Определение термодинамической системы. Термодинамические системы и процессы. Стандартное состояние

Cтраница 1


Термодинамическая система, как и любая другая физическая система, обладает некоторым запасом энергии, который обычно называют внутренней энергией системы.  

Термодинамическая система называется изолированной, если она не может обмениваться с внешней средой ни энергией, ни веществом. Примером такой системы может служить газ, заключенный в сосуд постоянного объема. Термодинамическая система называется адиабатной, если она не может обмениваться с другими системами энергией путем теплообмена.  

Термодинамическая система - это совокупность тел, которые в той или иной степени могут обмениваться между собой и окружающей средой энергией и веществом.  

Термодинамические системы подразделяются на закрытые, не обменивающиеся веществом с другими системами, и открытые, обменивающиеся веществом и энергией с другими системами. В тех случаях, когда система не обменивается энергией и веществом с другими системами, она называется изолированной, а когда не происходит теплообмена, система называется адиабатной.  

Термодинамические системы могут состоять из смесей чистых веществ. Смесь (раствор) называется гомогенной, когда химический состав и физические свойства в любых малых частицах одинаковы или изменяются непрерывно от одной точки системы к другой. Плотность, давление и температура гомогенной смеси в любой точке идентичны. Примером гомогенной системы может служить некоторый объем воды, химический состав которой одинаков, а физические свойства меняются от одной точки к другой.  

Термодинамическая система с определенным количественным соотношением компонентов называется единичной физико-химической системой.  

Термодинамические системы (макроскопические тела) наряду с механической энергией Е обладают еще и внутренней энергией U, зависящей от температуры, объема, давления и других термодинамических параметров.  

Термодинамическая система называется неизолированной, или незамкнутой, если она может получать или отдавать тепло в окружающую среду и производить работу, а внешняя среда - совершать работу над системой. Система является изолированной, или замкнутой, если она не имеет обмена теплом с окружающей средой, а изменение давления внутри системы не влияет на окружающую среду и последняя не может произвести работу над системой.  

Термодинамические системы состоят из статистически большого числа частиц.  

Термодинамическая система при определенных внешних условиях (или изолированная система) приходит в состояние, которое характеризуется постоянством ее параметров во времени и отсутствием в системе потоков вещества и теплоты. Такое состояние системы называется равновесным или состоянием равновесия. Самопроизвольно из этого состояния система выйти не может. Состояние системы, в которой отсутствует равновесие, называется неравновесным. Процесс постепенного перехода системы из неравновесного состояния, вызванного внешними воздействиями, в состояние равновесия называется релаксацией, а промежуток времени возвращения системы в равновесное состояние - временем релаксации.  

Термодинамическая система в этом случае совершает работу расширения за счет уменьшения внутренней энергии системы.  


Термодинамическая система является объектом изучения в термодинамике и представляет собой совокупность тел, энергетически взаимодействующих между собой и окружающей средой и обменивающихся с ней веществом.  

Термодинамическая система, предоставленная самой себе при неизменных внешних условиях, приходит в состояние равновесия, характеризуемое постоянством всех параметров и отсутствием макроскопических движений. Такое состояние системы называется состоянием термодинамического равновесия.  

Термодинамическая система характеризуется конечным числом независимых переменных - макроскопических величин, называемых термодинамическими параметрами. Одним из независимых макроскопических параметров термодинамической системы, отличающим ее от механической, является температура как мера интенсивности теплового движения. Температура тела может изменяться вследствие теплообмена с окружающей средой и действия источников тепла и в результате самого процесса деформирования. Связь деформации с температурой устанавливается с помощью термодинамики.  

Долгое время среди физиков и представителей других наук был способ описания того, что они наблюдают в процессе своих экспериментов. Отсутствие единого мнения и наличие большого количества терминов, взятых «с потолка», приводило к путанице и недопониманиям среди коллег. Со временем каждый раздел физики приобрел свои устоявшиеся определения и единицы измерения. Так появились термодинамические параметры, объясняющие большинство макроскопических изменений в системе.

