈ 5d ≈ 4f < 6p.

Рассмотрим распределение электронов на орбиталях атомов элементов четвертого периода (рис. 4.5).

Рис. 4.5. Распределение электронов по орбиталям атомов элементов четвертого периода в основном состоянии

После калия (электронная конфигурация 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1) и кальция (электронная конфигурация 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2) происходит заполнение электронами внутренней 3d-оболочки (переходные элементы Sc - Zn). Следует отметить существование двух аномалий: у атомов Сr и Сu на 4 s -оболочке находятся не два электрона, а один, т.е. происходит так называемый «провал» внешнего 4s-электрона на предшествующую 3d-оболочку. Электронное строение атома хрома можно представить следующим образом (рис. 4.6).

Рис. 4.6. Распределение электронов по орбиталям для атома хрома

Физическая причина «нарушения» порядка заполнения связана с различной проникающей способностью электронных орбиталей к ядру, особой устойчивостью электронных конфигураций d 5 и d 10 , f 7 и f 14 , отвечающих заполнению электронных орбиталей одним или двумя электронами, а также экранирующим действием внутренних электронных слоев заряда ядра.

Электронные конфигурации атомов Mn, Fe, Co, Ni, Cu и Zn отражены следующими формулами:

25 Mn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 ,

26 Fe 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ,

27 Co 1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2 ,

28 Ni 1s 2 2s 2 2p 6 3s 2 3p 6 3d 8 4s 2 ,

29 Cu 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 ,

30 Zn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 .

После цинка, начиная с 31 элемента - галлия вплоть до 36 элемента - криптона продолжается заполнение четвертого слоя (4р – оболочки). Электронные конфигурации этих элементов имеют следующий вид:

31 Ga 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 1 ,

32 Ge 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 ,

33 As 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 ,

34 Se 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 4 ,

35 Br 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 5 ,

36 Kr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 .

Следует отметить, что если не нарушается запрет Паули, в возбужденных состояниях электроны могут располагаться на других орбиталях атомов.

4.4. Типы химических элементов

Все элементы периодической системы подразделяются на четыре типа:

1. У атомов s–элементов заполняются s–оболочки внешнего слоя (n). К s–элементам относятся водород, гелий и первые два элемента каждого периода.

2. У атомов р–элементов электронами заполняются р–оболочки внешнего уровня (np). К р -элементам относятся последние 6 элементов каждого периода (кроме первого).

3. У d–элементов заполняется электронами d–оболочка второго снаружи уровня (n–1) d . Это элементы вставных декад больших периодов, расположенных между s– и p– элементами.

4. У f–элементов заполняется электронами f–подуровень третьего снаружи уровня (n–2) f . К семейству f–элементов относятся лантаноиды и актиноиды.

Из рассмотрения электронной структуры невозбужденных атомов в зависимости от порядкового номера элемента следует:

    Число энергетических уровней (электронных слоев) атома любого элемента равно номеру периода, в котором находится элемент. Значит, s–элементы находятся во всех периодах, р–элементы – во втором и последующих, d–элементы – в четвертом и последующих и f–элементы – в шестом и седьмом периодах.

    Номер периода совпадает с главным квантовым числом внешних электронов атома.

    s– и p–элементы образуют главные подгруппы, d–элементы – побочные подгруппы, f–элементы образуют семейства лантаноидов и актиноидов. Таким образом, подгруппа включает элементы, атомы которых обычно имеют сходное строение не только внешнего, но и предвнешнего слоя (за исключением элементов, в которых имеет место «провал» электрона).

    Номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом состоит физический смысл номера группы. У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних оболочек. Это является основным различием в свойствах элементов главных и побочных подгрупп.

Элементы с валентными d– или f–электронами называются переходными.

Номер группы, как правило, равен высшей положительной степени окисления элементов, проявляемой ими в соединениях. Исключением является фтор – его степень окисления равна –1; из элементов VIII группы только для Os, Ru и Xe известна степень окисления +8.

4.5. Периодичность свойств атомов элементов

Такие характеристики атомов, как их радиус, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронным строением атома.

Различают радиусы атомов металлов и ковалентные радиусы атомов неметаллов. Радиусы атомов металлов вычисляются на основе межатомных расстояний, которые хорошо известны для большинства металлов на основе экспериментальных данных. При этом радиус атома металла равен половине расстояния между центрами двух соседних атомов. Аналогичным образом вычисляются ковалентные радиусы неметаллов в молекулах и кристаллах простых веществ. Чем больше атомный радиус, тем легче отрываются от ядра внешние электроны (и наоборот). В отличие от атомных радиусов, радиусы ионов – условные величины.

