Как найти проекция точек на координатные плоскости. Вычисление расстояния от плоскости до точки. Уравнение прямой для двумерного и трехмерного пространств

Изучение свойств фигур в пространстве и на плоскости невозможно без знания расстояний между точкой и такими геометрическими объектами, как прямая и плоскость. В данной статье покажем, как находить эти расстояния, рассматривая проекцию точки на плоскость и на прямую.

Уравнение прямой для двумерного и трехмерного пространств

Расчет расстояний точки до прямой и плоскости осуществляется с использованием ее проекции на эти объекты. Чтобы уметь находить эти проекции, следует знать, в каком виде задаются уравнения для прямых и плоскостей. Начнем с первых.

Прямая представляет собой совокупность точек, каждую из которых можно получить из предыдущей с помощью переноса на параллельные друг другу вектора. Например, имеется точка M и N. Соединяющий их вектор MN¯ переводит M в N. Имеется также третья точка P. Если вектор MP¯ или NP¯ параллелен MN¯, тогда все три точки на одной прямой лежат и образуют ее.

В зависимости от размерности пространства уравнение, задающее прямую, может изменять свою форму. Так, всем известная линейная зависимость координаты y от x в пространстве описывает плоскость, которая параллельна третьей оси z. В связи с этим в данной статье будем рассматривать только векторное уравнение для прямой. Оно имеет одинаковый вид для плоскости и трехмерного пространства.

В пространстве прямую можно задать следующим выражением:

(x; y; z) = (x 0 ; y 0 ; z 0) + α*(a; b; c)

Здесь значения координат с нулевыми индексами соответствуют принадлежащей прямой некоторой точки, u¯(a; b; c) - координаты направляющего вектора, который лежит на данной прямой, α - произвольное действительное число, изменяя которое можно получить все точки прямой. Это уравнение называется векторным.

Часто приведенное уравнение записывают в раскрытом виде:

Аналогичным образом можно записать уравнение для прямой, находящейся в плоскости, то есть в двумерном пространстве:

(x; y) = (x 0 ; y 0) + α*(a; b);

Уравнение плоскости

Чтобы уметь находить расстояние от точки до плоскостей проекций, необходимо знать, как задается плоскость. Так же, как и прямую, ее можно представить несколькими способами. Здесь рассмотрим один единственный: общее уравнение.

Предположим, что точка M(x 0 ; y 0 ; z 0) плоскости принадлежит, а вектор n¯(A; B; C) ей перпендикулярен, тогда для всех точек (x; y; z) плоскости справедливым будет равенство:

A*x + B*y + C*z + D = 0, где D = -1*(A*x 0 + B*y 0 + C*z 0)

Следует запомнить, что в этом общем уравнении плоскости коэффициенты A, B и C являются координатами нормального к плоскости вектора.

Расчет расстояний по координатам

Перед тем как переходить к рассмотрению проекций на плоскость точки и на прямую, следует напомнить, как следует рассчитывать расстояние между двумя известными точками.

Пусть имеются две пространственные точки:

A 1 (x 1 ; y 1 ; z 1) и A 2 (x 2 ; y 2 ; z 2)

Тогда дистанция между ними вычисляется по формуле:

A 1 A 2 = √((x 2 -x 1) 2 +(y 2 -y 1) 2 +(z 2 -z 1) 2)

С помощью этого выражения также определяют длину вектора A 1 A 2 ¯.

Для случая на плоскости, когда две точки заданы всего парой координат, можно записать аналогичное равенство без присутствия в нем члена с z:

A 1 A 2 = √((x 2 -x 1) 2 +(y 2 -y 1) 2)

Теперь рассмотрим различные случаи проекции на плоскости точки на прямую и на плоскость в пространстве.

Точка, прямая и расстояние между ними

Предположим, что имеется некоторая точка и прямая:

P 2 (x 1 ; y 1);

(x; y) = (x 0 ; y 0) + α*(a; b)

Расстояние между этими геометрическими объектами будет соответствовать длине вектора, начало которого лежит в точке P 2 , а конец находится в такой точке P на указанной прямой, для которой вектор P 2 P ¯ этой прямой перпендикулярен. Точка P называется проекцией точки P 2 на рассматриваемую прямую.

