Метода простой итерации слау в эксель. Решение систем уравнений методом Гаусса в Excel. Метод простой итерации и метод Зейделя

Пример 3.1. Найти решение системы линейных алгебраических уравнений (3.1) методом Якоби.

Итерационные методы можно использовать для заданной системы, т.к. выполняется условие «преобладания диагональных коэффициентов», что обеспечивает сходимость этих методов.

Расчетная схема метода Якоби приведена на рис (3.1).

Приведите систему(3.1). к нормальному виду:

, (3.2)

или в матричной форме

, (3.3)



Рис.3.1.

Для определения количества итераций, необходимое для достижения заданной точности e, и приближенного решения системы полезно в столбце Н установить Условный формат . Результат такого форматирования виден на рис.3.1. Ячейки столбца Н, значения которых удовлетворяют условию (3.4) тонированы.

(3.4)

Анализируя результаты, принимаем за приближенное решение исходной системы с заданной точностью e=0,1 четвертую итерацию,

т.е. х 1 =10216; х 2 = 2,0225, х 3 = 0,9912

Изменяя значение e в ячейке Н5 можно получить новое приближенное решение исходной системы с новой точностью.

Проанализируйте сходимость итерационного процесса, построив графики изменения каждой компоненты решения СЛАУ в зависимости от номера итерации.

Для этого выделите блок ячеек А10:D20 и, используя Мастер диаграмм , постройте графики, отражающие сходимость итерационного процесса, рис.3.2.

Аналогично решается система линейных алгебраических уравнений методом Зейделя.


Лабораторная работа №4

Тема. Численные методы решения линейных обыкновенных дифференциальных уравнений с краевыми условиями. Метод конечных разностей

Задание. Решить краевую задачу методом конечных разностей, построив два приближения (две итерации) с шагом h и с шагом h/2.

Проанализировать полученные результаты. Варианты заданий приведены в приложении 4.

Порядок выполнения работы

1. Постройте вручную конечноразностную аппроксимацию краевой задачи (конечноразностную СЛАУ) с шагом h , заданным вариантом.

2. Используя метод конечных разностей, сформируйте в Excel систему линейных алгебраических конечно-разностных уравнений для шага h разбивки отрезка . Запишите эту СЛАУ на рабочем листе книги Excel . Расчетная схема приведена на рис.4.1.

3. Полученную СЛАУ решите методом прогонки.

4. Проверьте правильность решения СЛАУ с помощью надстройки Excel Поиск решения .

5. Уменьшите шаг сетки в 2 раза и еще раз решите задачу. Результаты представьте в графическом виде.

6. Сравните полученные результаты. Сделайте вывод о необходимости продолжения или о прекращении счета.

Решение краевой задачи с использованием электронных таблиц Microsoft Excel.

Пример 4.1. Методом конечных разностей найти решение краевой задачи , y(1)=1, y ’ (2)=0,5 на отрезке с шагом h=0,2 и с шагом h=0,1. Сравнить полученные результаты и сделать вывод о необходимости продолжения или о прекращении счета.

Расчетная схема для шага h=0,2 приведена на рис.4.1.

Полученное решение (сеточную функцию) Y {1.000, 1.245, 1.474, 1.673, 1.829, 1.930}, Х {1; 1,2; 1,4; 1,6; 1,8;2} в столбце L и B можно принять за первую итерацию (первое приближение) исходной задачи.



Для нахождения второй итерации сделайте сетку вдвое гуще (n=10, шаг h=0,1) и повторите приведенный выше алгоритм.

Это можно проделать на том же или на другом листе книги Excel . Решение (второе приближение) приведено на рис.4.2.

Сравните полученные приближенные решения. Для наглядности можно построить графики этих двух приближений (двух сеточных функций), рис.4.3.

Порядок построения графиков приближенных решений краевой задачи

1. Постройте график решения задачи для разностной сетки с шагом h=0,2 (n=5).

