Магнитная проницаемость величина которой 0.9992 характерна для. Магнитные свойства вещества. Магнитная проницаемость. Ферромагнетики

Магнитное поле катушки определяется током и напряженность этого поля , а индукция поля . Т.е. индукция поля в вакууме пропорциональна величине тока. Если же магнитное поле создается в некой среде или веществе, то поле воздействует на вещество, а оно, в свою очередь, определенным образом изменяет магнитное поле.

Вещество, находящееся во внешнем магнитном поле, намагничивается и в нем возникает добавочное внутреннее магнитное поле. Оно связано с движением электронов по внутриатомным орбитам, а также вокруг собственной оси. Движение электронов и ядер атомов можно рассматривать как элементарные круговые токи.

Магнитные свойства элементарного кругового тока характеризуются магнитным моментом.

При отсутствии внешнего магнитного поля элементарные токи внутри вещества ориентированы беспорядочно (хаотически) и, поэтому общий или суммарный магнитный момент равен нулю и в окружающем пространстве магнитное поле элементарных внутренних токов не обнаруживается.

Влияние внешнего магнитного поля на элементарные токи в веществе состоит в том, что изменяется ориентация осей вращения заряженных частиц причем так, что их магнитные моменты оказываются направленными в одну сторону. (в сторону внешнего магнитного поля). Интенсивность и характер намагничивания у различных веществ в одинаковом внешнем магнитном поле значительно отличаются. Величину, характеризующую свойства среды и влияние среды на плотность магнитного поля, называют абсолютной магнитной проницаемостью или магнитной проницаемостью среды (μ с ) . Это есть отношение = . Измеряется [μ с ]=Гн/м.

Абсолютная магнитная проницаемость вакуума называется магнитной постоянной μ о =4π 10 -7 Гн/м.

Отношение абсолютной магнитной проницаемости к магнитной постоянной называют относительной магнитной проницаемостью μ c /μ 0 =μ. Т.е. относительная магнитная проницаемость – это величина, показывающая, во сколько раз абсолютная магнитная проницаемость среды больше или меньше абсолютной проницаемости вакуума. μ - величина безразмерная, изменяющаяся в широких пределах. Эта величина положена в основу деления всех материалов и сред на три группы.

Диамагнетики . У этих веществ μ < 1. К ним относятся - медь, серебро, цинк, ртуть, свинец, сера, хлор, вода и др. Например, у меди μ Cu = 0,999995. Эти вещества слабо взаимодействуют с магнитом.

Парамагнетики . У этих веществ μ > 1. К ним относятся – алюминий, магний, олово, платина, марганец, кислород, воздух и др. У воздуха = 1,0000031. . Эти вещества также, как и диамагнетики, слабо взаимодействуют с магнитом.

Для технических расчетов μ диамагнитных и парамагнитных тел принимается равной единице.

Ферромагнетики . Это особая группа веществ, играющих громадную роль в электротехнике. У этих веществ μ >> 1. К ним относятся железо, сталь, чугун, никель, кобальт, гадолиний и сплавы металлов. Эти вещества сильно притягиваются к магниту. У этих веществ μ = 600- 10 000. У некоторых сплавов μ достигает рекордных значений до 100 000. Следует отметить, что μ для ферромагнитных материалов непостоянна и зависит от напряженности магнитного поля, вида материала и температуры.

Большое значение µ в ферромагнетиках объясняется тем, что в них имеются области самопроизвольного намагничивания (домены), в пределах которых элементарные магнитные моменты направлены одинаково. Складываясь, они образуют общие магнитные моменты доменов.

В отсутствие магнитного поля магнитные моменты доменов ориентированы хаотически и суммарный магнитный момент тела или вещества равен нулю. Под действием внешнего поля магнитные моменты доменов ориентируются в одну сторону и образуют общий магнитный момент тела, направленный в ту же сторону, что и внешнее магнитное поле.