Ниже приведен рисунок, на котором изображена точка P 2 , ее расстояние d до прямой, а также вектор направляющий v 1 ¯. Также на прямой выбрана произвольная точка P 1 и от нее до P 2 проведен вектор. Точка P здесь совпадает с местом, где перпендикуляр пересекает прямую.

Видно, что оранжевые и красные стрелки образуют параллелограмм, сторонами которого являются вектора P 1 P 2 ¯ и v 1 ¯, а высотой - d. Из геометрии известно, что для нахождения высоты параллелограмма следует разделить его площадь на длину основания, на которое опущен перпендикуляр. Поскольку площадь параллелограмма вычисляется как векторное произведение его сторон, то получаем формулу для расчета d:

d = ||/|v 1 ¯|

Все вектора и координаты точек в этом выражении известны, поэтому можно им пользоваться без выполнения каких-либо преобразований.

Решить эту задачу можно было бы иначе. Для этого следует записать два уравнения:

  • скалярное произведение P 2 P ¯ на v 1 ¯ должно равняться нулю, поскольку эти вектора взаимно перпендикулярны;
  • координаты точки P должны удовлетворять уравнению прямой.

Этих уравнений достаточно, чтобы найти координаты P, а затем и длину d по формуле, приведенной в предыдущем пункте.

Задача на нахождение дистанции между прямой и точкой

Покажем, как использовать данные теоретические сведения для решения конкретной задачи. Допустим, известны следующая точка и прямая:

(x; y) = (3; 1) - α*(0; 2)

Необходимо найти точки проекции на прямую на плоскости, а также расстояние от M до прямой.

Обозначим проекцию, которую следует найти, точкой M 1 (x 1 ; y 1). Решим эту задачу двумя способами, описанными в предыдущем пункте.

Способ 1. Направляющий вектор v 1 ¯ координаты имеет (0; 2). Чтобы построить параллелограмм, выберем принадлежащую прямой какую-нибудь точку. Например, точку с координатами (3; 1). Тогда вектор второй стороны параллелограмма будет иметь координаты:

(5; -3) - (3; 1) = (2; -4)

Теперь следует вычислить произведение векторов, задающих стороны параллелограмма:

Подставляем это значение в формулу, получаем расстояние d от M до прямой:

Способ 2. Теперь найдем другим способом не только расстояние, но и координаты проекции M на прямую, как это требует условие задачи. Как было сказано выше, для решения задачи необходимо составить систему уравнений. Она примет вид:

(x 1 -5)*0+(y 1 +3)*2 = 0;

(x 1 ; y 1) = (3; 1)-α*(0; 2)

Решаем эту систему:

Проекция исходной точки координаты имеет M 1 (3; -3). Тогда искомое расстояние равно:

d = |MM 1 ¯| = √(4+0) = 2

Как видим, оба способа решения дали одинаковый результат, что говорит о правильности выполненных математических операций.

Проекция точки на плоскость

Теперь рассмотрим, что представляет собой проекция точки, заданной в пространстве, на некоторую плоскость. Несложно догадаться, что этой проекцией также является точка, которая вместе с исходной образует перпендикулярный плоскости вектор.

Предположим, что проекция на плоскость точки М координаты имеет следующие:

Сама плоскость описывается уравнением:

A*x + B*y + C*z + D = 0

Исходя из этих данных, мы можем составить уравнение прямой, пересекающей плоскость под прямым углом и проходящей через M и M 1:

(x; y; z) = (x 0 ; y 0 ; z 0) + α*(A; B; C)

Здесь переменные с нулевыми индексами - координаты точки M. Рассчитать положение на плоскости точки M 1 можно исходя из того, что ее координаты должны удовлетворять обоим записанным уравнениям. Если этих уравнений при решении задачи будет недостаточно, то можно использовать условие параллельности MM 1 ¯ и вектора направляющего для заданной плоскости.

