Ф от икс как решать. Функция. Область определения и область значений. Пошаговые примеры - как найти производную

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Описание видеоурока

Функцией называется зависимость переменной игрек от переменной икс, при которой каждому значению переменной икс соответствует единственное значение переменной игрек.

Икс называется независимой переменной или аргументом. Игрек называется зависимой переменной, значением функции или просто функцией.

Если зависимость переменной игрек от переменной икс является функцией, то коротко записывают так: игрек равно эф от икс. Этим символом обозначают также значение функции, соответствующее значению аргумента икс.

Пусть функция задана формулой игрек равно три икс квадрат минус пять. Тогда можно записать, что эф от икс равно три икс квадрат минус пять. Найдем значения функции эф для значений икс, равных двум и минус пяти. Они будут равны семи и семидесяти.

Заметим, что в записи игрек равно эф от икс вместо эф можно употреблять и другие буквы: же, фи и так далее.

Все значения икс образуют область определения функции. Все значения, которые принимает игрек, образуют область значений функции.

Функция считается заданной, если указана её область определения и правило, согласно которому каждому значению икс поставлено в соответствие единственное значение игрек.

Если функция игрек равно эф от икс задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений переменной икс, при которых выражение эф от икс имеет смысл…

Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.

На рисунке изображен график функции игрек равно эф от икс, областью определения которой является отрезок от единицы до пяти. С помощью графика можно найти, например, что функция от числа один равна минус трем, функция от двух равна двум, функция от числа четыре равна минус двум, функция от числа пять равна минус четырем. Наименьшее значение функции равно минус четырем, а наибольшее - двум. При этом любое число от минус четырех до двух, включая эти числа, является значением данной функции. Таким образом, областью значений функции игрек равно эф от икс является отрезок от минус четырех до двух.

Ранее нами уже были изучены некоторые виды функций:

  • Линейная функция, задаваемая формулой игрек равно ка икс плюс бэ, где ка и бэ - некоторые числа;
  • Прямая пропорциональность - частный случай линейной функции, она задается формулой игрек равно ка икс, где ка не равно нулю;
  • Обратная пропорциональность - функция игрек равно ка деленное на икс, где ка не равно нулю.

Графиком функции игрек равно ка икс плюс бэ является прямая. Область определения этой функции - множество всех чисел. Областью значений этой функции при ка не равном нулю является множество всех чисел, а при ка равном нулю ее область значений состоит из одного числа бэ.

График функции игрек равно ка деленное на икс называется гиперболой.

На рисунке изображен график функции игрек равно ка деленное на икс, для ка большего нуля. Областью определения этой функции является множество всех чисел, кроме нуля. Это множество является и областью ее значений…

Функциями описываются многие реальные процессы и закономерности. Например, прямой пропорциональностью является зависимость массы тела от его объема при постоянной плотности; зависимость длины окружности от ее радиуса. Обратной пропорциональностью является зависимость силы тока на участке цепи от сопротивления проводника при постоянном напряжении; зависимость времени, которое затрачивает равномерно движущееся тело на прохождение заданного пути, от скорости движения.

Изучались также функции, заданные формулами игрек равно икс квадрат, игрек равно икс куб, игрек равно корень квадратный из икс.

Рассмотрим функцию, заданную формулой игрек равно модуль икс.

Так как выражение модуль икс имеет смысл при любом икс, то областью определения этой функции является множество всех чисел. По определению модуль икс равен икс, если икс больше либо равен нулю, и минус икс, если икс меньше нуля. Поэтому функцию игрек равно модуль икс можно задать следующей системой.

График рассматриваемой функции в промежутке от нуля до плюс бесконечности, включая ноль, совпадает с графиком функции игрек равно икс, а в промежутке от минус бесконечности до нуля - с графиком функции игрек равно минус икс. График функции игрек равно модуль икс состоит из двух лучей, которые исходят из начала координат и являются биссектрисами первого и второго координатных углов.

Являясь неразрывно связанными между собой, оба они уже несколько столетий активно используются при решении практически всех задач, которые возникали в процессе научно-технической деятельности человека.