Определение

Параметры состояния, или термодинамические параметры, - это ряд физических величин, которые все вместе и каждая в отдельности могут дать характеристику наблюдаемой системе. К ним относятся такие понятия, как:

  • температура и давление;
  • концентрация, магнитная индукция;
  • энтропия;
  • энтальпия;
  • энергии Гиббса и Гельмгольца и многие другие.

Выделяют интенсивные и экстенсивные параметры. Экстенсивными называются те, которые находятся в прямой зависимости от массы термодинамической системы, а интенсивными - которые определяются другими критериями. Не все параметры одинаково независимы, поэтому для того, чтобы вычислить равновесное состояние системы, необходимо определять сразу несколько параметров.

Кроме того, среди физиков существуют некоторые терминологические разногласия. Одна и та же физическая характеристика у разных авторов может называться то процессом, то координатой, то величиной, то параметром, а то и просто свойством. Все зависит от того, в каком контенте ученый ее использует. Но в некоторых случаях существуют стандартизированные рекомендации, которых должны придерживаться составители документов, учебников или приказов.

Классификация

Существует несколько классификаций термодинамических параметров. Так, исходя из первого пункта, уже известно, что все величины можно разделить на:

  • экстенсивные (аддитивные) - такие вещества подчиняются закону сложения, то есть их значение зависит от количества ингредиентов;
  • интенсивные - они не зависят от того, сколько вещества было взято для реакции, так как при взаимодействии выравниваются.

Исходя из того, в каких условиях находятся вещества, составляющие систему, величины можно разделить на те, которые описывают фазовые реакции и химические реакции. Кроме того, нужно учитывать вступающих в реакцию. Они могут быть:

  • термомеханические;
  • теплофизические;
  • термохимические.

Помимо этого, любая термодинамическая система выполняет определенную функцию, поэтому параметры могут характеризовать работу или теплоту, получаемую в результате реакции, а также позволяют рассчитать энергию, необходимую для переноса массы частиц.

Переменные состояния

Состояние любой системы, в том числе термодинамической, можно определить по сочетанию ее свойств или характеристик. Все переменные, которые полностью определяются только в конкретный момент времени и не зависят от того, как именно система пришла в это состояние, называются термодинамическими параметрами (переменными) состояния или функциями состояния.

Система считается стационарной, если переменные функции с течением времени не изменяются. Один из вариантов - это термодинамическое равновесие. Любое, даже самое малое изменение в системе, - уже процесс, а в нем может быть от одного до нескольких переменных термодинамических параметров состояния. Последовательность, в которой состояния системы непрерывно переходят друг в друга, называют «путь процесса».

К сожалению, путаница с терминами все еще имеет место, так как одна и та же переменная может быть как независимой, так и результатом сложения нескольких функций системы. Поэтому такие термины, как «функция состояния», «параметр состояния», «переменная состояния» могут рассматриваться в виде синонимов.

Температура

Один из независимых параметров состояния термодинамической системы - это температура. Она представляет собой величину, которая характеризует количество кинетической энергии, приходящееся на единицу частиц в термодинамической системе, находящейся в состоянии равновесия.

Если подходить к определению понятия с точки зрения термодинамики, то температура является величиной обратно пропорциональной изменению энтропии после добавления в систему теплоты (энергии). Когда система равновесна, то значение температуры одинаково для всех ее «участников». В случае если имеется разница температур, то энергия отдается более нагретым телом и поглощается более холодным.

Существуют термодинамические системы, в которых при добавлении энергии беспорядочность (энтропия) не возрастает, а наоборот - уменьшается. Кроме того, если подобная система будет взаимодействовать с телом, температура которого больше, чем ее собственная, то она отдаст свою кинетическую энергию этом телу, а не наоборот (исходя из законов термодинамики).

Давление

Давлением называется величина, характеризующая силу, воздействующую на тело, перпендикулярно его поверхности. Для того чтобы вычислить этот параметр, необходимо все количество силы разделить на площадь объекта. Единицами измерения этой силы будут паскали.

