В системе алгебраическая сумма электрических зарядов постоянная. «Закон сохранения электрического заряда

Хендрик Антон Лоренц. Закон Био-Савара-Лапласа. Ампер Андре-Мари. Магнитное поле. Вектор магнитной индукции. Инструкция к просмотру. Линии магнитной индукции полей. Ханс Эрстед. Графическое изображение полей. Индукция магнитного поля прямолинейного тока. Направление вектора магнитной индукции. Масс-спектрограф. Опыт Эрстеда. Применение. Ампер присутствовал на заседании Академии. Модуль вектора магнитной индукции.

«Программа энергосбережения» - С уважением к энергосбережению. Щели в оконных рамах. Программа повышения энергетической эффективности. Кран. Работа в творческих мастерских. Цветной телевизор. Экономические задачи. Заседание дискуссионного клуба. Умное потребление. Энергосбережение. Час Земли. Энергопотребление и его последствия. Энергетические проблемы человечества. Рациональное использование энергии. Холодильник. Острова. Анкета.

««Законы Ньютона» 10 класс» - Скорость лыжника. Силы, с которыми тела действуют друг на друга. Проверь себя. Принцип относительности Галилея. Неинерциальные системы отсчета. Яблоко и Земля. Законы Ньютона. Найдите построением равнодействующую сил. Заполнить обобщающую таблицу. Ускорение тела. Системы отсчета. Динамика. Лебедь. Особенности III закона. Принцип суперпозиции сил. Направления скорости. Инерция. Скорость тела. Ускорение тела прямо пропорционально силе.

«МАГАТЭ» - Конфликт. Сферы деятельности. Дуайт Эйзенхауэр. Атом для мира. Состав и организационная структура. Агентство по атомной энергии. Штаб-квартира МАГАТЭ. Широкий спектр услуг. Контрольные функции. Участники. Создание МАГАТЭ. МАГАТЭ. Межправительственная организация. Нераспространение ядерного оружия. Мохаммед аль-Барадеи.

««Тепловые двигатели» 10 класс» - Двухтактный двигатель. Основные компоненты двигателя. Степень сжатия. Иван Ползунов. Охрана природы. Виды двигателей. Паровая турбина. Двигатель работает по четырехтактному циклу. Томас Ньюкомен. Опасность. Дизельные двигатели. Этапы развития ДВС. КПД двигателя. Огненное сердце. Немного истории. Пионеры ракетно-космической техники. Автомобили на ДВС завоевали мир. Профилактические меры. Решение выше перечисленных проблем жизненно важно для человека.

«Электролиз растворов электролитов» - Электрический ток в электролитах. Получение химически чистых веществ. Электрический ток. Распад нейтральных молекул. Первый закон электролиза. Заряд. Применение электролиза. Гальванопластика. Гальваностегия. Электролитическая диссоциация. Получение алюминия. Источник тока. Законы электролиза. Гальванотехника. Применение. Электролиз. Электрический ток в жидкостях. Анод. Катод. NaCl.

Гласит, что алгебраическая сумма электрических зарядов всех частиц изолированной системы не меняется при происходящих в ней процессах.

Электрический заряд любой частицы или системы частиц является целым кратным элементарному электрическому заряду (равному по величине заряду электрона) или нулевым.

Одним из подтверждений закона сохранения электрического заряда служит строгое равенство (по абсолютной величине) электрических зарядов электрона и протона. Изучение движения атомов (молекул) и микроскопических тел в электрических полях подтверждает электронейтральность вещества и, соответственно, равенство зарядов электрона и протона (и электронейтральность ней-трона) с точностью до 10 -21 .

Закон сохранения заряда подтверждается и простыми опытами по электризации тел. Укрепим на стержне электромера металлический диск и, положив на него прослойку из сукна, поставим сверху еще один такой же диск, но с ручкой из диэлектрика. Совершив несколько движений верхним диском по изоляционной прослойке, уберем его в сторону. Мы увидим, что стрелка электромера отклонится, свидетельствуя о появлении на сукне и соприкасающемся с ним диске электрического заряда. Далее прикоснемся вторым диском (которым мы терли о сукно) к стерж-ню второго электромера. Стрелка этого электромера отклонится примерно на такой же угол, что и стрелка первого электромера. Это означает, что при электризации оба диска получили одинако-вый по модулю заряд. Что можно сказать о знаках этих зарядов? Для ответа на этот вопрос завер-шим опыт, соединив электромеры металлическим стержнем. Мы увидим, как стрелки приборов опустятся вниз. Нейтрализация зарядов свидетельствует о том, что они были равны по модулю, но противоположны по знаку (и, следовательно, в сумме давали нуль).