Очевидно, что проекция точки, принадлежащей плоскости, совпадает сама с собой, а соответствующее расстояние равно нулю.

Задача с точкой и плоскостью

Пусть дана точка M(1; -1; 3) и плоскость, которая описывается следующим общим уравнением:

Следует вычислить координаты проекции на плоскость точки и рассчитать расстояние между этими геометрическими объектами.

Для начала построим уравнение прямой, проходящей через М и перпендикулярной указанной плоскости. Оно имеет вид:

(x; y; z) = (1; -1; 3) + α*(-1; 3; -2)

Обозначим точку, где эта прямая пересекает плоскость, M 1 . Равенства для плоскости и прямой должны выполняться, если в них подставить координаты M 1 . Записывая в явном виде уравнение прямой, получаем следующие четыре равенства:

X 1 + 3*y 1 -2*z 1 + 4 = 0;

y 1 = -1 + 3*α;

Из последнего равенства получим параметр α, затем подставим его в предпоследнее и во второе выражение, получаем:

y 1 = -1 + 3*(3-z 1)/2 = -3/2*z 1 + 3,5;

x 1 = 1 - (3-z 1)/2 = 1/2*z 1 - 1/2

Выражение для y 1 и x 1 подставим в уравнение для плоскости, имеем:

1*(1/2*z 1 - 1/2) + 3*(-3/2*z 1 + 3,5) -2*z 1 + 4 = 0

Откуда получаем:

y 1 = -3/2*15/7 + 3,5 = 2/7;

x 1 = 1/2*15/7 - 1/2 = 4/7

Мы определили, что проекция точки M на заданную плоскость соответствует координатам (4/7; 2/7; 15/7).

Теперь рассчитаем расстояние |MM 1 ¯|. Координаты соответствующего вектора равны:

MM 1 ¯(-3/7; 9/7; -6/7)

Искомое расстояние равно:

d = |MM 1 ¯| = √126/7 ≈ 1,6

Три точки проекции

Во время изготовления чертежей часто приходится получать проекции сечений на взаимно перпендикулярные три плоскости. Поэтому полезно рассмотреть, чему будут равны проекции некоторой точки M с координатами (x 0 ; y 0 ; z 0) на три координатные плоскости.

Не сложно показать, что плоскость xy описывается уравнением z = 0, плоскость xz соответствует выражению y = 0, а оставшаяся плоскость yz обозначается равенством x = 0. Нетрудно догадаться, что проекции точки на 3 плоскости будут равны:

для x = 0: (0; y 0 ; z 0);

для y = 0: (x 0 ; 0 ; z 0);

для z = 0: (x 0 ; y 0 ; 0)

Где важно знать проекции точки и ее расстояния до плоскостей?

Определение положения проекции точек на заданную плоскость важно при нахождении таких величин, как площадь поверхности и объем для наклонных призм и пирамид. Например, расстояние от вершины пирамиды до плоскости основания является высотой. Последняя входит в формулу для объема этой фигуры.

Рассмотренные формулы и методики определения проекций и расстояний от точки до прямой и плоскости являются достаточно простыми. Важно лишь запомнить соответствующие формы уравнений плоскости и прямой, а также иметь хорошее пространственное воображение, чтобы успешно их применять.

Аппарат проецирования

Аппарат проецирования (рис. 1) включает в себя три плоскости проекций:

π 1 – горизонтальная плоскость проекций;

π 2 – фронтальная плоскость проекций;

π 3 – профильная плоскость проекций.

Плоскости проекций располагаются взаимно перпендикулярно (π 1 ^ π 2 ^ π 3 ), а их линии пересечения образуют оси:

Пересечение плоскостей π 1 и π 2 образуют ось (π 1 π 2 = );

Пересечение плоскостей π 1 и π 3 образуют ось 0Y (π 1 π 3 = 0Y );

Пересечение плоскостей π 2 и π 3 образуют ось 0Z (π 2 π 3 = 0Z ).

Точка пересечения осей (ОХ∩OY∩OZ=0), считается точкой начала отсчета (точка 0).

