Кто создал шкалу электромагнитных волн. Обобщающий урок "шкала электромагнитных излучений"

Все электромагнитные поля создаются ускоренно движущимися зарядами. Неподвижный заряд создает только электростатическое поле. Электромагнитных волн в этом случае нет. В простейшем случае источником излучения является заряженная частица, совершающая колебание. Так как электрические заряды могут колебаться с любыми частотами, то частотный спектр электромагнитных волн неограничен. Этим электромагнитные волны отличаются от звуковых волн. Классификация этих волн по частотам (в герцах) или длинам волн (в метрах) представляется шкалой электромагнитных волн (рис. 1.10). Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, а в некоторых случаях перекрываются. Различие свойств становится заметным только в том случае, когда длины волн различаются на несколько порядков.

Рассмотрим качественные характеристики электромагнитных волн разных частотных диапазонов и способы их возбуждения и регистрации.

Радиоволны. Все электромагнитное излучение, длина волны которого больше полумиллиметра, относится к радиоволнам. Радиоволнам соответствует область частотот 3 · 10 3 до 3 · 10 14 Гц . Выделяют область длинных волн более 1 000 м , средних – от 1 000 м до 100 м , коротких – от 100 м до 10 м и ультракоротких – менее 10 м .

Радиоволны могут практически без потерь распространяться на большие расстояния в земной атмосфере. С их помощью передаются радио- и телевизионные сигналы. На распространение радиоволн над земной поверхностью влияют свойства атмосферы. Роль атмосферы определяется наличием в ее верхних слоях ионосферы. Ионосфера – это ионизированная верхняя часть атмосферы. Особенностью ионосферы является высокая концентрация свободных заряженных частиц – ионов и электронов. Ионосфера для всех радиоволн, начиная от сверхдлинных (λ ≈ 10 4 м ) и до коротких (λ ≈ 10 м ), является отражающей средой. Благодаря отражению от ионосферы Земли, радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях, обеспечивая передачу сигнала на сколь угодно большие расстояния в пределах Земли. Впрочем, сегодня этот вид связи отходит в прошлое благодаря развитию спутниковой связи.

Волны дециметрового диапазона не могут огибать земную поверхность, что ограничивает зону их приема областью прямого распространения, которая зависит от высоты антенны и мощности передатчика. Но и в этом случае роль отражателей радиоволн, которую в отношении метровых волн играет ионосфера, берут на себя спутниковые ретрансляторы.

Электромагнитные волны радиоволновых диапазонов испускаются антеннами радиостанций, в которых возбуждаются электромагнитные колебания с помощью генераторов высокой и сверхвысокой частоты (рис. 1.11).

Однако, в исключительных случаях, волны радиочастот могут создаваться микроскопическими системами зарядов, например, электронами атомов и молекул. Так, электрон в атоме водорода способен излучать электромагнитную волну с длиной (такой длине отвечает частота Гц , которая принадлежит микроволновому участку радиодиапазона). В несвязанном состоянии атомы водорода находятся в основном в межзвездном газе. Причем каждый из них излучает в среднем один раз за 11 миллионов лет. Тем не менее, космическое излучение вполне наблюдаемо, так как в мировом пространстве рассеяно достаточно много атомарного водорода.

Это интересно

Радиоволны слабо поглощаются средой, поэтому изучение Вселенной в радиодиапазоне очень информативно для астрономов. Начиная с 40-х гг. ХХ столетия, бурно развивается радиоастрономия, в задачу которой входит изучение небесных тел по их радиоизлучению. Успешные полеты межпланетных космических станций к Луне, Венере и другим планетам продемонстрировали возможности современной радиотехники. Так, сигналы со спускаемого аппарата с планеты Венера, расстояние до которой примерно 60 миллионов километров, принимаются наземными станциями спустя 3,5 минуты после их отправления.

В 500 км к северу от Сан-Франциско (штат Калифорния) начал действовать необычный радиотелескоп. Его задача – поиск внеземных цивилизаций.

Снимок взят с сайта top.rbc.ru

Телескоп Allen Telescope Array (ATA) назван в честь одного из основателей компании Microsoft Пола Аллена, который выделил на его создание 25 миллионов долларов. В настоящее время ATA состоит из 42 антенн диаметром6 м, однако их число планируется довести до 350.

Создатели ATA надеются уловить сигналы других живых существ во Вселенной примерно к 2025 г. Ожидается также, что телескоп поможет собрать дополнительные данные о таких явлениях, как сверхновые звезды, «черные дыры» и различные экзотические астрономические объекты, существование которых теоретически предсказано, но на практике не наблюдалось.