В случае с термодинамическими параметрами газ занимает весь доступный ему объем, и, кроме того, молекулы, его составляющие, непрерывно хаотично двигаются и сталкиваются друг с другом и с сосудом, в котором находятся. Именно эти удары и обуславливают давление вещества на стенки сосуда либо на тело, которое помещено в газ. Сила распространяется во всех направлениях одинаково именно из-за непредсказуемого движения молекул. Чтобы увеличить давление, необходимо повысить температуру системы, и наоборот.

Внутренняя энергия

К основным термодинамическим параметрам, зависящим от массы системы, относят и внутреннюю энергию. Она складывается из кинетической энергии, обусловленной движением молекул вещества, а также из потенциальной энергии, появляющейся, когда молекулы взаимодействуют между собой.

Этот параметр является однозначным. То есть значение внутренней энергии постоянно всякий раз, как система оказывается в нужном состоянии, независимо от того, каким путем оно (состояние) было достигнуто.

Невозможно изменить внутреннюю энергию. Она складывается из теплоты, выделяемой системой и работы, которая ею производится. Для некоторых процессов учитываются и другие параметры, такие как температура, энтропия, давление, потенциал и количество молекул.

Энтропия

Второе начало термодинамики гласит, что энтропия не уменьшается. Другая формулировка постулирует, что энергия никогда не переходит от тела с более низкой температурой к более нагретому. Это, в свою очередь, отрицает возможность создания вечного двигателя, так как нельзя всю энергию, имеющуюся у тела, перевести в работу.

Само понятие «энтропия» было введено в обиход еще в середине 19 века. Тогда оно воспринималось как изменение количества тепла к температуре системы. Но такое определение подходит только к процессам, которые постоянно находятся в состоянии равновесия. Из этого можно вывести следующее заключение: если температура тел, составляющих систему, стремится к нулю, то и энтропия будет равна нулю.

Энтропия как термодинамический параметр состояния газа используется в качестве указания на меру беспорядочности, хаотичности движения частиц. Ее используют, чтобы определить распределение молекул в определенной области и сосуде, либо чтобы посчитать электромагнитную силу взаимодействия между ионами вещества.

Энтальпия

Энтальпия представляет собой энергию, которая может быть преобразована в теплоту (или работу) при постоянном давлении. Это потенциал системы, которая находится в состоянии равновесия, в случае если исследователю известен уровень энтропии, число молекул и давление.

В случае, если указывается термодинамический параметр идеального газа, вместо энтальпии используют формулировку «энергия расширенной системы». Для того чтобы легче было объяснить себе эту величину, можно представить сосуд, наполненный газом, который равномерно сжимается при помощи поршня (например, двигатель внутреннего сгорания). В этом случае энтальпия будет равна не только внутренней энергии вещества, но и работе, которую необходимо произвести, чтобы привести систему в необходимое состояние. Изменение данного параметра зависит только от начального и конечного состояния системы, а путь, которым оно будет получено, роли не играет.

Энергия Гиббса

Термодинамические параметры и процессы, в большинстве своем, связаны с энергетическим потенциалом веществ, составляющих систему. Так, энергия Гиббса является эквивалентом полной химической энергии системы. Она показывает, какие изменения будут происходить в процессе химических реакций и будут ли вещества взаимодействовать вообще.

Изменение количества энергии и температуры системы в процессе протекания реакции затрагивает такие понятия, как энтальпия и энтропия. Разница между этими двумя параметрами как раз и будет называться энергией Гиббса или изобарно-изотермическим потенциалом.

Минимальное значение данной энергии наблюдается в том случае, если система находится в равновесии, а ее давление, температура и количества вещества остаются неизменными.

Энергия Гельмгольца

Энергия Гельмгольца (по другим источникам - просто свободная энергия) представляет собой потенциальное количество энергии, которое будет потеряно системой при взаимодействии с телами, не входящими в нее.

Понятие свободной энергии Гельмгольца часто используется для того, чтобы определить, какую максимальную работу способна выполнить система, то есть сколько высвободится теплоты при переходе веществ из одного состояния в другое.