Так как плоскости и оси взаимно перпендикулярны, то такой аппарат аналогичен декартовой системе координат.

Плоскости проекций все пространство делят на восемь октантов (на рис. 1 они обозначены римскими цифрами). Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом октанте.

Проецирование ортогональное с центрами проецирования S 1 , S 2 и S 3 соответственно для горизонтальной, фронтальной и профильной плоскостей проекций.

А .

Из центров проецирования S 1 , S 2 и S 3 выходят проецирующие лучи l 1 , l 2 и l 3 А

- А 1 А ;

- А 2 – фронтальная проекция точки А ;

- А 3 – профильная проекция точки А .

Точка в пространстве характеризуется своими координатами A (x,y,z ). Точки A x , A y и A z соответственно на осях 0X , 0Y и 0Z показывают координаты x, y и z точки А . На рис. 1 даны все необходимые обозначения и показаны связи между точкой А пространства, её проекциями и координатами.

Эпюр точки

Чтобы получить эпюр точки А (рис. 2), в аппарате проецирования (рис. 1) плоскость π 1 А 1 π 2 . Затем плоскость π 3 с проекцией точки А 3 , вращают против часовой стрелки вокруг оси 0Z , до совмещения её с плоскостью π 2 . Направление поворотов плоскостей π 2 и π 3 показано на рис. 1 стрелками. При этом прямые А 1 А х и А 2 А х перпендикуляре А 1 А 2 , а прямые А 2 А х и А 3 А х станут располагаться на общем к оси 0Z перпендикуляре А 2 А 3 . Эти прямые в дальнейшем будем называть соответственно вертикальной и горизонтальной линиями связей.

Следует отметить, что при переходе от аппарата проецирования к эпюру проектируемый объект исчезает, но вся информация о его форме, геометрических размерах и месте его положения в пространстве сохраняются.



А (x A , y A , z A x A , y A и z A в следующей последовательности (рис. 2). Эта последовательность называется методикой построения эпюра точки.

1. Ортогонально вычерчиваются оси OX, OY и OZ.

2. На оси OX x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX

А х по направлению оси OY откладывается численное значение координаты y A точки А А 1 на эпюре.

А х по направлению оси OZ откладывается численное значение координаты z A точки А А 2 на эпюре.

6. Через точку А 2 параллельно оси OX проводится горизонтальная линия связи. Пересечение этой линии и оси OZ даст положение точки А z .

7. На горизонтальной линии связи от точки А z по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение профильной проекции точки А 3 на эпюре.

Характеристика точек

Все точки пространства подразделяются на точки частного и общего положений.

Точки частного положения. Точки, принадлежащие аппарату проецирования, называются точками частного положения. К ним относятся точки, принадлежащие плоскостям проекций, осям, началу координат и центрам проецирования. Характерными признаками точек частного положения являются:

Метаматематический – одна, две или все численные значения координат равны нулю и (или) бесконечности;

На эпюре – две или все проекции точки располагаются на осях и (или) располагаются в бесконечности.



Точки общего положения. К точкам общего положения относятся точки, не принадлежащие аппарату проецирования. Например, точка А на рис. 1 и 2.

В общем случае численные значения координат точки характеризует ее удаление от плоскости проекций: координата х от плоскости π 3 ; координата y от плоскости π 2 ; координата z от плоскости π 1 . Следует отметить, что знаки при численных значениях координат указывают на направление удаления точки от плоскостей проекций. В зависимости от сочетания знаков при численных значениях координат точки зависит в каком из октанов она находится.

Метод двух изображений

На практике, кроме метода полного проецирования используют метод двух изображений. Он отличается тем, что в этом методе исключается третья проекция объекта. Для получения аппарата проецирования метода двух изображений из аппарата полного проецирования исключается профильная плоскость проекций с ее центром проецирования (рис. 3). Кроме того, на оси назначается начало отсчета (точка 0 ) и из него перпендикулярно оси в плоскостях проекций π 1 и π 2 проводят оси 0Y и 0Z соответственно.