Эту важную особенность используют на практике, применяя ферромагнитные сердечники в катушках, что позволяет резко усилить магнитную индукцию и магнитный поток при тех же значениях токов и числа витков или, иначе говоря, сконцентрировать магнитное поле в относительно малом объеме.

Магнитная проницаемость. Магнитные свойства веществ

Магнитные свойства веществ

Подобно тому, как электрические свойства вещества характеризуются диэлектрической проницаемостью, магнитные свойства вещества характеризуются магнитной проницаемостью.

Благодаря тому, что все вещества, находящиеся в магнитном поле, создают собственное магнитное поле, вектор магнитной индукции в однородной среде отличается от вектора в той же точке пространства в отсутствие среды, т. е. в вакууме.

Отношение называется магнитной проницаемостью среды.

Итак, в однородной среде магнитная индукция равна:

Величина m у железа очень велика. В этом можно убедиться на опыте. Если вставить в длинную катушку железный сердечник, то магнитная ин­дукция, согласно формуле (12.1), увеличится в m раз. Сле­довательно, во столько же раз увеличится поток магнитной индукции. При размыкании цепи, питающей намагничи­вающую катушку постоянным током, во второй, небольшой катушке, намотанной поверх основной, возникает индукцион­ный ток, регистрируемый гальванометром (рис. 12.1).

Если в катушку вставлен железный сердечник, то отклоне­ние стрелки гальванометра при размыкании цепи будет в m раз больше. Измерения показывают, что магнитный поток при внесении в катушку железного сердечника может увеличиться в тысячи раз. Следовательно, магнитная проницаемость железа огромна.

Существует три основных класса веществ с резко разли­чающимися магнитными свойствами: ферромагнетики, парамагнетики и диамагнетики.

Ферромагнетики

Вещества, у которых, подобно железу, m >> 1, называются ферромагнетиками. Кроме железа, ферромагнетиками явля­ются кобальт и никель, а также ряд редкоземельных элемен­тов и многие сплавы. Важнейшее свойство ферромагнетиков – существование у них остаточного магнетизма. Ферромагнитное вещество может находиться в намагничен­ном состоянии и без внешнего намагничивающего поля.

Железный предмет (например, стержень), как известно, втя­гивается в магнитное поле, т. е. перемещается в область, где магнитная индукция больше. Соответственно, он притягивает­ся к магниту или электромагниту. Это происходит потому, что элементарные токи в железе ориентируются так, что направ­ление магнитной индукции их поля совпадает с направлением индукции намагничивающего поля. В результате железный стержень превращается в магнит, ближайший полюс которого противоположен полюсу электромагнита. Противоположные же полюса магнитов притягиваются (рис. 12.2).

Рис. 12.2

СТОП! Решите самостоятельно: А1–А3, В1, В3.

Парамагнетики

Существуют вещества, которые ведут себя подобно железу, т. е. втягиваются в магнитное поле. Эти вещества называются парамагнитными . К их числу относятся некоторые ме­таллы (алюминий, натрий, калий, марганец, платина и др.), кислород и многие другие элементы, а также различные рас­творы электролитов.

Так как парамагнетики втягиваются в поле, то линии ин­дукции создаваемого ими собственного магнитного поля и намагничивающего поля направлены одинаково, поэтому поле усиливается. Таким образом, у них m > 1. Но от единицы m от­личается крайне незначительно, всего на величину порядка 10 –5 ...10 –6 . Поэтому для наблюдения парамагнитных явлений требуются мощные магнитные поля.

Диамагнетики

Особый класс веществ представляют собой диамагне­тики , открытые Фарадеем. Они выталкиваются из магнит­ного поля. Если подвесить диамагнитный стерженек возле по­люса сильного электромагнита, то он будет отталкиваться от него. Следовательно, линии индукции созданного им поля на­правлены противоположно линиям индукции намагничиваю­щего поля, т. е. поле ослабляется (рис. 12.3). Соответственно у диамагнетиков m < 1, причем отличается от единицы на вели­чину порядка 10 –6 . Магнитные свойства у диамагнетиков вы­ражены слабее, чем у парамагнетиков.

