Чему равен косинус отношение. Синус, косинус, тангенс, котангенс острого угла. Тригонометрические функции. Что такое прямоугольный треугольник

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cos α) - отношение прилежащего катета к гипотенузе.

Тангенс угла (t g α) - отношение противолежащего катета к прилежащему.

Котангенс угла (c t g α) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от - ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1 , 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 (x , y).

Синус (sin) угла поворота

Синус угла поворота α - это ордината точки A 1 (x , y). sin α = y

Косинус (cos) угла поворота

Косинус угла поворота α - это абсцисса точки A 1 (x , y). cos α = х

Тангенс (tg) угла поворота

Тангенс угла поворота α - это отношение ординаты точки A 1 (x , y) к ее абсциссе. t g α = y x

Котангенс (ctg) угла поворота

Котангенс угла поворота α - это отношение абсциссы точки A 1 (x , y) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0 , 1) и (0 , - 1). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При решении практических примеров не говорят "синус угла поворота α ". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности - точка A c координатами (1 , 0).

Положительному числу t

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t - ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус (cos) числа t

Косинус числа t - абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t - отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t , совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можно сказать, что sin α , cos α , t g α , c t g α - это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t . Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс - основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A (1 , 0) на угол величиной до 90 градусов и проведем из полученной точки A 1 (x , y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 (x , y) . Длина катета, противолежащего углу, равна ординате точки A 1 (x , y) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

Напомним, что прямой угол - это угол, равный . Другими словами, половина развернутого угла.

Острый угол - меньший .

Тупой угол - больший . Применительно к такому углу «тупой» - не оскорбление, а математический термин:-)

Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла , обозначается .

Угол обозначается соответствующей греческой буквой .

Гипотенуза прямоугольного треугольника - это сторона, лежащая напротив прямого угла.

Катеты - стороны, лежащие напротив острых углов.

Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим .

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике - отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему:

Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике - отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

Давайте докажем некоторые из них.

1. Сумма углов любого треугольника равна . Значит, сумма двух острых углов прямоугольного треугольника равнa .

2. С одной стороны, как отношение противолежащего катета к гипотенузе. С другой стороны, , поскольку для угла катет будет прилежащим.

Получаем, что . Иными словами, .

3. Возьмем теорему Пифагора: . Поделим обе части на :

Мы получили основное тригонометрическое тождество :

Таким образом, зная синус угла, мы можем найти его косинус, и наоборот.

4. Поделив обе части основного тригонометрического тождества на , получим:

Это значит, что если нам дан тангенс острого угла , то мы сразу можем найти его косинус.

Аналогично,

Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

Мы знаем, что сумма углов любого треугольника равна .


Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов - свое соотношение, для сторон - свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

Синус, косинус и тангенс - их еще называют тригонометрическими функциями угла - дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

1. В треугольнике угол равен , . Найдите .

Задача решается за четыре секунды.

Поскольку , имеем: .

2. В треугольнике угол равен , , . Найдите . , равен половине гипотенузы .

Треугольник с углами , и - равнобедренный. В нем гипотенуза в раз больше катета.

Глава I. Решение прямоугольных треугольников

§3 (37). Основные соотношения и задачи

В тригонометрии рассматриваются задачи, в которых требуется вычислить те или иные элементы треугольника по достаточному количеству численных значений заданных его элементов. Эти задачи обычно называются задачами на решение треугольника.

Пусть ABC - прямоугольный треугольник, С - прямой угол, а и b - катеты, противолежащие острым углам А и В, с - гипотенуза (черт. 3);

тогда имеем:

Косинус острого угла есть отношение прилежащего катета к гипотенузе:

соs A = b / c , cos В = a / c (1)

Синус острого угла есть отношение противолежащего катета к гипотенузе:

sin A = a / c , sin B = b / c (2)

Тангенс острого угла есть отношение противолежащего катета к прилежащему:

tg A = a / b , tg B = b / a (3)

Котангенс острого угла есть отношение прилежащего катета к противолежащему:

ctg A = b / a , ctg B = a / b (4)

Сумма острых углов равна 90° .

Основные задачи на прямоугольные треугольники.