2. Активизируйте уже построенный график и выберите команду меню Диаграмма\Добавить данные

3. В окне Новые данные укажите данные x i , y i для разностной сетки с шагом h/2 (n=10).

4. В окне Специальная вставка установите флажки в полях:

Ø новые ряды,

Как видно из приведенных данных, два приближенных решения краевой задачи (две сеточные функции) отличаются друг от друга не более, чем на 5%. Поэтому за приближенное решение исходной задачи принимаем вторую итерацию, т.е.

Y {1, 1.124, 1.246, 1.364, 1.478, 1.584, 1.683, 1.772, 1.849, 1.914, 1.964}


Лабораторная работа №5

В программе Excel имеется обширный инструментарий для решения различных видов уравнений разными методами.

Рассмотрим на примерах некоторые варианты решений.

Решение уравнений методом подбора параметров Excel

Инструмент «Подбор параметра» применяется в ситуации, когда известен результат, но неизвестны аргументы. Excel подбирает значения до тех пор, пока вычисление не даст нужный итог.

Путь к команде: «Данные» - «Работа с данными» - «Анализ «что-если»» - «Подбор параметра».

Рассмотрим на примере решение квадратного уравнения х 2 + 3х + 2 = 0. Порядок нахождения корня средствами Excel:


Для подбора параметра программа использует циклический процесс. Чтобы изменить число итераций и погрешность, нужно зайти в параметры Excel. На вкладке «Формулы» установить предельное количество итераций, относительную погрешность. Поставить галочку «включить итеративные вычисления».



Как решить систему уравнений матричным методом в Excel

Дана система уравнений:


Получены корни уравнений.

Решение системы уравнений методом Крамера в Excel

Возьмем систему уравнений из предыдущего примера:

Для их решения методом Крамера вычислим определители матриц, полученных заменой одного столбца в матрице А на столбец-матрицу В.

Для расчета определителей используем функцию МОПРЕД. Аргумент – диапазон с соответствующей матрицей.

Рассчитаем также определитель матрицы А (массив – диапазон матрицы А).

Определитель системы больше 0 – решение можно найти по формуле Крамера (D x / |A|).

Для расчета Х 1: =U2/$U$1, где U2 – D1. Для расчета Х 2: =U3/$U$1. И т.д. Получим корни уравнений:

Решение систем уравнений методом Гаусса в Excel

Для примера возьмем простейшую систему уравнений:

3а + 2в – 5с = -1
2а – в – 3с = 13
а + 2в – с = 9

Коэффициенты запишем в матрицу А. Свободные члены – в матрицу В.

Для наглядности свободные члены выделим заливкой. Если в первой ячейке матрицы А оказался 0, нужно поменять местами строки, чтобы здесь оказалось отличное от 0 значение.

Примеры решения уравнений методом итераций в Excel

Вычисления в книге должны быть настроены следующим образом:


Делается это на вкладке «Формулы» в «Параметрах Excel». Найдем корень уравнения х – х 3 + 1 = 0 (а = 1, b = 2) методом итерации с применением циклических ссылок. Формула:

Х n+1 = X n – F (X n) / M, n = 0, 1, 2, … .

M – максимальное значение производной по модулю. Чтобы найти М, произведем вычисления:

f’ (1) = -2 * f’ (2) = -11.

Полученное значение меньше 0. Поэтому функция будет с противоположным знаком: f (х) = -х + х 3 – 1. М = 11.

В ячейку А3 введем значение: а = 1. Точность – три знака после запятой. Для расчета текущего значения х в соседнюю ячейку (В3) введем формулу: =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).

В ячейке С3 проконтролируем значение f (x): с помощью формулы =B3-СТЕПЕНЬ(B3;3)+1.

Корень уравнения – 1,179. Введем в ячейку А3 значение 2. Получим тот же результат:

Корень на заданном промежутке один.