Слева направо в периодах величина атомных радиусов металлов уменьшается, а атомных радиусов неметаллов изменяется сложным образом, так как она зависит от характера химической связи. Во втором периоде, например, радиусы атомов сначала уменьшаются, а затем возрастают, особенно резко при переходе к атому благородного газа.

В главных подгруппах радиусы атомов увеличиваются сверху вниз, так как возрастает число электронных слоев.

Радиус катиона меньше радиуса соответствующего ему атома, причем с увеличением положительного заряда катиона его радиус уменьшается. Наоборот, радиус аниона всегда больше радиуса соответствующего ему атома. Изоэлектронными называют частицы (атомы и ионы), имеющие одинаковое число электронов. В ряду изоэлектронных ионов радиус снижается с уменьшением отрицательного и возрастанием положительного радиуса иона. Такое уменьшение имеет место, например в ряду: O 2– , F – , Na + , Mg 2+ , Al 3+ .

Энергия ионизации – энергия, необходимая для отрыва электрона от атома, находящегося в основном состоянии. Она обычно выражается в электронвольтах (1 эВ = 96,485 кДж/моль). В периоде слева направо энергия ионизации возрастает с увеличением заряда ядра. В главных подгруппах сверху вниз она уменьшается, т. к. увеличивается расстояние электрона до ядра и возрастает экранирующее действие внутренних электронных слоев.

В таблице 4.1 приведены значения энергий ионизации (энергий отрыва первого, второго и т.д. электронов) для некоторых атомов.

Во втором периоде при переходе от Li к Ne энергия отрыва первого электрона возрастает (см. таблицу 4.1). Однако, как видно из таблицы, энергия ионизации возрастает неравномерно: у следующих за бериллием и азотом соответственно бора и кислорода наблюдается ее некоторое уменьшение, что обусловлено особенностями электронного строения атомов.

Внешняя s–оболочка бериллия полностью заполнена, поэтому у следующего за ним бора электрон поступает на р-орбиталь. Этот р-электрон менее прочно связан с ядром, чем s–электрон, поэтому отрыв р–электронов требует меньшей затраты энергии.

Таблица 4.1.

Энергии ионизации I атомов некоторых элементов

На каждой р-орбитали атома азота имеется по одному электрону. У атома кислорода электрон поступает на р-орбиталь, которая уже занята одним электроном. Два электрона, находящиеся на одной и той же орбитали, сильно отталкиваются, поэтому оторвать электрон от атома кислорода легче, чем от атома азота.

Наименьшее значение энергии ионизации имеют щелочные металлы, поэтому они обладают ярко выраженными металлическими свойствами, наибольшая величина энергии ионизации у инертных газов.

Сродство к электрону – энергия, выделяющаяся при присоединении электрона к нейтральному атому. Сродство к электрону, как и энергию ионизации, обычно выражают в электронвольтах. Наибольшее сродство к электрону – у галогенов, наименьшее – у щелочных металлов. В таблице 4.2 приведены значения сродства к электрону для атомов некоторых элементов.

Таблица 4.2.

Сродство к электрону атомов некоторых элементов

Электроотрицательность – способность атома в молекуле или ионе притягивать к себе валентные электроны других атомов. Электроотрицательность (ЭО) как количественная мера – приближенная величина. Предложено около 20 шкал электроотрицательностей, наибольшее признание из которых получила шкала, разработанная Л. Полингом. На рис. 4.7 приведены значения ЭО по Полингу.

Рис. 4.7. Электроотрицательность элементов (по Полингу)

Наиболее электроотрицательным из всех элементов по шкале Полинга является фтор. Его ЭО принята равной 4. Наименее электроотрицательный – цезий. Водород занимает промежуточное положение, поскольку при взаимодействии с одними элементами он отдает электрон, а при взаимодействии с другими – приобретает.

4.6. Кислотно-основные свойства соединений; схема Косселя

Для объяснения характера изменения кислотно-основных свойств соединений элементов Коссель (Германия) предложил использовать простую схему, основанную на предположении о том, что в молекулах существует чисто ионная связь и между ионами имеет место кулоновское взаимодействие. Схема Косселя описывает кислотно-основные свойства соединений, содержащих связи Э-Н и Э-О-Н, в зависимости от заряда ядра и радиуса образующего их элемента.

Схема Косселя для двух гидроксидов металлов, например, LiOH и KOH показана на рис. 4.8.