Задача I. Даны гипотенуза и один из острых углов, вычислить прочие элементы.

Решение. Пусть даны с и А. Угол В = 90° - А также известен; катеты находятся из формул (1) и (2).

а = с sin A, b = с cos А.

Задача II . Даны катет и один из острых углов, вычислить прочие элементы.

Решение. Пусть даны а и A. Угол В = 90° - А известен; из формул (3) и (2) найдём:

b = a tg B (= a ctg A), с = a / sin A

Задача III. Даны катет и гипотенуза, вычислить остальные элементы.

Решение. Пусть даны а и с (причём а < с ). Из равенств (2) найдём угол А:

sin A = a / c и A = arc sin a / c ,

и, наконец, катет b :

b = с cos А (= с sin В).

Задача IV. Даны катеты а и b найти прочие элементы.

Решение. Из равенств (3) найдём острый угол, например А:

tg А = a / b , А = arc tg a / b ,

угол В = 90° - А,

гипотенуза: c = a / sin A (= b / sin B ; = a / cos B)

Ниже приводится пример решения прямоугольного треугольника при помощи логарифмических таблиц*.

* Вычисление элементов прямоугольных треугольников по натуральным таблицам известно из курса геометрии VIII класса.

При вычислениях по логарифмическим таблицам следует выписать соответствующие формулы, прологарифмировать их, подставить числовые данные, по таблицам найти требуемые логарифмы известных элементов (или их тригонометрических функций), вычислить логарифмы искомых элементов (или их тригонометрических функций) и по таблицам найти искомые элементы.

Пример. Даны катет а = 166,1 и гипотенуза с = 187,3; вычислить острые углы, другой катет и площадь.

Решение. Имеем:

sin A = a / c ; lg sin A = lg a - lg c ;

A ≈ 62°30", В ≈ 90° - 62°30" ≈ 27°30".

Вычисляем катет b :

b = a tg B ; lg b = lg b + lg tg B ;

Площадь треугольника можно вычислить по формуле

S = 1 / 2 ab = 0,5 a 2 tg В;

Для контроля подсчитаем угол А на логарифмической линейке:

А = arc sin a / c = arc sin 166 / 187 ≈ 62°.

Примечание. Катет b можно вычислить по теореме Пифагора, пользуясь таблицами квадратов и квадратных корней (табл. III и IV):

b = √187,3 2 - 166,1 2 = √35080 - 27590 ≈ 86,54.

Расхождение с ранее полученным значением b= 86,48 объясняется погрешностями таблиц, в которых даются приближённые значения функций. Результат 86,54 является более точным.

Что такое синус, косинус, тангенс, котангенс угла поможет понять прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона \(AC \) ); катеты – это две оставшиеся стороны \(AB \) и \(BC \) (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла \(BC \) , то катет \(AB \) – это прилежащий катет, а катет \(BC \) - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике:

\[ \sin \beta =\dfrac{BC}{AC} \]

Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике:

\[ \cos \beta =\dfrac{AB}{AC} \]

Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике:

\[ tg\beta =\dfrac{BC}{AB} \]

Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике:

\[ ctg\beta =\dfrac{AB}{BC} \]

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла \(\beta \) . По определению, из треугольника \(ABC \) : \(\cos \beta =\dfrac{AB}{AC}=\dfrac{4}{6}=\dfrac{2}{3} \) , но ведь мы можем вычислить косинус угла \(\beta \) и из треугольника \(AHI \) : \(\cos \beta =\dfrac{AH}{AI}=\dfrac{6}{9}=\dfrac{2}{3} \) . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника \(ABC \) , изображённого ниже на рисунке, найдём \(\sin \ \alpha ,\ \cos \ \alpha ,\ tg\ \alpha ,\ ctg\ \alpha \) .

\(\begin{array}{l}\sin \ \alpha =\dfrac{4}{5}=0,8\\\cos \ \alpha =\dfrac{3}{5}=0,6\\tg\ \alpha =\dfrac{4}{3}\\ctg\ \alpha =\dfrac{3}{4}=0,75\end{array} \)

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла \(\beta \) .

Ответы: \(\sin \ \beta =0,6;\ \cos \ \beta =0,8;\ tg\ \beta =0,75;\ ctg\ \beta =\dfrac{4}{3} \) .