Если система находится в состоянии термодинамического равновесия (то есть она не совершает никакой работы), то уровень свободной энергии находится на минимуме. А значит, изменение других параметров, таких как температура, давление, количество частиц, также не происходит.

Введение . Предмет теплотехники. Основные понятия и определения. Термодинамическая система. Параметры состояния. Температура. Давление. Удельный объем. Уравнение состояния. Уравнение Ван-дер-Ваальса .

Соотношение между единицами:

1 бар = 10 5 Па

1 кг/см 2 (атмосфера) = 9.8067 10 4 Па

1мм рт. ст (миллиметр ртутного столба) = 133 Па

1 мм вод. ст. (миллиметр водного столба) = 9.8067 Па

Плотность - отношение массы вещества к объему занимаемому эти веществом .

Удельный объем - величина обратная плотности, т.е. отношения объема занятого веществом к его массе .

Определение: Если в термодинамической системе меняется хотя бы один из параметров любого входящего в систему тела, то в системе происходит термодинамический процесс .

Основные термодинамические параметры состояния Р, V, Т однородного тела зависят один от другого и взаимно связаны уравнением состояния:

F (P, V, Т )

Для идеального газа уравнение состояния записывается в виде:

P - давление

v - удельный объем

T - температура

R - газовая постоянная (у каждого газа свое значение)

Если известно уравнение состояния, то для определения состояния простейших систем достаточно знать две независимые переменные из 3-х

Р = f1 (v, т); v = f2 (Р, Т); Т = f3 (v, Р).

Термодинамические процессы часто изображаются на графиках состояния, где по осям отложены параметры состояния. Точки, на плоскости такого графика, соответствуют определенному состоянию системы, линии на графике соответствуют термодинамическим процессам, переводящим систему из одного состояния в другое.

Рассмотрим термодинамическую систему, состоящую из одного тела какого-либо газа в сосуде с поршнем, причем сосуд и поршень в данном случае является внешней средой.

Пусть, для примера, происходит нагрев газа в сосуде, возможны два случая :

1) Если поршень зафиксирован, и объем не меняется, то произойдет повышение давления в сосуде. Такой процесс называется изохорным (v = const), идущий при постоянном объеме;

Рис. 1.1. Изохорные процессы в P - T координатах: v 1 >v 2 >v 3

2) Если поршень свободен, то нагреваемый газ будет расширяться, при постоянном давлении такой процесс называется изобарическим (P = const), идущим при постоянном давлении.

Рис. 1.2 Изобарные процессы в v - T координатах: P 1 >P 2 >P 3

Если, перемещая поршень, изменять объем газа в сосуде то, температура газа тоже будет изменяться, однако можно охлаждая сосуд при сжатии газа и нагревая при расширении можно достичь того, что температура будет постоянной при изменениях объема и давления, такой процесс называется изотермическим (Т = const).

Рис. 1.3 Изотермические процессы в P - v координатах: Т 1 >T 2 >T 3

Процесс, при котором отсутствует теплообмен между системой и окружающей средой, называется адиабатным , при этом количество теплоты в системе остается постоянными (Q = const). В реальной жизни адиабатных процессов не существует поскольку полностью изолировать систему от окружающей среды не возможно. Однако, часто происходят процессы, при которых теплообменном с окружающей средой очень мал, например, быстрое сжатие газа в сосуде поршнем, когда тепло не успевает отводиться за счет нагрева поршня и сосуда.

Рис. 1.4 Примерный график адиабатного процесса в P - v координатах.

Определение: Круговой процесс (Цикл) - это совокупность процессов, возвращающих систему в первоначальное состояние . Число отдельных процессов может быть любым в цикле.

Понятие кругового процесса является для нас ключевым в термодинамике, поскольку работа АЭС основана на пароводяном цикле, другими словами мы можем рассматривать испарение воды а активной зоне (АЗ), вращение паром ротора турбины, конденсацию пара и поступление воды в АЗ как некий замкнутый термодинамический процесс или цикл.