Центр находится под совместным управлением Радиоастрономической лаборатории Калифорнийского университета в Беркли и Института SETI, занимающегося поиском внеземных форм жизни. Технические возможности ATA значительно увеличивают способность SETI улавливать сигналы разумной жизни.

Инфракрасное излучение. Диапазону инфракрасного излучения соответствуют длины волн от 1 мм до 7 · 10 –7 м . Инфракрасное излучение возникает при ускоренном квантовом движении зарядов в молекулах. Это ускоренное движение происходит при вращении молекулы и колебании ее атомов.

Рис. 1.12

Наличие инфракрасных волн было установлено в 1800 г. Вильямом Гершелем. В. Гершель случайно обнаружил, что используемые им термометры нагреваются и за границей красного конца видимого спектра. Ученый сделал вывод, что существует электромагнитное излучение, продолжающее спектр видимого излучения за красным светом. Это излучение он назвал инфракрасным. Его еще называют тепловым, так как инфракрасные лучи излучает любое нагретое тело, даже если оно не светится для глаза. Можно легко почувствовать излучение от горячего утюга даже тогда, когда он нагрет не настолько сильно, чтобы светиться. Обогреватели в квартире испускают инфракрасные волны, вызывающие заметное нагревание окружающих тел (рис. 1.12). Инфракрасное излучение – это тепло, которое в разной степени отдают все нагретые тела (Солнце, пламя костра, нагретый песок, камин).

Рис. 1.13

Инфракрасное излучение человек ощущает непосредственно кожей – как тепло, исходящее от огня или раскаленного предмета (рис. 1.13). У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела. Человек создает инфракрасное излучение в диапазоне от 6 мкм до 10 мкм . Молекулы, входящие в состав кожного покрова человека, «резонируют» на инфракрасных частотах. Поэтому именно инфракрасное излучение преимущественно поглощается, согревая нас.

Земная атмосфера пропускает совсем небольшую часть инфракрасного излучения. Оно поглощается молекулами воздуха, и особенно молекулами углекислого газа. Углекислым газом обусловлен и парниковый эффект, обусловленный тем, что нагретая поверхность излучает тепло, которое не уходит обратно в космос. В космосе углекислого газа немного, поэтому тепловые лучи с небольшими потерями проходят сквозь пылевые облака.

Для регистрации инфракрасного излучения в области спектра, близкого к видимому (от l = 0,76 мкм до 1,2 мкм ), применяют фотографический метод. В других диапазонах применяют термопары, полупроводниковые болометры, состоящие из полосок полупроводников. Сопротивление полупроводников при освещении инфракрасным излучением меняется, что регистрируется обычным образом.

Поскольку большинство объектов на поверхности Земли излучает энергию в инфракрасном диапазоне волн, детекторы инфракрасного излучения играют немаловажную роль в современных технологиях обнаружения. Приборы ночного видения позволяют обнаружить не только людей, но и технику, и сооружения, нагревшиеся за день и отдающие ночью свое тепло в окружающую среду в виде инфракрасных лучей. Детекторы инфракрасных лучей широко используются спасательными службами, например, для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий.

Рис. 1.14

Видимый свет. Видимый свет и ультрафиолетовые лучи создаются колебаниями электронов в атомах и ионах. Область спектра видимого электромагнитного излучения очень мала и имеет границы, определяемые свойствами органа зрения человека. Длины волн видимого света лежат в диапозоне от 380 нм до 760 нм . Всем цветам радуги соответствуют различные длины волн, лежащие в этих весьма узких пределах. Излучение в узком интервале длин волн глаз воспринимает как одноцветное, а сложное излучение, содержащее все длины волн, – как белый свет (рис. 1.14). Длины световых волн, соответствующие основным цветам, приведены в таблице 7.1. С изменением длины волны цвета плавно переходят друг в друга, образуя множество промежуточных оттенков. Средний человеческий глаз начинает различать разницу в цветах, соответствующую разности длин волн в 2 нм .

Для того чтобы атом мог излучать, он должен получить энергию извне. Наиболее распространены тепловые источники света: Солнце, лампы накаливания, пламя и др. Энергия, необходимая атомам для излучения света, может заимствоваться и из нетепловых источников, например, свечением сопровождается разряд в газе.

Самой важной характеристикой видимого излучения является, разумеется, его видимость для человеческого глаза. Температура поверхности Солнца, равная примерно 5 000 °С, такова, что пик энергии солнечных лучей приходится именно на видимую часть спектра, а окружающая нас среда в значительной степени прозрачна для этого излучения. Неудивительно поэтому, что человеческий глаз в процессе эволюции сформировался таким образом, чтобы улавливать и распознавать именно эту часть спектра электромагнитных волн.