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным \(1 \) . Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси \(x \) (в нашем примере, это радиус \(AB \) ).

Каждой точке окружности соответствуют два числа: координата по оси \(x \) и координата по оси \(y \) . А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник \(ACG \) . Он прямоугольный, так как \(CG \) является перпендикуляром к оси \(x \) .

Чему равен \(\cos \ \alpha \) из треугольника \(ACG \) ? Всё верно \(\cos \ \alpha =\dfrac{AG}{AC} \) . Кроме того, нам ведь известно, что \(AC \) – это радиус единичной окружности, а значит, \(AC=1 \) . Подставим это значение в нашу формулу для косинуса. Вот что получается:

\(\cos \ \alpha =\dfrac{AG}{AC}=\dfrac{AG}{1}=AG \) .

А чему равен \(\sin \ \alpha \) из треугольника \(ACG \) ? Ну конечно, \(\sin \alpha =\dfrac{CG}{AC} \) ! Подставим значение радиуса \(AC \) в эту формулу и получим:

\(\sin \alpha =\dfrac{CG}{AC}=\dfrac{CG}{1}=CG \)

Так, а можешь сказать, какие координаты имеет точка \(C \) , принадлежащая окружности? Ну что, никак? А если сообразить, что \(\cos \ \alpha \) и \(\sin \alpha \) - это просто числа? Какой координате соответствует \(\cos \alpha \) ? Ну, конечно, координате \(x \) ! А какой координате соответствует \(\sin \alpha \) ? Всё верно, координате \(y \) ! Таким образом, точка \(C(x;y)=C(\cos \alpha ;\sin \alpha) \) .

А чему тогда равны \(tg \alpha \) и \(ctg \alpha \) ? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что \(tg \alpha =\dfrac{\sin \alpha }{\cos \alpha }=\dfrac{y}{x} \) , а \(ctg \alpha =\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{x}{y} \) .

А что, если угол будет больше ? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник \({{A}_{1}}{{C}_{1}}G \) : угол (как прилежащий к углу \(\beta \) ). Чему равно значение синуса, косинуса, тангенса и котангенса для угла \({{C}_{1}}{{A}_{1}}G=180{}^\circ -\beta \ \) ? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

\(\begin{array}{l}\sin \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{C}_{1}}G}{1}={{C}_{1}}G=y;\\\cos \angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{A}_{1}}{{C}_{1}}}=\dfrac{{{A}_{1}}G}{1}={{A}_{1}}G=x;\\tg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{C}_{1}}G}{{{A}_{1}}G}=\dfrac{y}{x};\\ctg\angle {{C}_{1}}{{A}_{1}}G=\dfrac{{{A}_{1}}G}{{{C}_{1}}G}=\dfrac{x}{y}\end{array} \)

Ну вот, как видишь, значение синуса угла всё так же соответствует координате \(y \) ; значение косинуса угла – координате \(x \) ; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора – вдоль положительного направления оси \(x \) . До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке – отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет \(360{}^\circ \) или \(2\pi \) . А можно повернуть радиус-вектор на \(390{}^\circ \) или на \(-1140{}^\circ \) ? Ну конечно, можно! В первом случае, \(390{}^\circ =360{}^\circ +30{}^\circ \) , таким образом, радиус-вектор совершит один полный оборот и остановится в положении \(30{}^\circ \) или \(\dfrac{\pi }{6} \) .

Во втором случае, \(-1140{}^\circ =-360{}^\circ \cdot 3-60{}^\circ \) , то есть радиус-вектор совершит три полных оборота и остановится в положении \(-60{}^\circ \) или \(-\dfrac{\pi }{3} \) .