Определение: Рабочие тело - определенное количество вещества, которое, участвуя в термодинамическом цикле, совершает полезную работу . Рабочим телом в реакторной установке РБМК является вода, которая после испарения в активной зоне в виде пара совершает работу в турбине, вращая ротор.

Определение: Передача энергии в термодинамическом процессе от одного тела к другому, связанная с изменением объема рабочего тела, с перемещением его во внешнем пространстве или с изменением его положения называется работой процесса .

Термодинамическая система

Техническая термодинамика (т/д) рассматривает закономерности взаимного превращения теплоты в работу. Она устанавливает взаимосвязь между тепловыми, механическими и химическими процессами, которые совершаются в тепловых и холодильных машинах, изучает процессы, происходящие в газах и парах, а также свойства этих тел при различных физических условиях.

Термодинамика базируется на двух основных законах (началах) термодинамики:

I закон термодинамики - закон превращения и сохранения энергии;

II закон термодинамики - устанавливает условия протекания и направленность макроскопических процессов в системах, состоящих из большого количества частиц.

Техническая т/д, применяя основные законы к процессам превращения теплоты в механическую работу и обратно, дает возможность разрабатывать теории тепловых двигателей, исследовать процессы, протекающие в них и т.п.

Объектом исследования является термодинамическая система, которой могут быть группа тел, тело или часть тела. То что находится вне системы называется окружающей средой . Т/д система это совокупность макроскопических тел, обменивающиеся энергией друг с другом и окружающей средой. Например: т/д система - газ, находящейся в цилиндре с поршнем, а окружающая среда - цилиндр, поршень, воздух, стены помещения.

Изолированная система - т/д система не взаимодействующая с окружающей средой.

Адиабатная (теплоизолированная) система - система имеет адиабатную оболочку, которая исключает обмен теплотой (теплообмен) с окружающей средой.

Однородная система - система, имеющая во всех своих частях одинаковый состав и физические свойства.

Гомогенная система - однородная система по составу и физическому строению, внутри которой нет поверхностей раздела (лед, вода, газы).

Гетерогенная система - система, состоящая из нескольких гомогенных частей (фаз) с различными физическими свойствами, отделенных одна от другой видимыми поверхностями раздела (лед и вода, вода и пар).
В тепловых машинах (двигателях) механическая работа совершается с помощью рабочих тел - газ, пар.

Свойства каждой системы характе-ризуются рядом величин, которые при-нято называть термодинамиче-скими параметрами. Рассмот-рим некоторые из них, используя при этом известные из курса физики молекулярно-кинетические представления об идеальном газе как о совокупности моле-кул, которые имеют исчезающе малые размеры, находятся в беспорядочном тепловом движении и взаимодействуют друг с другом лишь при соударениях.

Давление обусловлено взаимо-действием молекул рабочего тела с по-верхностью и численно равно силе, дей-ствующей на единицу площади повер-хности тела по нормали к последней. В соответствии с молекулярно-кинетической теорией давление газа определяется соотношением

Где n — число молекул в единице объема;

т — масса молекулы; с 2 — средняя квадратическая скорость поступательного движения молекул.

В Международной системе единиц (СИ) давление выражается в паскалях (1 Па = 1 Н/м 2). Поскольку эта единица мала, удобнее использовать 1 кПа = 1000 Па и 1 МПа = 10 6 Па.

Давление измеряется при помощи манометров, барометров и вакуумметров.

Жидкостные и пружинные манометры измеряют избыточное давление, пред-ставляющее собой разность между полным или абсолютным давлением р изме-ряемой среды и атмосферным давлением

p атм, т.е.

Приборы для измерения давлений ниже атмосферного называются вакуум-метрами; их показания дают значение разрежения (или вакуума):

т. е. избыток атмосферного давления над абсолютным.

Следует отметить, что параметром состояния является абсолютное давление. Именно оно входит в термодинамические уравнения.

Температурой называется физическая величина , характеризующая степень нагретости тела. Понятие о температуре вытекает из следующего утвер-ждения: если две системы находятся в тепловом контакте, то в случае неравенства их температур они будут обмениваться теплотой друг с другом, если же их температуры равны, то теплообмена не будет.