Этот и другие опыты показывают, что в процессе электризации общий (суммарный) заряд тел сохраняется: если он был равен нулю до электризации, то таким он останется и после нее.

Полный электрический заряд сохраняется и в том случае, если первоначальные заряды тел были отличны от нуля. Если обозначить первоначальные заряды тел как q 1 и q 2 , а заряд тех же тел после их взаимодействия как q’ 1 и q’ 2 то можно записать:

q’ 1 + q’ 2 = q 1 + q 2 .

При любых взаимодействиях тел их полный электрический заряд остается неизменным.

В этом заключается фундаментальный закон природы — закон сохранения электрического заряда.

Закон сохранения заряда был установлен в 1750 г. американским ученым и видным политическим деятелем Бенджамином Франклином. Он же ввел понятие о положительных и отрицатель-ных зарядах, обозначив их знаками «+» и «-».

Закон сохранения заряда имеет глубокий смысл. Он очевиден, когда число элементарных частиц не меняется. Однако элементарные частицы могут возникать (рождаться) и исчезать, т. е. пре-терпевать различные превращения. Возникают и исчезают элементарные частицы всегда пара-ми (с противоположными зарядами). Многочисленные наблюдения превращений элементарных частиц подтверждают закон сохранения заряда. Этот закон выражает одно из фундаментальных свойств электрического заряда.

Таким образом, электрический заряд во Вселенной сохраняется, а полный электрический за-ряд Вселенной, скорее всего, равен нулю.

Ещё в Древней Греции было замечено, что натёртый мехом янтарь начинает притягивать мелкие частички – пыль и крошки. Долгое время (вплоть до середины 18 века) не могли дать серьёзного обоснования данного явления. Только в 1785 г. Кулон, наблюдая за взаимодействием заряженных частиц, вывел основной закон их взаимодействия. Примерно через полвека Фарадей исследован и систематизировал действие электрических токов и магнитных полей, а ещё через тридцать лет Максвелл обосновал теорию электромагнитного поля.

Электрический заряд

Впервые термин «электрический» и «электризация», как производные от латинского слова «electri» – янтарь, были введены в 1600 г. английским учёным У. Гильбертом для объяснения явлений, которые возникают при натирании янтаря мехом или стекла кожей. Таким образом, тела, которые обладают электрическими свойствами стали называть электрически заряженными, то есть им был передан электрический заряд.

Из выше сказанного следует, что электрический заряд – это количественная характеристика, показывающая степень возможного участия тела в электромагнитном взаимодействии. Заряд обозначается q или Q и имеет разрядность Кулон (Кл)

В результате многочисленных опытов были выведены основные свойства электрических зарядов:

  • существуют заряды двух типов, которые условно названы положительным и отрицательным;
  • электрические заряды могут передаваться от одного тела к другому;
  • одноимённые электрические заряды отталкиваются друг от друга, а разноимённые – притягиваются друг к другу.

Кроме того был установлен закон сохранения заряда: алгебраическая сумма электрических зарядов в замкнутой (изолированной) системе остаётся постоянной

В 1749 г. американский изобретатель Бенджамин Франклин выдвигает теорию электрических явлений, согласно которой электричество есть заряженная жидкость, недостаток которой он определил как отрицательное электричество, а избыток – положительное электричество. Так возник знаменитый парадокс электротехники: согласно теории Б.Франклина электричество течет от положительного к отрицательному полюсу.

Согласно современной теории строения веществ, все вещества состоят из молекул и атомов, которые в свою очередь состоят из ядра атома и вращающихся вокруг него электронов «e». Ядро является неоднородным и состоит в свою очередь из протонов «р» и нейтронов «n». Причем электроны являются отрицательно заряженными частицами, а протоны положительно заряженными. Так как расстояние между электронами и ядром атома значительно превышают размеры самих частиц, то электроны могут, отщепляются от атома, тем самым обуславливается перемещение электрических зарядов между телами.

Кроме вышеописанных свойств электрический заряд обладает свойством деления, но существует величина минимально возможного неделимого заряда, равного по абсолютной величине заряду электрона (1,6*10 -19 Кл), называемого также элементарным зарядом. В настоящее время доказано существование частиц с электрическим зарядом меньше элементарного, которые называются кварки, но время их существования незначительно и в свободном состоянии они не обнаружены.

Закон Кулона. Принцип суперпозиции

Взаимодействие неподвижных электрических зарядов изучает раздел физики названный электростатикой, в основе которой фактически лежит закон Кулона, который был выведен на основе многочисленных опытов. Данный закон, также как и единица электрического заряда были названы в честь французского физика Шарля Кулона.