Максимальная чувствительность глаза при дневном зрении приходится на длину волны и соответствует желто-зеленому свету. В связи с этим специальное покрытие на объективах фотоаппаратов и видеокамер должно пропускать внутрь аппаратуры желто-зеленый свет и отражать, лучи, которые глаз ощущает слабее. Поэтому блеск объектива и кажется нам смесью красного и фиолетового цветов.

Наиболее важные способы регистрации электромагнитных волн в оптическом диапазоне основаны на измерении переносимого волной потока энергии. Для этой цели используются фотоэлектрические явления (фотоэлементы, фотоумножители), фотохимические явления (фотоэмульсия), термоэлектрические явления (болометры).

Ультрафиолетовое излучение. К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (390–10 нм ). Это излучение было открыто в 1802 г. физиком И. Риттером. Ультрафиолетовое излучение обладает большей энергией, чем видимый свет, поэтому солнечное излучение в ультрафиолетовом диапазоне становится опасным для человеческого организма. Ультрафиолетовое излучение, как известно, щедро посылает нам Солнце. Но, как уже говорилось, Солнце сильнее всего излучает в видимых лучах. Напротив, горячие голубые звезды – мощный источник ультрафиолетового излучения. Именно это излучение нагревает и ионизует излучающие туманности, благодаря чему мы их и видим. Но поскольку ультрафиолетовое излучение легко поглощается газовой средой, то из далеких областей Галактики и Вселенной оно почти не доходит к нам, если на пути лучей есть газопылевые преграды.

Рис. 1.15

Основной жизненный опыт, связанный с ультрафиолетовым излучением, мы приобретаем летом, когда много времени проводим на солнце. Наши волосы выгорают, а кожа покрывается загаром и ожогами. Все прекрасно знают, как благотворно влияет солнечный свет на настроение и здоровье человека. Ультрафиолетовое излучение улучшает кровообращение, дыхание, мышечную активность, способствует образованию витамина и лечению некоторых кожных заболеваний, активизирует иммунные механизмы, несет заряд бодрости и хорошего настроения (рис. 1.15).

Жесткое (коротковолновое) ультрафиолетовое излучение, соответствующее длинам волн, примыкающим к рентгеновскому диапазону, губительно для биологических клеток и поэтому используется, в частности, в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.

Рис. 1.16

Всё живое на Земле защищено от губительного влияния жесткого ультрафиолетового излучения озоновым слоем земной атмосферы, поглощающим бо льшую часть жестких ультрафиолетовых лучей в спектре солнечной радиации (рис. 1.16). Если бы не этот естественный щит, жизнь на Земле едва ли бы вышла на сушу из вод Мирового океана.

Озоновый слой образуется в стратосфере на высоте от 20 км до 50 км . В результате вращения Земли наибольшая высота озонового слоя – у экватора, наименьшая – у полюсов. В близкой к Земле зоне над полярными областями образовались уже «дыры», которые в течение последних 15 лет постоянно увеличиваются. В результате прогрессирующего разрушения озонового слоя увеличивается интенсивность ультрафиолетового излучения на поверхности Земли.

Вплоть до длин волн ультрафиолетовые лучи могут быть изучены теми же экспериментальными методами, что и видимые лучи. В области длин волн меньше 180 нм встречаются существенные трудности, обусловленные тем, что эти лучи поглощаются различными веществами, например, стеклом. Поэтому в установках для исследования ультрафиолетового излучения применяют не обычное стекло, а кварц или искусственные кристаллы. Однако для столь короткого ультрафиолета непрозрачны и газы при обычном давлении (например, воздух). Поэтому для исследования такого излучения используются спектральные установки, из которых выкачан воздух (вакуумспектрографы).

На практике регистрация ультрафиолетового излучения производится часто с помощью фотоэлектрических приемников излучения. Регистрация ультрафиолетового излучения с длиной волны меньше 160 нм производится специальными счетчиками, аналогичными счетчикам Гейгера–Мюллера.