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на \(360{}^\circ \cdot m \) или \(2\pi \cdot m \) (где \(m \) – любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол \(\beta =-60{}^\circ \) . Это же изображение соответствует углу \(-420{}^\circ ,-780{}^\circ ,\ 300{}^\circ ,660{}^\circ \) и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой \(\beta +360{}^\circ \cdot m \) или \(\beta +2\pi \cdot m \) (где \(m \) – любое целое число)

\(\begin{array}{l}-420{}^\circ =-60+360\cdot (-1);\\-780{}^\circ =-60+360\cdot (-2);\\300{}^\circ =-60+360\cdot 1;\\660{}^\circ =-60+360\cdot 2.\end{array} \)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

\(\begin{array}{l}\sin \ 90{}^\circ =?\\\cos \ 90{}^\circ =?\\\text{tg}\ 90{}^\circ =?\\\text{ctg}\ 90{}^\circ =?\\\sin \ 180{}^\circ =\sin \ \pi =?\\\cos \ 180{}^\circ =\cos \ \pi =?\\\text{tg}\ 180{}^\circ =\text{tg}\ \pi =?\\\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =?\\\sin \ 270{}^\circ =?\\\cos \ 270{}^\circ =?\\\text{tg}\ 270{}^\circ =?\\\text{ctg}\ 270{}^\circ =?\\\sin \ 360{}^\circ =?\\\cos \ 360{}^\circ =?\\\text{tg}\ 360{}^\circ =?\\\text{ctg}\ 360{}^\circ =?\\\sin \ 450{}^\circ =?\\\cos \ 450{}^\circ =?\\\text{tg}\ 450{}^\circ =?\\\text{ctg}\ 450{}^\circ =?\end{array} \)

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

\(\begin{array}{l}\sin \alpha =y;\\cos\alpha =x;\\tg\alpha =\dfrac{y}{x};\\ctg\alpha =\dfrac{x}{y}.\end{array} \)

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в \(90{}^\circ =\dfrac{\pi }{2} \) соответствует точка с координатами \(\left(0;1 \right) \) , следовательно:

\(\sin 90{}^\circ =y=1 \) ;

\(\cos 90{}^\circ =x=0 \) ;

\(\text{tg}\ 90{}^\circ =\dfrac{y}{x}=\dfrac{1}{0}\Rightarrow \text{tg}\ 90{}^\circ \) - не существует;

\(\text{ctg}\ 90{}^\circ =\dfrac{x}{y}=\dfrac{0}{1}=0 \) .

Дальше, придерживаясь той же логики, выясняем, что углам в \(180{}^\circ ,\ 270{}^\circ ,\ 360{}^\circ ,\ 450{}^\circ (=360{}^\circ +90{}^\circ)\ \) соответствуют точки с координатами \(\left(-1;0 \right),\text{ }\left(0;-1 \right),\text{ }\left(1;0 \right),\text{ }\left(0;1 \right) \) , соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

\(\displaystyle \sin \ 180{}^\circ =\sin \ \pi =0 \)

\(\displaystyle \cos \ 180{}^\circ =\cos \ \pi =-1 \)

\(\text{tg}\ 180{}^\circ =\text{tg}\ \pi =\dfrac{0}{-1}=0 \)

\(\text{ctg}\ 180{}^\circ =\text{ctg}\ \pi =\dfrac{-1}{0}\Rightarrow \text{ctg}\ \pi \) - не существует

\(\sin \ 270{}^\circ =-1 \)

\(\cos \ 270{}^\circ =0 \)

\(\text{tg}\ 270{}^\circ =\dfrac{-1}{0}\Rightarrow \text{tg}\ 270{}^\circ \) - не существует

\(\text{ctg}\ 270{}^\circ =\dfrac{0}{-1}=0 \)

\(\sin \ 360{}^\circ =0 \)

\(\cos \ 360{}^\circ =1 \)

\(\text{tg}\ 360{}^\circ =\dfrac{0}{1}=0 \)

\(\text{ctg}\ 360{}^\circ =\dfrac{1}{0}\Rightarrow \text{ctg}\ 2\pi \) - не существует

\(\sin \ 450{}^\circ =\sin \ \left(360{}^\circ +90{}^\circ \right)=\sin \ 90{}^\circ =1 \)

\(\cos \ 450{}^\circ =\cos \ \left(360{}^\circ +90{}^\circ \right)=\cos \ 90{}^\circ =0 \)

\(\text{tg}\ 450{}^\circ =\text{tg}\ \left(360{}^\circ +90{}^\circ \right)=\text{tg}\ 90{}^\circ =\dfrac{1}{0}\Rightarrow \text{tg}\ 450{}^\circ \) - не существует

\(\text{ctg}\ 450{}^\circ =\text{ctg}\left(360{}^\circ +90{}^\circ \right)=\text{ctg}\ 90{}^\circ =\dfrac{0}{1}=0 \) .