С точки зрения молекулярно-кинетических представлений температура есть мера интенсивности теплового движения молекул. Е е численное значение связано с величиной средней кинетической энергии молекул вещества:

где k — постоянная Больцмана, равная 1,380662.10? 23 Дж/К. Температура T, определенная таким образом, называется абсолютной .

В системе СИ единицей температуры является кельвин (К); на практике широко применяется градус Цельсия (°С). Соотношение между абсолютной Т и стоградусной I температурами имеет вид

В промышленных и лабораторных условиях температуру измеряют с помощью жидкостных термометров, пирометров, термопар и других приборов.

Удельный объем v это объем единицы массы вещества. Если однородное тело массой М занимает объем v, то по определению

v = V/М.

В системе СИ единица удельного объема 1 м 3 /кг. Между удельным объемом вещества и его плотность существует очевидное соотношение:

Для сравнения величин, характеризующих системы в одинаковых состояниях вводится понятие «нормальные физические условия»:

p = 760 мм рт.ст. = 101,325 кПа; T = 273,15 K.

В разных отраслях техники и разных странах вводят свои, несколько отличные от приведенных «нормальные условия», например, «технические» (p = 735,6 мм рт.ст. = 98 кПа, t = 15?C) или нормальные условия для оценки производительности компрессоров (p = 101,325 кПа, t = 20?С) и т. д.

Если все термодинамические параметры постоянны во времени и одинаковы во всех точках системы, то такое состояние системы называется равно-весным .

Если между различными точками в системе существуют разности темпера-тур, давлений и других параметров, то она является неравновесной . В такой системе под действием градиентов параметров возникают потоки теплоты, вещества и другие, стремящиеся вернуть ее в состояние равновесия. Опыт показывает, что изолированная система с течением времени всегда приходит в со-стояние равновесия и никогда самопроизвольно выйти из него не может. В классической термодинамике рассматриваются только равновесные системы.

Уравнение состояния. Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, которая называется уравнением состояния . Опыт показывает, что удельный объем, температура и давление простейших систем, которыми являются газы, пары или жидкости, связаны термическим уравнением состояние вида:

Уравнению состояния можно придать другую форму:

Эти уравнения показывают, что из трех основных параметров, определяющих состояние системы, независимыми являются два любых.

Для решения задач методами термодинамики совершенно необходимо знать уравнение состояния. Однако оно не может быть получено в рамках термодинамики и должно быть найдено либо экспериментально, либо методами статистической физики. Конкретный вид уравнения состояния зависит от индивидуальных свойств вещества.

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

Совокупность макроскопич. тел, к-рые могут взаимодействовать между собой и с др. телами (внеш. средой) - обмениваться с ними энергией и в-вом. Т. с. состоит из столь большого числа структурных ч-ц (атомов, молекул), что её состояние можно характеризовать макроскопич. параметрами: плотностью, давлением, концентрацией в-в, образующих Т. с., и т. д.

РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ), если параметры системы с течением времени не меняются и в системе нет к.-л. стационарных потоков (теплоты, в-ва и др.). Для равновесных Т. с. вводится понятие температуры как параметра , имеющего одинаковое значение для всех макроскопич. частей системы. Число независимых параметров состояния равно числу степеней свободы Т. с., остальные параметры могут быть выражены через независимые с помощью уравнения состояния. Св-ва равновесных Т. с. изучает равновесных процессов (термостатика); св-ва неравновесных систем - .