Рентгеновское излучение. Излучение в диапазоне длин волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра называется рентгеновским. Это излучение было открыто в 1895 г. В. Рентгеном (Рентген назвал его Х -лучами). В 1901 г. В. Рентген первым из физиков получил Нобелевскую премию за открытие излучения, названного в его честь. Это излучение может возникать при торможении любым препятствием, в т.ч. металлическим электродом, быстрых электронов в результате преобразования кинетической энергии этих электронов в энергию электромагнитного излучения. Для получения рентгеновского излучения служат специальные электровакуумные приборы – рентгеновские трубки. Они состоят из вакуумного стеклянного корпуса, в котором на определенном расстоянии друг от друга находятся катод и анод, включенные в цепь высокого напряжения. Между катодом и анодом создается сильное электрическое поле, разгоняющее электроны до энергии . Рентгеновское излучение возникает при бомбардировке в вакууме поверхности металлического анода электронами, обладающими большими скоростями. При торможении электронов в материале анода возникает тормозное излучение, имеющее непрерывный спектр. Кроме того, в результате электронной бомбардировки происходит возбуждение атомов материала, из которого изготовлен анод. Переход атомных электронов в состояние с меньшей энергией сопровождается испусканием характеристического рентгеновского излучения, частоты которого определяются материалом анода.

Рентгеновские лучи свободно проходят сквозь мышцы человека, проникают сквозь картон, древесину и другие тела, непрозрачные для света.

Они вызывают свечение ряда веществ. В. Рентген не только открыл рентгеновское излучение, но и исследовал его свойства. Им было обнаружено, что материал малой плотности более прозрачен, чем материал большой плотности. Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагностике. Расположив между источником рентгеновского излучения и экраном руку, можно увидеть слабую тень руки, на которой резко выделяются более темные тени костей (рис. 1.17).

Мощные вспышки на Солнце являются также источником рентгеновского излучения (рис. 1.19). Земная атмосфера является прекрасным щитом для рентгеновского излучения.

В астрономии рентгеновские лучи чаще всего вспоминаются в разговорах о черных дырах, нейтронных звездах и пульсарах. При захватывании вещества вблизи магнитных полюсов звезды выделяется много энергии, которая и излучается в рентгеновском диапазоне.

Для регистрации рентгеновского излучения используют те же физические явления, что и при исследовании ультрафиолетового излучения. Главным образом, применяют фотохимические, фотоэлектрические и люминесцентные методы.

Гамма-излучение – самое коротковолновое электромагнитное излучение с длинами волн менее 0,1 нм . Оно связано с ядерными процессами, явлениями радиоактивного распада, происходящими с некоторыми веществами, как на Земле, так и в космосе.

Гамма-лучи вредны для живых организмов. Земная атмосфера не пропускает космическое гамма-излучение. Это обеспечивает существование всего живого на Земле. Регистрируется гамма-излучение детекторами гамма-излучения, сцинтилляционными счетчиками.

Таким образом, электромагнитные волны различных диапазонов получили разные названия и обнаруживают себя в совершенно непохожих физических явлениях. Эти волны излучаются различными вибраторами, регистрируются различными методами, но они имеют единую электромагнитную природу, распространяются в вакууме с одинаковой скоростью, обнаруживают явления интерференции и дифракции. Различают два основных типа источников электромагнитного излучения. В микроскопических источниках заряженные частицы скачками переходят с одного энергетического уровня на другой внутри атомов или молекул. Излучатели такого типа испускают гамма-, рентгеновское, ультрафиолетовое, видимое и инфракрасное, а в некоторых случаях и еще более длинноволновое излучение Источники второго типа можно назвать макроскопическими. В них свободные электроны проводников совершают синхронные периодические колебания. Электрическая система может иметь самые разнообразные конфигурации и размеры. Следует подчеркнуть, что с изменением длины волны возникают и качественные различия: лучи с малой длиной волны наряду с волновыми свойствами более ярко проявляют корпускулярные (квантовые) свойства.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16

Сегодня мы расскажем, что такое электромагнитные колебания, как их открыли и почему они настолько важны в жизни людей.

Мрамор и свет

Как ни странно, история изучения фотонов света началась в Древней Греции. Любопытство ученых ушедших эпох заставляло их задавать вопросы:

  1. Что такое материя?
  2. Почему дерево отличается от камня?
  3. Как живые существа видят?
  4. Чем солнце отличается от луны?

Но инструменты древнего мира были весьма примитивными. Человеку приходилось опираться на собственные чувства, а выводы делать исключительно с помощью абстрактных умозаключений. Один ученый заметил, что мраморные плиты, на которые ступают много ног, со временем изменяют форму. Ступени на всех общественных зданиях, например, храмах, форумах, стадионах приходилось периодически менять. А значит, каждая нога уносит какую-то частицу камня с собой. Понимание, что вещество состоит из мельчайших частиц, привело к такому понятию, как «электромагнитные колебания».