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

\(\left. \begin{array}{l}\sin \alpha =y;\\cos \alpha =x;\\tg \alpha =\dfrac{y}{x};\\ctg \alpha =\dfrac{x}{y}.\end{array} \right\}\ \text{Надо запомнить или уметь выводить!!!} \)

А вот значения тригонометрических функций углов в и \(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4} \) , приведённых ниже в таблице, необходимо запомнить:

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений:

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (\(30{}^\circ =\dfrac{\pi }{6},\ 45{}^\circ =\dfrac{\pi }{4},\ 60{}^\circ =\dfrac{\pi }{3} \) ), а также значение тангенса угла в \(30{}^\circ \) . Зная эти \(4 \) значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

\(\begin{array}{l}\sin 30{}^\circ =\cos \ 60{}^\circ =\dfrac{1}{2}\ \ \\\sin 45{}^\circ =\cos \ 45{}^\circ =\dfrac{\sqrt{2}}{2}\\\sin 60{}^\circ =\cos \ 30{}^\circ =\dfrac{\sqrt{3}}{2}\ \end{array} \)

\(\text{tg}\ 30{}^\circ \ =\dfrac{1}{\sqrt{3}} \) , зная это можно восстановить значения для \(\text{tg}\ 45{}^\circ , \text{tg}\ 60{}^\circ \) . Числитель «\(1 \) » будет соответствовать \(\text{tg}\ 45{}^\circ \ \) , а знаменатель «\(\sqrt{\text{3}} \) » соответствует \(\text{tg}\ 60{}^\circ \ \) . Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего \(4 \) значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота? Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки. Вот, к примеру, перед нами такая окружность:

Нам дано, что точка \(K({{x}_{0}};{{y}_{0}})=K(3;2) \) - центр окружности. Радиус окружности равен \(1,5 \) . Необходимо найти координаты точки \(P \) , полученной поворотом точки \(O \) на \(\delta \) градусов.

Как видно из рисунка, координате \(x \) точки \(P \) соответствует длина отрезка \(TP=UQ=UK+KQ \) . Длина отрезка \(UK \) соответствует координате \(x \) центра окружности, то есть равна \(3 \) . Длину отрезка \(KQ \) можно выразить, используя определение косинуса:

\(\cos \ \delta =\dfrac{KQ}{KP}=\dfrac{KQ}{r}\Rightarrow KQ=r\cdot \cos \ \delta \) .

Тогда имеем, что для точки \(P \) координата \(x={{x}_{0}}+r\cdot \cos \ \delta =3+1,5\cdot \cos \ \delta \) .

По той же логике находим значение координаты y для точки \(P \) . Таким образом,

\(y={{y}_{0}}+r\cdot \sin \ \delta =2+1,5\cdot \sin \delta \) .

Итак, в общем виде координаты точек определяются по формулам:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta \end{array} \) , где

\({{x}_{0}},{{y}_{0}} \) - координаты центра окружности,

\(r \) - радиус окружности,

\(\delta \) - угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

\(\begin{array}{l}x={{x}_{0}}+r\cdot \cos \ \delta =0+1\cdot \cos \ \delta =\cos \ \delta \\y={{y}_{0}}+r\cdot \sin \ \delta =0+1\cdot \sin \ \delta =\sin \ \delta \end{array} \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Зная один из катетов в прямоугольном треугольнике, можно найти второй катет и гипотенузу используя тригонометрические отношения – синус и тангенс известного угла. Так как отношение противолежащего углу катета к гипотенузе равно синусу этого угла, следовательно, чтобы найти гипотенузу нужно катет разделить на синус угла. a/c=sin⁡α c=a/sin⁡α

Второй катет можно найти из тангенса известного угла, как отношение известного катета к тангенсу. a/b=tan⁡α b=a/tan⁡α