Если в описанных выше опытах вместо сердечника из железа брать сердечники из других материалов, то также можно обнаружить изменение магнитного потока. Естественнее всего ждать, что наиболее заметный эффект дадут материалы, подобные по своим магнитным свойствам железу, т. е. никель, кобальт и некоторые магнитные сплавы. Действительно, при введении в катушку сердечника из этих материалов увеличение магнитного потока оказывается довольно значительным. Иными словами, можно сказать, что магнитная проницаемость их велика; у никеля, например, может достигать значения 50, у кобальта 100. Все эти материалы с большими значениями объединяют в одну группу ферромагнитных материалов.

Однако и все остальные «немагнитные» материалы также оказывают некоторое влияние на магнитный поток, хотя влияние это значительно меньше, чем у материалов ферромагнитных. С помощью очень тщательных измерений можно это изменение обнаружить и определить магнитную проницаемость различных материалов. При этом, однако, нужно иметь в виду, что в опыте, описанном выше, мы сравнивали магнитный поток в катушке, полость которой заполнена железом, с потоком в катушке, внутри которой имеется воздух. Пока речь шла о таких сильно магнитных материалах, как железо, никель, кобальт, это не имело значения, так как наличие воздуха очень мало влияет на магнитный поток. Но при исследовании магнитных свойств других веществ, в частности самого воздуха, мы должны, конечно, вести сравнение с катушкой, внутри которой воздуха нет (вакуум). Таким образом, за магнитную проницаемость мы принимаем отношение магнитных потоков в исследуемом веществе и в вакууме . Иными словами, за единицу мы принимаем магнитную проницаемость для вакуума (если , то ).

Измерения показывают, что магнитная проницаемость всех веществ отлична от единицы, хотя в большинстве случаев это отличие очень мало. Но особенно замечательным оказывается тот факт, что у одних веществ магнитная проницаемость больше единицы, а у других она меньше единицы, т. е. заполнение катушки одними веществами увеличивает магнитный поток, а заполнение катушки другими веществами уменьшает этот поток. Первые из этих веществ называются парамагнитными (), а вторые – диамагнитными (). Как показывает табл. 7, отличие проницаемости от единицы как у парамагнитных, так и у диамагнитных веществ невелико.

Нужно особенно подчеркнуть, что для парамагнитных и диамагнитных тел магнитная проницаемость не зависит от магнитной индукции внешнего, намагничивающего поля, т. е. представляет собой постоянную величину, характеризующую данное вещество. Как мы увидим § 149, это не имеет места для железа и других сходных с ним (ферромагнитных) тел.

Таблица 7. Магнитная проницаемость для некоторых парамагнитных и диамагнитных веществ

Парамагнитные вещества

Диамагнитные вещества

Азот (газообразный)

Водород (газообразный)

Воздух (газообразный)

Кислород (газообразный)

Кислород (жидкий)

Алюминий

Вольфрам

Влияние парамагнитных и диамагнитных веществ на магнитный поток объясняется, так же как и влияние веществ ферромагнитных, тем, что к магнитному потоку, создаваемому током в обмотке катушки, присоединяется поток, исходящий из элементарных амперовых токов. Парамагнитные вещества увеличивают магнитный поток катушки. Это увеличение потока при заполнении катушки парамагнитным веществом указывает на то, что и в парамагнитных веществах под действием внешнего магнитного поля элементарные токи ориентируются так, что направление их совпадает с направлением тока обмотки (рис. 276). Небольшое отличие от единицы указывает лишь на то, что в случае парамагнитных веществ этот добавочный магнитный поток очень невелик, т. е. что парамагнитные вещества намагничиваются очень слабо.