В этом аппарате все пространство делится на четыре квадранта. На рис. 3 они обозначены римскими цыфрами.

Плоскости проекций считаются непрозрачными, а зритель всегда находится в I -ом квадранте.

Рассмотрим работу аппарата на примере проецирования точки А .

Из центров проецирования S 1 и S 2 выходят проецирующие лучи l 1 и l 2 . Эти лучи проходят через точку А и пересекаясь с плоскостями проекций образуют ее проекции:

- А 1 – горизонтальная проекция точки А ;

- А 2 – фронтальная проекция точки А .

Чтобы получить эпюр точки А (рис. 4), в аппарате проецирования (рис. 3) плоскость π 1 с полученной проекцией точки А 1 вращают по часовой стрелке вокруг оси , до совмещения её с плоскостью π 2 . Направление поворота плоскости π 1 показана на рис. 3 стрелками. При этом на эпюре точки полученной методом двух изображений остается только одна вертикальная линия связи А 1 А 2 .

На практике построение эпюра точки А (x A , y A , z A ) осуществляется по численным значениям ее координат x A , y A и z A в следующей последовательности (рис. 4).

1. Вычерчивается ось OX и назначается начало отсчета (точка 0 ).

2. На оси OX откладывается численное значение координаты x A точки А и получают положение точки А х .

3. Через точку А х перпендикулярно оси OX проводится вертикальная линия связи.

4. На вертикальной линии связи от точки А х по направлению оси OY откладывается численное значение координаты y A точки А и определяется положение горизонтальной проекции точки А 1 OY не вычерчивается, а предполагается, что ее положительные значения располагаются ниже оси OX , а отрицательные выше.

5. На вертикальной линии связи от точки А х по направлению оси OZ откладывается численное значение координаты z A точки А и определяется положение фронтальной проекции точки А 2 на эпюре. Следует отметить, что на эпюре ось OZ не вычерчивается, а предполагается, что ее положительные значения располагаются выше оси OX , а отрицательные ниже.

Конкурирующие точки

Точки на одном проецирующем луче называются конкурирующими. Они в направлении проецирующего луча имеют общую для них проекцию, т.е. их проекции тождественно совпадают. Характерным признаком конкурирующих точек на эпюре является тождественное совпадение их одноименных проекций. Конкуренция заключается в видимости этих проекций относительно наблюдателя. Говоря другими словами, в пространстве для наблюдателя одна из точек видима, другая – нет. И, соответственно, на чертеже: одна из проекций конкурирующих точек видима, а проекция другой точки – невидима.

На пространственной модели проецирования (рис. 5) из двух конкурирующих точек А и В видима точка А по двум взаимно дополняющим признакам. Судя по цепочке S 1 →А→В точка А ближе к наблюдателю, чем точка В . И, соответственно, – дальше от плоскости проекций π 1 (т.е. z A > z A ).

Рис. 5 Рис.6

Если видима сама точка A , то видима и её проекция A 1 . По отношению к совпадающей с ней проекцией B 1 . Для наглядности и при необходимости на эпюре невидимые проекции точек принято заключать в скобки.

Уберем на модели точки А и В . Останутся их совпадающие проекции на плоскости π 1 и раздельные проекции – на π 2 . Условно оставим и фронтальную проекцию наблюдателя (⇩), находящегося в центре проецирования S 1 . Тогда по цепочке изображений ⇩ → A 2 B 2 можно будет судить о том, что z A > z B и что видима и сама точка А и её проекция А 1 .

Аналогично рассмотрим конкурирующие точки С и D по видимости относительно плоскости π 2 . Поскольку общий проецирующий луч этих точек l 2 параллелен оси 0Y , то признак видимости конкурирующих точек С и D определяется неравенством y C > y D . Следовательно, что точка D закрыта точкой С и соответственно проекция точки D 2 будет закрыта проекцией точки С 2 на плоскости π 2 .

Рассмотрим, как определяется видимость конкурирующих точек на комплексном чертеже (рис. 6).