В термодинамике рассматривают: закрытые Т. с., не обменивающиеся в-вом с др. системами, обменивающиеся в-вом и энергией с др. системами; адиабатные Т. с., в к-рых отсутствует с др. системами; изолированные Т. с., не обменивающиеся с др. системами ни энергией, ни в-вом. Если система не изолирована, то её состояние может изменяться; изменение состояния Т. с. наз. термодинамическим процессом. Т. с. может быть физически однородной (гомогенной системой) и неоднородной (гетерогенной системой), состоящей из неск. однородных частей с разными физ. св-вами. В результате фазовых и хим. превращений (см. ФАЗОВЫЙ ПЕРЕХОД) гомогенная Т. с. может стать гетерогенной и наоборот.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

Совокупность макроскопич. тел, к-рые могут взаимодействовать между собой и с др. телами (внеш. средой) - обмениваться с ними энергией и веществом. Т. с. состоит из столь большого числа структурных частиц (атомов, молекул), что её со-стойние можно характеризовать макроскопич. параметрами: плотностью, давлением, концентрацией веществ, образующих Т. с., и т. д.

Т. с. находится в равновесии (см. Равновесие термодинамическое), если параметры системы с течением времени не меняются и в системе нет к.-л. стационарных потоков (теплоты, вещества и др.). Для равновесных Т. с. вводится понятие температуры как параметра состояния, имеющего одинаковое значение для всех макроскопич. частей системы. Число независимых параметров состояния равно числу степеней свободы Т. с., остальные параметры могут быть выражены через независимые с помощью уравнения состояния. Свойства равновесных Т. с. изучает термодинамика равновесных процессов (термостатика), свойства не-равновесных систем - термодинамика неравновесных процессов.

В термодинамике рассматривают: з а к р ы т ы е Т. с., не обменивающиеся веществом с др. системами; открытые системы, обменивающиеся веществом и энергией с др. системами; а д и а б а т н ы е Т. с., в к-рых отсутствует теплообмен с др. системами; и з о л и р о в а н н ы е Т. гомогенной системой)и неоднородной ( гетерогенной системой), состоящей из нескольких однородных частей с разными физ. свойствами. В результате фазовых и хим. превращений (см. Фазовый переход )гомогенная Т. с. может стать гетерогенной и наоборот.

Лит.: Эпштейн П. С., Курс термодинамики, пер. с англ., М.- Л., 1948; Леонтович М. А., Введение в термодинамику, 2 изд., М.-Л., 1951; Самойлович А, Г., Термодинамика и , 2 изд., М., 1955.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА" в других словарях:

    Макроскопическое тело, выделенное из окружающей среды при помощи перегородок или оболочек (они могут быть также и мысленными, условными) и характеризующееся макроскопическими параметрами: объемом, температурой, давлением и др. Для этого… … Большой Энциклопедический словарь

    термодинамическая система - термодинамическая система; система Совокупность тел, могущих энергетически взаимодействовать между собой и с другими телами и обмениваться с ними веществом … Политехнический терминологический толковый словарь

    ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА - совокупность физ. тел, которые могут обмениваться между собой и с др. телами (внешней средой) энергией и веществом. Т. с. является любая система, состоящая из очень большого числа молекул, атомов, электронов и др. частиц, имеющих множество… … Большая политехническая энциклопедия

    термодинамическая система - Тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно технической терминологии. 1984 г … Справочник технического переводчика

    термодинамическая система - – произвольно выбранная часть пространства, содержащая одно или несколько веществ и отделенная от внешней среды реальной или условной оболочкой. Общая химия: учебник / А. В. Жолнин … Химические термины

    термодинамическая система - макроскопическое тело, отделенное от окружающей среды реальными или воображаемыми границами, которое можно охарактеризовать термодинамическими параметрами: объемом, температурой, давлением и др. Различают изолированные,… … Энциклопедический словарь по металлургии

    Макроскопическое тело, выделенное из окружающей среды при помощи перегородок или оболочек (они могут быть также и мысленными, условными), которое можно характеризовать макроскопическими параметрами: объёмом, температурой, давлением и др. Для… … Энциклопедический словарь

    Термодинамика … Википедия

    термодинамическая система - termodinaminė sistema statusas T sritis chemija apibrėžtis Kūnas (kūnų visuma), kurį nuo aplinkos skiria reali ar įsivaizduojama riba. atitikmenys: angl. thermodynamic system rus. термодинамическая система … Chemijos terminų aiškinamasis žodynas