Уменьшение магнитного потока при заполнении катушки диамагнитным веществом означает, что в этом случае магнитный поток от элементарных амперовых токов направлен противоположно магнитному потоку катушки, т. е. что в диамагнитных веществах под действием внешнего магнитного поля возникают элементарные токи, направленные противоположно токам обмотки (рис. 277). Малость отклонений от единицы и в этом случае указывает на то, что дополнительный поток этих элементарных токов невелик.

Рис. 277. Диамагнитные вещества внутри катушки ослабляют магнитное поле соленоида. Элементарные токи в них направлены противоположно току в соленоиде

Называемой магнитной проницаемостью. Абсолютная магнитная проницаемость среды - это отношение B к H. Согласно Международной системе единиц она измеряется в единицах, называемых 1 генри на метр.

Числовое значение ее выражается отношением ее величины к величине магнитной проницаемости вакуума и обозначается µ. Данная величина именуется относительной магнитной проницаемостью (или просто магнитной проницаемостью) среды. Как величина относительная, она не имеет единицы измерения.

Следовательно, относительная магнитная проницаемость µ - величина, показывающая, в какое число раз индукция поля данной среды меньше (или больше) индукции вакуумного магнитного поля.

При воздействии на вещество внешним магнитным полем оно становится намагниченным. Каким образом это происходит? По гипотезе Ампера, в каждом веществе постоянно циркулируют микроскопические электротоки, вызванные движением электронов по своим орбитам и наличием у них собственного В обычных условиях это движение неупорядочено, и поля «гасят» (компенсируют) друг друга. При помещении тела во внешнее поле происходит упорядочивание токов, и тело становится намагниченным (т. е. обладающим своим полем).

Магнитная проницаемость всех веществ различна. Исходя из ее величины, вещества подлежат делению на три большие группы.

У диамагнетиков величина магнитной проницаемости µ - чуть меньше единицы. Например, у висмута µ = 0,9998. К диамагнетикам относятся цинк, свинец, кварц, медь, стекло, водород, бензол, вода.

Магнитная проницаемость парамагнетиков чуть-чуть побольше единицы (у алюминия µ = 1,000023). Примеры парамагнетиков - никель, кислород, вольфрам, эбонит, платина, азот, воздух.

Наконец, к третьей группе принадлежит целый ряд веществ (в основном это металлы и сплавы), чья магнитная проницаемость значительно (на несколько порядков) превышает единицу. Эти вещества - ферромагнетики. В основном сюда относятся никель, железо, кобальт и их сплавы. Для стали µ = 8∙10^3, для сплава никеля с железом µ=2.5∙10^5. Ферромагнетики обладают свойствами, отличающими их от других веществ. Во-первых, они обладают остаточным магнетизмом. Во-вторых, их магнитная проницаемость находится в зависимости от величины индукции внешнего поля. В-третьих, для каждого из них существует определенный порог температуры, называемый точкой Кюри , при котором он теряет ферромагнитные свойства и становится парамагнетиком. Для никеля точка Кюри - 360°C, для железа - 770°C.

Свойства ферромагнетиков определяет не только магнитная проницаемость, но и величина I, именуемая намагниченностью данного вещества. Это сложная нелинейная функция магнитной индукции, рост намагниченности описывается линией, именуемой кривой намагниченности . При этом, достигнув определенной точки, намагниченность практически перестает расти (наступает магнитное насыщение ). Отставание величины намагниченности ферромагнетика от растущей величины индукции внешнего поля называется магнитным гистерезисом . При этом существует зависимость магнитных характеристик ферромагнетика не только от его состояния в настоящий момент, но и от его предшествующей намагниченности. Графическое изображение кривой данной зависимости именуется петлей гистерезиса .

Благодаря своим свойствам, ферромагнетики повсеместно применяются в технике. Их используют в роторах генераторов и электродвигателей, при изготовлении сердечников трансформаторов и в производстве деталей электронно-вычислительных машин. ферромагнетиков используются в магнитофонах, телефонах, на магнитных лентах и других носителях.