Судя по совпадающим проекциям А 1 В 1 сами точки А и В находятся на одном проецирующем луче, параллельном оси 0Z . Значит сравнению подлежат координаты z A и z B этих точек. Для этого используем фронтальную плоскость проекций с раздельными изображениями точек. В данном случае z A > z B . Из этого следует, что видима проекция А 1 .

Точки C и D на рассматриваемом комплексном чертеже (рис. 6) так же находятся на одном проецирующем луче, но только параллельном оси 0Y . Поэтому из сравнения y C > y D делаем вывод, что видима проекция С 2 .

Общее правило . Видимость для совпадающих проекций конкурирующих точек определяется сравнением координат этих точек в направлении общего проецирующего луча. Видима та проекция точки, у которой эта координата больше. При этом сравнение координат ведется на плоскости проекций с раздельными изображениями точек.

При решении геометрических задач в пространстве часто возникает проблема определения расстояния между плоскостью и точкой. В некоторых случаях это необходимо для комплексного решения. Эту величину можно вычислить, если найти проекцию на плоскость точки. Рассмотрим этот вопрос подробнее в статье.

Уравнение для описания плоскости

Перед тем как перейти к рассмотрению вопроса касательно того, как найти проекцию точки на плоскость, следует познакомиться с видами уравнений, которые задают последнюю в трехмерном пространстве. Подробнее - ниже.

Уравнением общего вида, определяющим все точки, которые принадлежат данной плоскости, является следующее:

A*x + B*y + C*z + D = 0.

Первые три коэффициента - это координаты вектора, который называется направляющим для плоскости. Он совпадает с нормалью для нее, то есть является перпендикулярным. Этот вектор обозначают n¯(A; B; C). Свободный коэффициент D однозначно определяется из знания координат любой точки, принадлежащей плоскости.

Понятие о проекции точки и ее вычисление

Предположим, что задана некоторая точка P(x 1 ; y 1 ; z 1) и плоскость. Она определена уравнением в общем виде. Если провести перпендикулярную прямую из P к заданной плоскости, то очевидно, что она пересечет последнюю в одной определенной точке Q (x 2 ; y 2 ; z 2). Q называется проекцией P на рассматриваемую плоскость. Длина отрезка PQ называется расстоянием от точки P до плоскости. Таким образом, сам PQ является перпендикулярным плоскости.

Как можно найти координаты проекции точки на плоскость? Сделать это не сложно. Для начала следует составить уравнение прямой, которая будет перпендикулярна плоскости. Ей будет принадлежать точка P. Поскольку вектор нормали n¯(A; B; C) этой прямой должен быть параллелен, то уравнение для нее в соответствующей форме запишется так:

(x; y; z) = (x 1 ; y 1 ; z 1) + λ*(A; B; C).

Где λ - действительное число, которое принято называть параметром уравнения. Изменяя его, можно получить любую точку прямой.

После того как записано векторное уравнение для перпендикулярной плоскости линии, необходимо найти общую точку пересечения для рассматриваемых геометрических объектов. Ее координаты и будут проекцией P. Поскольку они должны удовлетворять обоим равенствам (для прямой и для плоскости), то задача сводится к решению соответствующей системы линейных уравнений.

Понятие проекции часто используется при изучении чертежей. На них изображаются боковые и горизонтальные проекции детали на плоскости zy, zx, и xy.

Вычисление расстояния от плоскости до точки

Как выше было отмечено, знание координат проекции на плоскость точки позволяет определить дистанцию между ними. Используя обозначения, введенные в предыдущем пункте, получаем, что искомое расстояние равно длине отрезка PQ. Для его вычисления достаточно найти координаты вектора PQ¯, а затем рассчитать его модуль по известной формуле. Конечное выражение для d расстояния между P точкой и плоскостью принимает вид:

d = |PQ¯| = √((x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2).

Полученное значение d представлено в единицах, в которых задается текущая декартова координатная система xyz.

Пример задачи

Допустим, имеется точка N(0; -2; 3) и плоскость, которая описывается следующим уравнением:

Следует найти точки проекцию на плоскость и вычислить между ними расстояние.