Рис. 4.8. Схема Косселя для LiOH и KOH

Как видно из представленной схемы, радиус иона Li + меньше радиуса иона К + и ОН - –группа связана прочнее с катионом лития, чем с катионом калия. В результате КОН будет легче диссоциировать в растворе и основные свойства гидроксида калия будут выражены сильнее.

Аналогичным образом можно проанализировать схему Косселя для двух оснований CuOH и Cu(OH) 2 . Поскольку радиус иона Cu 2+ меньше, а заряд – больше, чем у иона Cu + , ОН - -группу будет прочнее удерживать ион Cu 2+ . В результате основание Cu(OH) 2 будет более слабым, чем CuOH.

Таким образом, сила оснований возрастает при увеличении радиуса катиона и уменьшении его положительного заряда .

В главных подгруппах сверху вниз сила оснований увеличивается, поскольку в этом направлении возрастают радиусы ионов элементов. В периодах слева направо происходит уменьшение радиусов ионов элементов и увеличение их положительного заряда, поэтому в этом направлении сила оснований уменьшается.

Схема Косселя для двух бескислородных кислот, например, HCl и HI показана на рис. 4.9

Рис. 4.9. Схема Косселя для HCl и HI

Поскольку радиус хлорид-иона меньше, чем иодид-иона, ион Н + прочнее связан с анионом в молекуле хлороводородной кислоты, которая будет слабее, чем иодоводородная кислота. Таким образом, сила бескислородных кислот возрастает с увеличением радиуса отрицательного иона .

Сила кислородсодержащих кислот изменяется противоположным образом. Она увеличивается с уменьшением радиуса иона и увеличением его положительного заряда. На рис. 4.10 представлена схема Косселя для двух кислот HClO и HClO 4 .

Рис. 4.10. Схема Косселя для HClO и HClO 4

Ион С1 7+ прочно связан с ионом кислорода, поэтому протон легче будет отщепляться в молекуле НС1О 4 . В то же время связь иона С1 + с ионом О 2- менее прочная, и в молекуле НС1О протон будет сильнее удерживаться анионом О 2- . В результате HClO 4 будет более сильной кислотой, чем HClO.

Достоинством схемы Косселя является то, что она с использованием простой модели позволяет объяснить характер изменения кислотно-основных свойств соединений в ряду сходных веществ. Вместе с тем эта схема является чисто качественной. Она позволяет лишь сравнивать свойства соединений и не дает возможность определить кислотно-основные свойства произвольно выбранного одного соединения. Недостатком этой модели является то, что в ее основу положены только электростатические представления, в то время как в природе не существует чистой (стопроцентной) ионной связи.

4.7. Окислительно-восстановительные свойства элементов и их соединений

Изменение окислительно-восстановительных свойств простых веществ легко установить, рассматривая характер изменения электроотрицательности соответствующих элементов. В главных подгруппах сверху вниз электроотрицательность уменьшается, что приводит к уменьшению окислительных и увеличению в этом направлении восстановительных свойств. В периодах слева направо электроотрицательность возрастает. В результате в этом направлении восстановительные свойства простых веществ уменьшаются, а окислительные – возрастают. Таким образом, сильные восстановители располагаются в левом нижнем углу периодической системы элементов (калий, рубидий, цезий, барий), в то время как сильные окислители находятся в правом верхнем ее углу (кислород, фтор, хлор).

Окислительно-восстановительные свойства соединений элементов зависят от их природы, величины степени окисления элементов, положения элементов в периодической системе и ряда других факторов.

В главных подгруппах сверху вниз окислительные свойства кислородсодержащих кислот, в которых атомы центрального элемента имеют одинаковую степень окисления, уменьшаются. Сильными окислителями являются азотная и концентрированная серная кислоты. Окислительные свойства проявляются тем сильнее, чем больше положительная степень окисления элемента в соединении. Сильные окислительные свойства проявляют перманганат калия и дихромат калия.

В главных подгруппах восстановительные свойства простых анионов увеличиваются сверху вниз. Сильными восстановителями являются HI, H 2 S, иодиды и сульфиды.

1. Докажите, что Периодический закон Д. И. Менделеева, как и любой другой закон природы, выполняет объясняющую, обобщающую и предсказательную функции. Приведите примеры, иллюстрирующие эти функции у других законов, известных вам из курсов химии, физики и биологии.

Периодический закон Менделеева— один из основополагающих законов химии. Можно утверждать, что вся современная химия построена на нем. Он объясняет зависимость свойств атомов от их строения, обобщает эту зависимость для всех элементов, разделяя их на различные группы, а также предсказывает их свойства в зависимости от строения и строение в зависимости от свойств.