Электричество и компас

В 1820 году датский ученый Эрстед обнаружил, что магнит меняет положение полюсов рядом с включенным в сеть проводником. Компас люди использовали веками, электричество было недавним открытием. Наличие связи между ними стало на тот момент сенсацией. Опыты продолжил Фарадей. Этот ученый не только доказал тесную связь между магнитными и электрическими полями, но еще и установил: ток вызывает оба поля. Таким образом, было выяснено, что электромагнитные колебания генерируются движущимися зарядами.

Свойства электромагнитных волн

Еще позже, в начале двадцатого века, ученым пришлось признать: кванты электромагнитного поля одновременно и волны, и частицы. Как материальные объекты, они обладают массой и передают импульс. Но фотоны - необычные частицы. Масса покоя у них отсутствует. То есть фотоны существуют исключительно в движении сквозь пространство. Как только их поглощает вещество, они теряют свою индивидуальность.

Как волны, электромагнитные колебания имеют следующие свойства:

  • частота;
  • длина волны;
  • амплитуда.

Наиболее часто встречающийся пример фотонов - свет.

Свет и цвет

Обычно при слове «свет» люди представляют потоки солнечных лучей. На взгляд человека они лишены цвета. Но длина волны и период электромагнитных колебаний задают оттенок. Почему же тогда лампа или солнце кажутся белыми? Этот эффект обусловлен смешением фотонов из всего спектра излучения источника. Когда электромагнитное излучение генерирует энергосберегающая лампа, свет человеку кажется «теплым» или «холодным», но белым. А на самом деле смесь газов испускает целый спектр фотонов с разной длиной волны.

Шкала волн: от Рентгена до радио

В зависимости от длины волны все электромагнитные волны разделены на несколько областей. Шкала электромагнитных колебаний включает в порядке уменьшения длины волны:

  1. Радиоволны. Именно они передают нам звуки музыки, новости и фильмы. Речь идет не об интернет-каналах, а о традиционных радио и телевидении.
  2. Терагерцовое (или микроволновое) излучение. До недавнего времени этот диапазон не выделялся из радиоволн. Генераторов терагерцовых волн просто не было. Но сейчас они существуют и приносят пользу: сканеры в аэропортах и на вокзалах используют именно этот диапазон. Такое излучение не вредно для человека, и оно хорошо выделяет железные объекты в сумках и пакетах путешественников.
  3. Инфракрасное (или тепловое) излучение. Любое тепло переносится этими волнами. Костер, свеча, солнце, люди - это генераторы. Некоторые пустынные животные обладают инфракрасным зрением. Как правило, это ночные хищники, способные выделить более теплые тела живых существ на фоне остывших камней и песка.
  4. Видимый спектр. Все цвета радуги, которые способен воспринимать человеческий глаз, относятся к данной области. На всей шкале видимый спектр занимает очень маленькую долю. Непонятно, почему эволюционный механизм присвоил нам способность видеть именно так.
  5. Ультрафиолетовые волны. Загар человек получает именно благодаря им. Они полезны, ибо смертельно опасны: ультрафиолет эффективно убивает бактерии и микроорганизмы. А вот недостаток ультрафиолетовых лучей (например, у народов Севера) может вызвать серьезные проблемы со здоровьем.
  6. Рентгеновские волны. Излучаются либо при торможении очень быстрых электронов, либо при «выбивании» электрона с внутренней оболочки большого атома. Полезны для исследования структуры вещества.
  7. Гамма-лучи. Производятся при ядерной реакции.

Не стоит думать, что раз есть шкала, в ней все четко и понятно. Границы диапазонов размыты. Например, рентгеновское излучение от гамма-лучей отличается только источником происхождения, а частоты спектров сильно перекрываются. Видимый спектр называется так потому, что эти длины волн способен воспринимать человеческий глаз. Но ведь все люди разные. Некоторые видят чуть больше красного, кто-то - фиолетового. Видимый спектр - это усредненная величина. Как и все человеческое, это понятие не лишено погрешностей.

Есть у глаза свойство спектральной чувствительности. Максимум лежит в области зеленого цвета, а края шкалы воспринимаются хуже. Поэтому края радуги кажутся размытыми, нечеткими. Капли воды во время дождя преломляют электромагнитное излучение всех длин волн, что испускает Солнце. Но человек видит только маленький отрезок этой шкалы. Тем более удивительно, что научное знание преодолело эти границы. Телескопы на орбите Земли видят инфракрасные, ультрафиолетовые, рентгеновские и гамма-волны, которые испускают далекие галактики, черные дыры и квазары.