Напомню, что циклическая ссылка появляется, если в ячейку Excel введена формула, содержащая ссылку на саму эту ячейку (напрямую или через цепочку других ссылок). Например (рис. 1), в ячейке С2 находится формула, ссылающаяся на саму ячейку С2.

Но!.. Не всегда циклическая ссылка является бедствием. Циклическую ссылку можно использовать для решения уравнений итерационным способом. Для начала нужно позволить Excel`ю вести вычисления, даже при наличии циклической ссылки. В обычном режиме Excel, обнаружив циклическую ссылку, выдаст сообщение об ошибке, и потребует ее устранения. В обычном режиме Excel не может провести вычисления, так как циклическая ссылка порождает бесконечный цикл вычислений. Можно, либо устранить циклическую ссылку, либо допустить вычисления по формуле с циклической ссылкой, но ограничив число повторений цикла. Для реализации второй возможности щелкните на кнопке «Office» (в левом верхнем углу), а затем на «Параметры Excel» (рис. 2).

Скачать заметку в формате , примеры в формате

Рис. 2. Параметры Excel

В открывшемся окне «Параметры Excel» перейдите на вкладку Формулы и отметьте «Включить итеративные вычисления» (рис. 3). Помните, что эта опция включается для приложения Excel в целом (а не для одного файла), и будет действовать, пока вы ее не отключите.

Рис. 3. Включить итеративные вычисления

На этой же вкладе, можно выбрать, как будут вестись вычисления: автоматически или вручную. При автоматическом вычислении Excel сразу рассчитает конечный результат, при вычислениях, вручную, можно будет наблюдать результат каждой итерации (простым нажатием F9 запуская каждый новый цикл вычисления).

Решим уравнение третьей степени: х 3 – 4х 2 – 4х + 5 = 0 (рис. 4). Для решения этого уравнения (и любого другого уравнения совершенно произвольного вида) понадобится всего одна ячейка Excel.

Рис. 4. График функции f(x)

Для решения уравнения нам понадобится рекуррентная формула (то есть, формула, выражающая каждый член последовательности через один или несколько предыдущих членов):

(1) x = x – f(x)/f’(x), где

х – переменная;

f(x) – функция, задающая уравнение, корни которого мы ищем; f(x) = х 3 – 4х 2 – 4х + 5

f’(x) – производная нашей функции f(x); f’(x) = 3х 2 – 8х – 4; производные основных элементарных функций можно посмотреть .

Если вы заинтересовались, откуда взялась формула (1), можете почитать, например, .

Итоговая рекуррентная формула имеет вид:

(2) х = x – (х 3 – 4х 2 – 4х + 5)/(3х 2 – 8х – 4)

Выберем любую ячейку на листе Excel (рис. 5; в нашем примере это ячейка G19), присвоим ей имя х , и введем в нее формулу:

(3) =x-(x^3-4*x^2-4x+5)/(3*x^2-8*x-4)

Можно вместо х использовать адрес ячейки… но согласитесь, что имя х , смотрится привлекательнее; следующую формулу я ввел в ячейку G20:

(4) =G20-(G20^3-4*G20^2-4*G20+5)/(3*G20^2-8*G20-4)

Рис. 5. Рекуррентная формула: (а) для поименованной ячейки; (б) для обычного адреса ячейки

Как только мы введем формулу и нажмем Enter, в ячейке сразу же появится ответ – значение 0,77. Это значение соответствует одному из корней уравнения, а именно второму (см. график функции f(x) на рис. 4). Поскольку начальное приближение не задавалось, итерационный вычислительный процесс начинался со значения, по умолчанию хранимого в ячейке х и равного нулю. Как же получить остальные корни уравнения?

Для изменения стартового значения, с которого рекуррентная формула начинает свои итерации, предлагается использовать функцию ЕСЛИ:

(5) =ЕСЛИ(x=0;-5;x-(x^3-4*x^2-4*x+5)/(3*x^2-8*x-4))

Здесь значение «-5» – начальное значение для рекуррентной формулы. Изменяя его, можно выйти на все корни уравнения.