    термодинамическая система - termodinaminė sistema statusas T sritis fizika atitikmenys: angl. thermodynamic system vok. thermodynamisches System, n rus. термодинамическая система, f pranc. système thermodynamique, m … Fizikos terminų žodynas

Термодинамика – это наука, изучающая общие закономерности протекания процессов, сопровождающихся выделением, поглощением и превращением энергии. Химическая термодинамика изучает взаимные превращения химической энергии и других ее форм – тепловой, световой, электрической и т.д., устанавливает количественные законы этих переходов, а также позволяет предсказать устойчивость веществ при заданных условиях и их способность вступать в те или иные химические реакции. Объект термодинамического рассмотрения называют термодинамической системой или просто системой.

Система – любой объект природы, состоящий из большого числа молекул (структурных единиц) и отделённый от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела).

Состояние системы – совокупность свойств системы, позволяющих определить систему с точки зрения термодинамики.

Типы термодинамических систем :

I. По характеру обмена веществом и энергией с окружающей средой :

1. Изолированная система – не обменивается со средой ни веществом, ни энергией (Δm = 0; ΔE = 0) - термос.

2. Закрытая система – не обменивается со средой веществом, но может обмениваться энергией (закрытая колба с реагентами).

3. Открытая система – может обмениваться со средой, как веществом, так и энергией (человеческое тело).

II. По агрегатному состоянию :

1. Гомогенная – отсутствие резких изменений физических и химических свойств при переходе от одних областей системы к другим (состоят из одной фазы).

2. Гетерогенная – две или более гомогенные системы в одной (состоит из двух или нескольких фаз).

Фаза – это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить водный раствор. Но если раствор насыщен и на дне сосуда есть кристаллы солей, то рассматриваемая система – гетерогенна (есть граница раздела фаз). Другим примером гомогенной системы может служить простая вода, но вода с плавающим в ней льдом – система гетерогенная.

Фазовый переход - превращения фаз (таяние льда, кипение воды).

Термодинамический процесс - переход термодинамической системы из одного состояния в другое, который всегда связан с нарушением равновесия системы.

Классификация термодинамических процессов :

7. Изотермический - постоянная температура – T = const

8. Изобарный - постоянное давление – p = const

9. Изохорный - постоянный объем – V = const

Стандартное состояние - это состояние системы, условно выбранное в качестве стандарта для сравнения.

Для газовой фазы - это состояние химически чистого вещества в газовой фазе под стандартным давлением 100 кПа (до 1982 года - 1 стандартная атмосфера, 101 325 Па, 760 мм ртутного столба), подразумевая наличие свойств идеального газа.

Для беспримесной фазы , смеси или растворителя в жидком или твёрдом агрегатном состоянии - это состояние химически чистого вещества в жидкой или твёрдой фазе под стандартным давлением.

Для раствора - это состояние растворённого вещества со стандартной моляльностью 1 моль/кг, под стандартным давлением или стандартной концентрации, исходя из условий, что раствор неограниченно разбавлен.

Для химически чистого вещества - это вещество в чётко определённом агрегатном состоянии под чётко определённым, но произвольным, стандартным давлением.

В определение стандартного состояния не входит стандартная температура , хотя часто говорят о стандартной температуре, которая равна 25°C (298,15 К).

2.2. Основные понятия термодинамики: внутренняя энергия, работа, теплота

Внутренняя энергия U - общий запас энергии, включая движение молекул, колебания связей, движение электронов, ядер и др., т.е. все виды энергии кроме кинетической и потенциальной энергии системы в целом.

Нельзя определить величину внутренней энергии какой-либо системы, но можно определить изменение внутренней энергии ΔU, происходящее в том или ином процессе при переходе системы из одного состояния (с энергией U 1) в другое (с энергией U 2):

ΔU зависит от вида и количества рассматриваемого вещества и условий его существования.

Суммарная внутренняя энергия продуктов реакции отличается от суммарной внутренней энергии исходных веществ, т.к. в ходе реакции происходит перестройка электронных оболочек атомов взаимодействующих молекул.