Чтобы вычислить неизвестный угол в прямоугольном треугольнике нужно из 90 градусов вычесть величину угла α. β=90°-α

Периметр и площадь прямоугольного треугольника через катет и противолежащий ему угол можно выразить, подставив полученные ранее выражения для второго катета и гипотенузы в формулы. P=a+b+c=a+a/tan⁡α +a/sin⁡α =a tan⁡α sin⁡α+a sin⁡α+a tan⁡α S=ab/2=a^2/(2 tan⁡α)

Вычислить высоту также можно через тригонометрические отношения, но уже во внутреннем прямоугольном треугольнике со стороной a, который она образует. Для этого нужно сторону a, как гипотенузу такого треугольника умножить на синус угла β или косинус α, так как согласно тригонометрическим тождествам они равнозначны. (рис. 79.2) h=a cos⁡α

Медиана гипотенузы равна половине гипотенузы или известному катету a, деленному на два синуса α. Чтобы найти медианы катетов, приведем формулы к соответствующему виду для известной стороны и углы. (рис.79.3) m_с=c/2=a/(2 sin⁡α) m_b=√(2a^2+2c^2-b^2)/2=√(2a^2+2a^2+2b^2-b^2)/2=√(4a^2+b^2)/2=√(4a^2+a^2/tan^2⁡α)/2=(a√(4 tan^2⁡α+1))/(2 tan⁡α) m_a=√(2c^2+2b^2-a^2)/2=√(2a^2+2b^2+2b^2-a^2)/2=√(4b^2+a^2)/2=√(4b^2+c^2-b^2)/2=√(3 a^2/tan^2⁡α +a^2/sin^2⁡α)/2=√((3a^2 sin^2⁡α+a^2 tan^2⁡α)/(tan^2⁡α sin^2⁡α))/2=(a√(3 sin^2⁡α+tan^2⁡α))/(2 tan⁡α sin⁡α)

Так как биссектрисой прямого угла в треугольнике является произведение двух сторон и корня из двух, деленное на сумму этих сторон, то заменив один из катетов на отношение известного катета к тангенсу, получаем следующее выражение. Аналогично, подставив отношение во вторую и третью формулы, можно вычислить биссектрисы углов α и β. (рис.79.4) l_с=(a a/tan⁡α √2)/(a+a/tan⁡α)=(a^2 √2)/(a tan⁡α+a)=(a√2)/(tan⁡α+1) l_a=√(bc(a+b+c)(b+c-a))/(b+c)=√(bc((b+c)^2-a^2))/(b+c)=√(bc(b^2+2bc+c^2-a^2))/(b+c)=√(bc(b^2+2bc+b^2))/(b+c)=√(bc(2b^2+2bc))/(b+c)=(b√(2c(b+c)))/(b+c)=(a/tan⁡α √(2c(a/tan⁡α +c)))/(a/tan⁡α +c)=(a√(2c(a/tan⁡α +c)))/(a+c tan⁡α) l_b=√(ac(a+b+c)(a+c-b))/(a+c)=(a√(2c(a+c)))/(a+c)=(a√(2c(a+a/sin⁡α)))/(a+a/sin⁡α)=(a sin⁡α √(2c(a+a/sin⁡α)))/(a sin⁡α+a)

Средняя линия проходит параллельно одной из сторон треугольника, при этом образуя еще один подобный прямоугольный треугольник с такими же по величине углами, в котором все стороны в два раза меньше, чем у изначального. Исходя из этого, средние линии можно найти по следующим формулам, зная только катет и противолежащий ему угол. (рис.79.7) M_a=a/2 M_b=b/2=a/(2 tan⁡α) M_c=c/2=a/(2 sin⁡α)

Радиус вписанной окружности равен разности катетов и гипотенузы, деленной на два, а чтобы найти радиус описанной окружности, нужно разделить на два гипотенузу. Заменяем второй катет и гипотенузу на отношения катета a к синусу и тангенсу соответственно. (рис. 79.5, 79.6) r=(a+b-c)/2=(a+a/tan⁡α -a/sin⁡α)/2=(a tan⁡α sin⁡α+a sin⁡α-a tan⁡α)/(2 tan⁡α sin⁡α) R=c/2=a/2sin⁡α