В первую очередь составим уравнение прямой, которая пересекает плоскость под углом 90 o . Имеем:

(x; y; z) = (0; -2; 3) + λ*(2; -1; 1).

Записывая это равенство в явном виде, приходим к следующей системе уравнений:

Подставляя значения координат из первых трех равенств в четвертое, получим значение λ, определяющее координаты общей точки прямой и плоскости:

2*(2*λ) - (-2 - λ) + λ + 3 + 4 = 0 =>

6*λ + 9 = 0 =>

λ = 9/6 = 3/2 = 1,5.

Подставим найденный параметр в и найдем координаты проекции исходной точки на плоскость:

(x; y; z) = (0; -2; 3) + 1,5*(2; -1; 1) = (3; -3,5; 4,5).

Для вычисления дистанции между заданными в условии задачи геометрическими объектами применим формулу для d:

d = √((3 - 0) 2 + (-3,5 + 2) 2 + (4,5 - 3) 2) = 3,674.

В данной задаче мы показали, как находить проекцию точки на произвольную плоскость и как вычислять между ними расстояние.

Метод проекций является основой теории построения чертежных изображений в инженерной графике. Чаще всего он используется, когда необходимо найти изображение тела в виде его проекции на плоскости либо получить данные о его положении в пространстве.

Инструкция

  • В многомерном пространстве любое изображение объекта на плоскости можно получить с помощью проецирования. Однако не стоит судить о геометрической форме тела либо о форме простейших образов в геометрии на основе одной проекции точки. Наиболее полную информацию об изображении геометрического тела дает несколько проекций точек. Для чего используют проекции точек тела минимум в двух плоскостях.
  • Например, необходимо построить проекцию точки А. Для этого расположите две плоскости перпендикулярно друг другу. Одну -горизонтально, называя ее горизонтальной плоскостью и обозначая все проекции элементов с индексом 1. Вторую - вертикально. Назовите ее, соответственно, фронтальной плоскостью , а проекциям элементов присвойте индекс 2. Обе эти плоскости считайте бесконечными и непрозрачными. Линией их пересечений становится ось координат ОХ.
  • Затем примите как факт, что пространство между плоскостями проекции условно делится на четверти. Вы находитесь в первой четверти и видите только те линии и точки, которые находятся в этой области двугранного угла.
  • Суть процесса проецирования состоит в проведении луча через заданную точку, пока луч не встретится с плоскостью проекций. Данный метод получил название метода ортогонального проецирования. Согласно нему, опустите из точки А перпендикуляр на горизонтальную и фронтальную плоскость. Основанием этого перпендикуляра как раз и будет горизонтальная проекция точки А1 либо фронтальная проекция точки А2. Таким образом, вы получите положение этой точки в пространстве заданных плоскостей проекций.

ПРОЕЦИРОВАНИЕ ТОЧКИ НА ДВЕ ПЛОСКОСТИ ПРОЕКЦИЙ

Образование отрезка прямой линии АА 1 можно представить как результат перемещения точки А в какой-либо плоскости Н (рис. 84, а), а образование плоскости - как перемещение отрезка прямой линии АВ (рис. 84, б).

Точка - основной геометрический элемент линии и поверхности, поэтому изучение прямоугольного проецирования предмета начинается с построения прямоугольных проекций точки.

В пространство двугранного угла, образованного двумя перпендикулярными плоскостями - фронтальной (вертикальной) плоскостью проекций V и горизонтальной плоскостью проекций Н, поместим точку А (рис. 85, а).

Линия пересечения плоскостей проекций - прямая, которая называется осью проекций и обозначается буквой х.

Плоскость V здесь изображена в виде прямоугольника, а плоскость Н - в виде параллелограмма. Наклонную сторону этого параллелограмма обычно проводят под углом 45° к его горизонтальной стороне. Длина наклонной стороны берется равной 0,5 ее действительной длины.