По мере развития науки и техники были обнаружены различные виды излучений: радиоволны, видимый свет, рентгеновские лучи, гамма- излучение. Все эти излучения имеют одну и ту же природу. Они являются электромагнитными волнами . Разнообразие свойств этих излучений обусловлено их частотой (или длиной волны). Между отдельными видами излучений нет резкой границы, один вид излучения плавно переходит в другой. Различие свойств становится заметным только в том случае, когда длины волн различаются на несколько порядков.

Для систематизации всех видов излучений составлена единая шкала электромагнитных волн:

Шкала электромаг­нитных волн это непрерывная после­довательность частот (длин волн) электромагнитных излучений. Разбиение шкалы ЭМВ на диапазоны весьма условное.


Известные электромагнитные волны охватывают огромный диапазон длин волн от 10 4 до 10 -10 м . По способу получения можно выделить следующие области длин волн:

1. Низкочастотные волны более 100 км (10 5 м). Источник излучения - генераторы переменного тока

2. Радиоволны от 10 5 м до 1 мм. Источник излучения - открытый колебательный контур (антенна) Выделяются области радиоволн:

ДВ длинные волны - более 10 3 м,

СВ средние - от 10 3 до 100 м,

КВ короткие - от 100 м до 10 м,

УКВ ультракороткие - от 10 м до 1 мм;

3 Инфракрасное излучении (ИК) 10 –3 -10 –6 м. Область ультракоротких радиоволн смыкается с участком инфракрасных лучей. Граница между ними условная и определяется способом их получения: ультракороткие радиоволны получают с помощью генераторов (радиотехнические методы), а инфракрасные лучи излучаются нагретыми телами в результате атомных переходов с одного энергетического уровня на другой.

4. Видимый свет 770-390 нм Источник излучения – электронные переходы в атомах. Порядок цветов в видимой части спектра, начиная с длинноволновой области КОЖЗГСФ. Излучаются в результате атомных переходов с одного энергетического уровня на другой.

5 . Ультрафиолетовое излучение (УФ) от 400 нм до 1 нм. Ультрафиолетовые лучи получают с помощью тлеющего разряда, обычно в парах ртути. Излучаются в результате атомных переходов с одного энергетического уровня на другой.

6 . Рентгеновские лучи от 1 нм до 0,01 нм . Излучаются в результате атомных переходов с одного внутреннего энергетического уровня на другой.

7. За рентгеновскими лучами идет область гамма-лучей (γ) с длинами волн менее 0,1 нм. Излучаются при ядерных реакциях.

Область рентгеновских и гамма-лучей частично перекрывается, и различать эти волны можно не по свойствам, а по методу получения: рентгеновские лучи возникают в специальных трубках, а гамма-лучи испускаются при радиоактивном распаде ядер некоторых элементов.



По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению веществом. Коэффициент отражения веществом электромагнитных волн также зависит от длины волны.

Электромагнитные волны отражаются и преломляются согласно законам отражения и преломления.

Для электромагнитных волн можно наблюдать волновые явления - интерференции, дифракции, поляризации, дисперсии.

Цель урока : обеспечить в ходе урока повторение основных законов, свойств электромагнитных волн;

Образовательная: Систематизировать материал по теме, осуществить коррекцию знаний, некоторое ее углубление;

Развивающая : Развитие устной речи учащихся, творческих навыков учащихся, логики, памяти; познавательных способностей;

Воспитательная : Формировать интерес учащихся к изучению физики. воспитывать аккуратность и навыки рационального использования своего времени;

Тип урока : урок повторения и коррекции знаний;

Оборудование : компьютер, проектор, презентация «Шкала электромагнитных излучений», диск « Физика. Библиотека наглядных пособий».

Ход урока:

1. Объяснение нового материала.

1. Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10 -10 м (g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
2. Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g -излучения, вы уже знакомы. Самое коротковолновое g -излучение испускают атомные ядра.
3. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
4. Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
5. Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g -излучениям, сильно поглощаемом атмосферой.
6. По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
7. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Обобщим знания о волнах и запишем все виде таблиц.

1. Низкочастотные колебания

Низкочастотные колебания
Длина волны(м) 10 13 - 10 5
Частота(Гц) 3· 10 -3 - 3 ·10 3
Энергия(ЭВ) 1 – 1,24 ·10 -10
Источник Реостатный альтернатор, динамомашина,
Вибратор Герца,
Генераторы в электрических сетях (50 Гц)
Машинные генераторы повышенной (промышленной) частоты (200 Гц)
Телефонные сети (5000Гц)
Звуковые генераторы (микрофоны, громкоговорители)
Приемник Электрические приборы и двигатели
История открытия Лодж (1893 г.), Тесла (1983)
Применение Кино, радиовещание(микрофоны, громкоговорители)