Кулон проводя свои опыты установил, что сила взаимодействия между двумя небольшими электрическим зарядами подчиняется следующим правилам:

  • сила пропорциональна величине каждого заряда;
  • сила обратно пропорциональна квадрату расстояний между ними;
  • направление действия силы направленно вдоль прямой соединяющей заряды;
  • сила представляет собой притяжение, если тела заряжены противоположно, и отталкивание в случае одноимённых зарядов.

Таким образом, закон Кулона выражается следующей формулой

где q1, q2 – величина электрических зарядов,

r – расстояние между двумя зарядами,

k – коэффициент пропорциональности, равный k = 1/(4πε 0) = 9 * 10 9 Кл 2 /(Н*м 2), где ε 0 – электрическая постоянная, ε 0 = 8,85 * 10 -12 Кл 2 /(Н*м 2).

Замечу, что ранее электрическая постоянная ε0 называлась диэлектрической постоянной или диэлектрической проницаемостью вакуума.

Закон Кулона проявляется, нет только при взаимодействии двух зарядов, но и что чаще встречается системы из нескольких зарядов. В этом случае закон Кулона дополняется ещё одним существенным фактором, который называется «принципом наложения» или принципом суперпозиции.

В основе принципа суперпозиции лежит два правила:

  • воздействие на заряженную частицу нескольких сил есть векторная сумма воздействий этих сил;
  • любое сложное движение состоит из нескольких простых движений.

Принцип суперпозиции, на мой взгляд, проще всего изобразить графически

На рисунке показаны три заряда: -q 1 , +q 2 , +q 3 . Для того чтобы вычислить силу F общ, которая действует на заряд -q 1 , необходимо вычислить по закону Кулона силы взаимодействия F1 и F2 между -q 1 , +q 2 и -q 1 , +q 3 . Затем получившиеся силы сложить по правилу сложения векторов. В данном случае F общ вычисляется как диагональ параллелограмма по следующему выражению

где α – угол между векторами F1 и F2.

Электрическое поле. Напряженность электрического поля

Всякое взаимодействие между зарядами, называемое также кулоновским взаимодействием (по названию закона Кулона) происходит при помощи электростатического поля, которое является неизменяющимся по времени электрическим полем неподвижных зарядов. Электрическое поле является частью электромагнитного поля и создаётся оно электрическим зарядами или заряженными телами. Электрическое поле воздействует на заряды и заряженные тела независимо от того движутся ли они или находятся в состоянии покоя.

Одним из фундаментальных понятий электрического поля является его напряженность, которая определяется как отношение силы действующей на заряд в электрическом поле к величине этого заряда. Для раскрытия данного понятия необходимо ввести такое понятие как «пробный заряд».

«Пробным зарядом», называется такой заряд, который не участвует в создании электрического поля, а также имеет очень маленькую величину и поэтому своим присутствием не вызывает перераспределение зарядов в пространстве, тем самым не искажая электрическое поле создаваемое электрическим зарядами.

Таким образом, если внести «пробный заряд» q 0 в точку, находящуюся на некотором расстоянии от заряда q, то на «пробный заряд» q П будет действовать некоторая сила F, обусловленная присутствием заряда q. Отношение силы F 0 действующей на пробный заряд, в соответствии с законом Кулона, к величине «пробного заряда», называется напряженностью электрического поля. Напряженность электрического поля обозначается Е и имеет разрядность Н/Кл

Потенциал электростатического поля. Разность потенциалов

Как известно, если на тело действует какая-либо сила, то такое тело совершает определённую работу. Следовательно, и заряд, помещённый в электрическое поле, также будет выполнять работу. В электрическом поле выполненная зарядом работа не зависит от траектории движения, а определяется лишь положением, которое занимает частица в начале и конце перемещения. В физике поля подобные электрическому полю (где работа не зависит от траектории движения тела) называются потенциальными.

Выполненная телом работа определяется по следующему выражению

где F – сила, действующая не тело,

S – расстояние, пройденное телом по действие силы F,

α – угол между направлением движения тела и направлением действия силы F.

Тогда работа выполненная «пробным зарядом» в электрическом поле созданным зарядом q 0 определится из закона Кулона

где q П – «пробный заряд»,

q 0 – заряд создающий электрическое поле,

r 1 и r 2 – соответственно расстояние между q П и q 0 в начальном и конечном положении «пробного заряда».

Так как выполнение работы связано с изменением потенциальной энергии W P , тогда

И потенциальная энергия «пробного заряда» в каждой отельной точке траектории движения будет определяться из следующего выражения

Как видно из выражения с изменением величины «пробного заряда» q п значение потенциальной энергии W P будет изменяться пропорционально q п, поэтому для характеристики электрического поля была введена ещё один параметр названный потенциалом электрического поля φ, который является энергетической характеристикой и определяется следующим выражением

где k – коэффициент пропорциональности, равный k = 1/(4πε 0) = 9 * 10 9 Кл 2 /(Н*м 2), где ε 0 – электрическая постоянная, ε 0 = 8,85 * 10 -12 Кл 2 /(Н*м 2).