Из точки А опускают перпендикуляры на плоскости V и Н. Точки а"и а пересечения перпендикуляров с плоскостями проекций V и Н являются прямоугольными проекциями точки А. Фигура Ааа х а" в пространстве - прямоугольник. Сторона аах этого прямоугольника на наглядном изображении уменьшается в 2 раза.

Совместим плоскости Н с плоскостью V ,вращая V вокруг линии пересечения плоскостей х. В результате получается комплексный чертеж точки А (рис. 85, б)

Для упрощения комплексного чертежа границы плоскостей проекций V и Н не указывают (рис. 85, в).

Перпендикуляры, проведенные из точки А к плоскостям проекций, называются проецирующими линиями, а основания этих проецирующих линий - точки а и а" - называются проекциями точки А: а" - фронтальная проекция точки А, а - горизонтальная проекция точки А.

Линия а" а называется вертикальной линией проекционной связи.

Расположение проекции точки на комплексном чертеже зависит от положения этой точки в пространстве.

Если точка А лежит на горизонтальной плоскости проекций Н (рис. 86, а), то ее горизонтальная проекция а совпадает с заданной точкой, а фронтальная проекция а" располагается на оси При расположении точки В на фронтальной плоскости проекций V ее фронтальная проекция совпадает с этой точкой, а горизонтальная проекция лежит на оси х. Горизонтальная и фронтальная проекции заданной точки С, лежащей на оси х, совпадают с этой точкой. Комплексный чертеж точек А, В и С показан на рис. 86, б.

ПРОЕЦИРОВАНИЕ ТОЧКИ НА ТРИ ПЛОСКОСТИ ПРОЕКЦИЙ

В тех случаях, когда по двум проекциям нельзя представить себе форму предмета, его проецируют на три плоскости проекций. В этом случае вводится профильная плоскость проекций W, перпендикулярная плоскостям V и Н. Наглядное изображение системы из трех плоскостей проекций дано на рис. 87, а.

Ребра трехгранного угла (пересечение плоскостей проекций) называются осями проекций и обозначаются x, у и z. Пересечение осей проекций называется началом осей проекций и обозначается буквой О. Опустим из точки А перпендикуляр на плоскость проекций W и, отметив основание перпендикуляра буквой а", получим профильную проекцию точки А.

Для получения комплексного чертежа точки А плоскости Н и W совмещают с плоскостью V, вращая их вокруг осей Ох и Oz. Комплексный чертеж точки А показан на рис. 87, б и в.

Отрезки проецирующих линий от точки А до плоскостей проекций называются координатами точки А и обозначаются: х А, у А и z A .

Например, координата z A точки А, равная отрезку а"а х (рис. 88, а и б), есть расстояние от точки А до горизонтальной плоскости проекций Н. Координата у точки А, равная отрезку аа х, есть расстояние от точки А до фронтальной плоскости проекций V. Координата х А, равная отрезку аа у - расстояние от точки А до профильной плоскости проекций W.

Таким образом, расстояние между проекцией точки и осью проекции определяют координаты точки и являются ключом к чтению ее комплексного чертежа. По двум проекциям точки можно определить все три координаты точки.

Если заданы координаты точки А (например, х А =20 мм, у А =22мм и z A = 25 мм), то можно построить три проекции этой точки.

Для этого от начала координат О по направлению оси Oz откладывают вверх координату z A и вниз координату у А.Из концов отложенных отрезков - точек a z и а у (рис. 88, а) - проводят прямые, параллельные оси Ох, и на них откладывают отрезки, равные координате х А. Полученные точки а" и а - фронтальная и горизонтальная проекции точки А.

По двум проекциям а" и а точки А построить ее профильную проекцию можно тремя способами:

1) из начала координат О проводят вспомогательную дугу радиусом Оа у, равным координате (рис. 87, б и в), из полученной точки а у1 проводят прямую, параллельную оси Oz, и откладывают отрезок, равный z A ;

2) из точки а у проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, а), получают точку а у1 и т. д.;

3) из начала координат О проводят вспомогательную прямую под углом 45° к оси Оу (рис. 88, б), получают точку а у1 и т. д.