2. Радиоволны


Радиоволны
Длина волны(м) 10 5 - 10 -3
Частота(Гц) 3 ·10 3 - 3 ·10 11
Энергия(ЭВ) 1,24 ·10-10 - 1,24 · 10 -2
Источник Колебательный контур
Макроскопические вибраторы
Приемник Искры в зазоре приемного вибратора
Свечение газоразрядной трубки, когерера
История открытия Феддерсен (1862 г.), Герц (1887 г.), Попов, Лебедев, Риги
Применение Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок
Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация
Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация
Короткие - радиолюбительская связь
УКВ - космическая радио связь
ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь
СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение
ММВ - радиолокация

Инфракрасное излучение
Длина волны(м) 2 ·10 -3 - 7,6· 10 -7
Частота(Гц) 3 ·10 11 - 3 ·10 14
Энергия(ЭВ) 1,24· 10 -2 – 1,65
Источник Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания
Человек излучает электромагнитные волны длиной 9 10 -6 м
Приемник Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки
История открытия Рубенс и Никольс (1896 г.),
Применение В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,

4. Видимое излучение

5. Ультрафиолетовое излучение

Ультрафиолетовое излучение
Длина волны(м) 3,8 10 -7 - 3 ·10 -9
Частота(Гц) 8 ·10 14 - 10 17
Энергия(ЭВ) 3,3 – 247,5 ЭВ
Источник Входят в состав солнечного света
Газоразрядные лампы с трубкой из кварца
Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)
Приемник Фотоэлементы,
Фотоумножители,
Люминесцентные вещества
История открытия Иоганн Риттер, Лаймен
Применение Промышленная электроника и автоматика,
Люминисценнтные лампы,
Текстильное производство
Стерилизация воздуха

6. Рентгеновское излучение

Рентгеновское излучение
Длина волны(м) 10 -9 - 3 ·10 -12
Частота(Гц) 3 ·10 17 - 3 ·10 20
Энергия(ЭВ) 247,5 – 1,24 ·105 ЭВ
Источник Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ. давление в баллоне – 10 -3 – 10 -5 н/м 2 , катод – накаливаемая нить. Материал анодов W,Mo, Cu, Bi, Co, Tl и др.
Η = 1-3%, излучение – кванты большой энергии)
Солнечная корона
Приемник Фотопленка,
Свечение некоторых кристаллов
История открытия В. Рентген, Милликен
Применение Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)

7. Гамма - излучение

Вывод
Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

Литература:

  1. « Физика- 11» Мякишев
  2. Диск «Уроки физики Кирилла и Мефодия. 11 класс»())) «Кирилл и Мефодий, 2006)
  3. Диск « Физика. Библиотека наглядных пособий. 7-11 классы»((1С: «Дрофа» и «Формоза» 2004)
  4. Ресурсы Интернета

Тема нашего урока: «Шкала электромагнитных волн и свойства электромагнитных волн». Мы подведем итог тем вопросам, которые мы рассматривали на предыдущих уроках. В первую очередь мы с вами изучили вопросы создания электромагнитных волн, их излучение и их использование. Сегодня мы рассмотрим свойства, на которых основано применение электромагнитных волн, и обсудим это

Электромагнитная волна обладает всеми характеристиками волн, то есть длина волны и частота. Для обычных механических волн существует взаимосвязь между скоростью волны, длиной волны и частотой. Такая же связь наблюдается и у электромагнитных волн. Рассмотрим уравнение для механической волны:

υ = λ · ν

Скорость волны равна длине волны, умноженной на частоту. Для электромагнитных волн скорость распространения - величина постоянная и равная c = 3·10 8 м/с, то есть

c = λ · ν

Для электромагнитных волн произведение длины волны и частоты всегда остается величиной постоянной.

Рис. 1. Шкала электромагнитных волн ()

Возьмем шкалу (рис. 1) и отметим на ней частоту, по направлению шкалы происходит возрастание частоты, вторая шкала соответствует длине волны, и на ней мы видим

уменьшение длины волны. Для одной и той же электромагнитной волны произведение частоты на длину волны всегда будет оставаться величиной постоянной.

λ 1 · ν 1 = С

λ 2 · ν 2 = С

Для всех электромагнитных волн скорость будет оставаться постоянной: 3·10 8 м/с.

Такое распределение позволяет создать шкалу, по которой мы можем разложить все электромагнитные колебания по их частоте или длине волны и обсудить их свойства. По такой шкале очень удобно обсуждать вопрос происхождения электромагнитных волн, то есть как эти электромагнитные волны появляются и, соответственно, что является источником этих электромагнитных волн.