Существуют другие законы, несущие объясняющую, обобщающую и предсказательную функции. Например, закон сохранения энергии, закон преломления света, генетический закон Менделя.

2. Назовите химический элемент, в атоме которого электроны располагаются по уровням согласно ряду чисел: 2, 5. Какое простое вещество образует этот элемент? Какую формулу имеет его водородное соединение и как оно называется? Какую формулу имеет высший оксид этого элемента, каков его характер? Запишите уравнения реакций, характеризующих свойства этого оксида.

3. Бериллий раньше относили к элементам III группы, и его относительная атомная масса считалась равной 13,5. Почему Д. И. Менделеев перенес его во II группу и исправил атомную массу бериллия с 13,5 на 9?

Раньше элемент бериллий ошибочно относили к III группе. Причина этого заключалась в неправильном определении атомной массы бериллия (вместо 9 ее считали равной 13,5). Д. И. Менделеев предположил, что бериллий находится в II группе, основываясь на химических свойствах элемента. Свойства бериллия были очень похожи на свойства Mg и Ca, и совершенно не похожи на свойства Al. Зная, что атомные массы Li и В, соседних элементов к Be, равны соответственно 7 и 11, Д. И.Менделеев предположил, что атомная масса бериллия равна 9.

4. Напишите уравнения реакций между простым веществом, образованным химическим элементом, в атоме которого электроны распределены по энергетическим уровням согласно ряду чисел: 2, 8, 8, 2, и простыми веществами, образованными элементами № 7 и № 8 в Периодической системе. Каков тип химической связи в продуктах реакции? Какое кристаллическое строение имеют исходные простые вещества и продукты их взаимодействия?

5. Расположите в порядке усиления металлических свойств следующие элементы: As, Sb, N, Р, Bi. Обоснуйте полученный ряд, исходя из строения атомов этих элементов.

N, Р, As, Sb, Bi — усиление металлических свойств. Металлические свойства в группах усиливаются.

6. Расположите в порядке усиления неметаллических свойств следующие элементы: Si, Al, Р, S, Cl, Mg, Na. Обоснуйте полученный ряд, исходя из строения атомов этих элементов.

Na, Mg, Al, Si, P, S, Cl — усиление неметаллических свойств. Неметаллические свойства в периодах усиливаются.

7. Расположите в порядке ослабления кислотных свойств оксиды, формулы которых: SiO2, Р2O5, Al2O3, Na2O, MgO, Cl2O7. Обоснуйте полученный ряд. Запишите формулы гидроксидов, соответствующих этим оксидам. Как изменяется их кислотный характер в предложенном вами ряду?

8. Напишите формулы оксидов бора, бериллия и лития и расположите их в порядке возрастания основных свойств. Запишите формулы гидроксидов, соответствующих этим оксидам. Каков их химический характер?

9. Что такое изотопы? Как открытие изотопов способствовало становлению Периодического закона?

Периодическая система элементов отражает взаимосвязь химических элементов. Атомный номер элемента равен заряду ядра, численно он равен числу протонов. Число нейтронов, содержащихся в ядрах одного элемента, в отличие от числа протонов, может быть различным. Атомы одного элемента, ядра которых содержат разное число нейтронов, называются изотопами.

Каждый химический элемент имеет по несколько изотопов (природных или полученных искусственно). Атомная масса химического элемента равна среднему значению из масс всех его природных изотопов с учетом их распространенности.

С открытием изотопов для распределения элементов по периодической системе стали использовать заряды ядер, а не их атомные массы.

10. Почему заряды атомных ядер элементов в Периодической системе Д. И. Менделеева изменяются монотонно, т. е. заряд ядра каждого последующего элемента возрастает на единицу по сравнению с зарядом атомного ядра предыдущего элемента, а свойства элементов и образуемых ими веществ изменяются периодически?

Так происходит из-за того, что свойства элементов и их соединений зависят не от общего числа электронов, а только от валентных, которые находятся на последнем слое. Количество валентных электронов меняется периодически, следовательно, свойства элементов также меняются периодически.

11. Приведите три формулировки Периодического закона, в которых за основу систематизации химических элементов взяты относительная атомная масса, заряд атомного ядра и строение внешних энергетических уровней в электронной оболочке атома.

1. Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от относительных атомных масс элементов.
2. Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от заряда атомных ядер элементов.
3. Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от строения внешних энергетических уровней в электронной оболочке атома.