Таким образом, потенциалом электростатического поля является энергетической характеристикой, которая характеризует потенциальную энергию, которой обладает заряд, помещённый в данную точку электростатического поля.

Из вышесказанного можно сделать вывод, что работа совершённая при перемещении заряда из одной точки в другую может быть определена из следующего выражения

То есть работа, совершаемая силами электростатического поля при перемещении заряда из одной точки в другую, равна произведению заряда на разность потенциалов в начальной и конечной точках траектории.

При расчётах наиболее удобно знать разность потенциалов между точками электрического поля, а не конкретные значения потенциалов в данных точках, поэтому говоря о потенциале какой либо точки поля, подразумевают разность потенциалов между данной точкой поля и другой точкой поля, потенциал которой условились считать равным нулю.

Разность потенциалов определяется из следующего выражения и имеет размерность Вольт (В)

Продолжение читайте в следующей статье

Теория это хорошо, но без практического применения это просто слова.

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд - это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q .

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные - притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q 1 + q 2 + q 3 + ... +q n = const.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы - нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e .

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером . Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела - дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков - частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр ( или электроскоп) - прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Шарлем Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора - крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10 -9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона:

Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон - это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения .

Коэффициент k в системе СИ обычно записывают в виде:

Где - электрическая постоянная .

В системе СИ элементарный заряд e равен:

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции:

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов .

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

О том, что электрические заряды в природе существуют, человечество знало со времен древнегреческих натурфилософов, которые открыли, что кусочки янтаря, если их потереть кошачьей шерстью, начинают отталкиваться друг от друга. Сегодня мы знаем, что электрический заряд, подобно массе, является одним из фундаментальных свойств материи. Все без исключения элементарные частицы, из которых состоит материальная Вселенная, имеют тот или иной электрический заряд — положительный (подобно протонам в составе атомного ядра), нейтральный (подобно нейтронам того же ядра) или отрицательный (подобно электронам, образующим внешнюю оболочку атомного ядра и обеспечивающим его электрическую нейтральность в целом).

Одним из полезнейших приемов в физике является выявление совокупных (суммарных) свойств системы, которые не изменяются ни при каких изменениях ее состояния. Такие свойства, выражаясь научным языком, являются консервативными , поскольку для них выполняются законы сохранения . Любой закон сохранения сводится к констатации того факта, что в замкнутой (в смысле полного отсутствия «утечки» или «поступления» соответствующей физической величины) консервативной системе соответствующая величина, характеризующая систему в целом, со временем не изменяется.

Электрический заряд как раз и относится к категории консервативных характеристик замкнутых систем. Алгебраическая сумма положительных и отрицательных электрических зарядов — чистый суммарный заряд системы — не изменяется ни при каких обстоятельствах, какие бы процессы в системе ни происходили. В частности, при химических реакциях, отрицательно заряженные валентные электроны могут каким угодно образом перераспределяться между внешними оболочками образующих химические связи атомов различных веществ — ни совокупный отрицательный заряд электронов, ни совокупный положительный заряд протонов в ядре в замкнутой химической системе не изменится. И это лишь самый простой пример, поскольку при химических реакциях не происходит трансмутаций самих протонов и электронов, в результате чего число положительных и отрицательных зарядов в системе можно просто подсчитать.

При более высоких энергиях, однако, электрически заряженные элементарные частицы начинают вступать во взаимодействия друг с другом, и проследить за соблюдением закона сохранения электрического заряда становится значительно сложнее, однако он выполняется и в этом случае. Например, при реакции спонтанного распада изолированного нейтрона происходит процесс, который можно описать следующей формулой:

где p — положительно заряженный протон, n — нейтрально заряженный нейтрон, e — отрицательно заряженный электрон, а v — нейтральная частица, называемая нейтрино. Нетрудно увидеть, что и в исходном материале, и в продукте реакции суммарный электрический заряд равен нулю (0 = (+1) + (-1) + 0), однако в этом случае налицо изменение общего числа положительно и отрицательно заряженных частиц в системе. Это — одна из реакций радиоактивного распада , в которых закон сохранения алгебраической суммы электрических зарядов выполняется, несмотря на образование новых заряженных частиц. Такие процессы характерны для взаимодействий между элементарными частицами, при которых из частиц с одними электрическими зарядами рождаются частицы с другими электрическими зарядами. Суммарный электрический заряд замкнутой системы, в любом случае, остается неизменным.