Электромагнитную шкалу можно разделить на две части: низкочастотные колебания и радиоволны. К низкочастотным колебаниям относятся те, которые производятся при помощи генератора, самым ярким представителем является переменный ток, и, соответственно, эти колебания распространяются в основном по проводам, а те электромагнитные волны, которые создаются такими колебаниями, на большие расстояния не распространяются, они очень быстро поглощаются окружающей средой.

Вторая часть - радиоволны - может быть разделена на большое количество поддиапазонов.

Это, в первую очередь, длинные волны, средние, короткие и ультракороткие волны. Каждый из этих диапазонов используется по своему назначению. Например, длинные волны очень хорошо поглощаются окружающей средой, ионосферой и поверхностью Земли, и поэтому на большие расстояния они распространяться не могут. При мощных передатчиках длинные волны используют для радиовещания. Для вещания на весь мир используются короткие волны, в результате многократного отражения они отражаются от земной поверхности и ионосферы и распространяются по всему земному шару. Ультракороткие волны распространяются в пределах прямой видимости, они достаточно плохо отражаются, но хорошо преломляются и используются для связи с космическими аппаратами или для телевидения.

Источниками для распространения радиоволн являются генераторы высокой частоты, колебательный контур Томпсона, открытый колебательный контур Герца и другие излучатели высокочастотных электромагнитных колебаний волн. Данные для электромагнитной шкалы сведены в схему, изображенную на рисунке 2.

Рис. 2. Данные электромагнитной шкалы ()

Длина волны располагается по уменьшению, а частота по нарастанию.

Все электромагнитные волны похожи друг на друга, все они порождаются ускоренно движущимся электрическим зарядом и обнаруживаются по действию на другой электрический заряд. Проявление свойств может быть различным, в зависимости от длины волны или от частоты волны ведут себя по-разному. Вектор магнитной индукции и вектор напряженности вихревого электрического поля взаимно перпендикулярны, но, кроме этого, плоскость, где располагается вектор индукции и вектор напряженности, соответственно перпендикулярна вектору, вдоль которого направлена скорость распространения электромагнитной волны. Все это объединяет электромагнитные волны. Но в результате зависимости от длины волны или частоты проявляются следующие особенности: поглощение волн окружающей средой будет различным. Одни волны поглощаются достаточно хорошо, другие, наоборот, преобладают над поглощением-отражением, поэтому длинные волны не могут распространяться на большие расстояния, а короткие достаточно хорошо это делают. С другой стороны, волны могут существовать в одном пространстве от разных источников, никак при этом не мешая друг другу. Волны могут от одного и того же источника складываться друг с другом и, соответственно, огибать препятствия. Эти возможности называются интерференция и дифракция волн, то есть сложение волн и огибание препятствий, которые приводят к определенному результату. Радиолокация, например, связана с ультракороткими волнами, потому что она эффективна в том случае, когда размеры объекта много больше, чем длина волны.

Общие свойства и характеристики электромагнитных волн

СВОЙСТВА

ХАРАКТЕРИСТИКИ

Распространяются в пространстве с течением времени.

Скорость распространения электромагнитных волн в вакууме постоянна и равна 3·10 8 м/с.

Все волны поглощаются веществом.

Различные коэффициенты поглощения.

Все волны на границе раздела двух сред частично отражаются, частично преломляются.

Законы отражения и преломления.

Коэффициенты отражения для различных волн и различных сред.

Все электромагнитные излучения проявляют свойства волн: складываются, огибают препятствия. Несколько волн могут существовать в одной области пространства.

Принцип суперпозиции. Для когерентных волн правила определения максимумов принцип Гюйгенса-Френеля. Волны между собой не взаимодействуют.

Сложные электромагнитные волны при взаимодействии с веществом раскладываются в спектр.

Зависимость показателя преломления среды от частоты волны. Скорость волны в веществе зависит от преломления среды

Волны разной интенсивности.

Плотность потока излучения..

Таблица состоит из двух столбцов, в левом размещены свойства, а в правом - характеристики. Свойства расположены в соответствии характеристикам.

Шкала электромагнитных волн не ограничивается только радиоволнами, она может продолжаться и дальше, существуют другие излучения, которые также соответствуют электромагнитным волнам. Эти вопросы мы рассмотрим в дальнейшем.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. - М.: Просвещение, 1990.

Домашнее задание

  1. Какая связь между характеристиками электромагнитных волн?
  2. На какие части подразделяется шкала электромагнитных волн?
  3. Особенности электромагнитных волн?
  1. Интернет-портал Bourabai.kz ( ).
  2. Интернет-портал 900igr.net ().
  3. Интернет-портал Do.gendocs.ru ().