Возникновение понятия о дифференциале

Впервые разъяснил, что такое дифференциал, один из создателей (наряду с Исааком Ньютоном) дифференциального исчисления знаменитый немецкий математик Готфрид Вильгельм Лейбниц. До этого математиками 17 ст. использовалось весьма нечеткое и расплывчатое представление о некоторой бесконечно малой «неделимой» части любой известной функции, представлявшей очень малую постоянную величину, но не равную нулю, меньше которой значения функции быть просто не могут. Отсюда был всего один шаг до введения представления о бесконечно малых приращениях аргументов функций и соответствующих им приращениях самих функций, выражаемых через производные последних. И этот шаг был сделан практически одновременно двумя вышеупомянутыми великими учеными.

Исходя из необходимости решения насущных практических задач механики, которые ставила перед наукой бурно развивающаяся промышленность и техника, Ньютон и Лейбниц создали общие способы нахождения скорости изменения функций (прежде всего применительно к механической скорости движения тела по известной траектории), что привело к введению таких понятий, как производная и дифференциал функции, а также нашли алгоритм решения обратной задачи, как по известной (переменной) скорости найти пройденный путь, что привело к появлению понятия интеграла.

В трудах Лейбница и Ньютона впервые появилось представление о том, что дифференциалы - это пропорциональные приращениям аргументов Δх основные части приращений функций Δу, которые могут быть с успехом применены для вычисления значений последних. Иначе говоря, ими было открыто, что приращение функции может быть в любой точке (внутри области ее определения) выражено через ее производную как Δу = y"(x) Δх + αΔх, где α Δх - остаточный член, стремящийся к нулю при Δх→0, гораздо быстрее, чем само Δх.

Согласно основоположникам матанализа, дифференциалы - это как раз и есть первые члены в выражениях приращений любых функций. Еще не обладая четко сформулированным понятием предела последовательностей, они интуитивно поняли, что величина дифференциала стремится к производной функции при Δх→0 - Δу/Δх→ y"(x).

В отличие от Ньютона, который был прежде всего физиком, и рассматривал математический аппарат как вспомогательный инструмент исследования физических задач, Лейбниц уделял большее внимание самому этому инструментарию, включая и систему наглядных и понятных обозначений математических величин. Именно он предложил общепринятые обозначения дифференциалов функции dy = y"(x)dx, аргумента dx и производной функции в виде их отношения y"(x) = dy/dx.

Современное определение

Что такое дифференциал с точки зрения современной математики? Он тесно связан с понятием приращения переменной величины. Если переменная y принимает сначала значение y = y 1 , а затем y = y 2 , то разность y 2 ─ y 1 называется приращением величины y.

Приращение может быть положительным. отрицательным и равным нулю. Слово «приращение» обозначается Δ, запись Δу (читается «дельта игрек») обозначает приращение величины y. так что Δу = y 2 ─ y 1 .

Если величину Δу произвольной функции y = f (x) возможно представить в виде Δу = A Δх + α, где у A нет зависимости от Δх, т. е. A = const при данном х, а слагаемое α при Δх→0 стремится к нему же еще быстрее, чем само Δх, тогда первый («главный») член, пропорциональный Δх, и является для y = f (x) дифференциалом, обозначаемымdy или df(x) (читается «дэ игрек», «дэ эф от икс»). Поэтому дифференциалы - это «главные» линейные относительно Δх составляющие приращений функций.

Механическое истолкование

Пусть s = f (t) - расстояние прямолинейно движущейся от начального положения (t - время пребывания в пути). Приращение Δs - это путь точки за интервал времени Δt, а дифференциал ds = f" (t) Δt - это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f"(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM" (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM". Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f "(x), т. е QN есть дифференциал dy.

Вторая часть NM"дает разность Δу ─ dy, при Δх→0 длина NM" уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f "(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM"и QN эквивалентны; иными словами NM" уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM". Это видно на рисунке (с приближением M"к М отрезок NM"составляет все меньший процент отрезка QM").

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Производная и дифференциал

Коэффициент A в первом слагаемом выражения приращения функции равен величине ее производной f "(x). Таким образом, имеет место следующее соотношение - dy = f "(x)Δх, или же df (x) = f "(x)Δх.

Известно, что приращение независимого аргумента равно его дифференциалу Δх = dx. Соответственно, можно написать: f "(x) dx = dy.

Нахождение (иногда говорят, «решение») дифференциалов выполняется по тем же правилам, что и для производных. Перечень их приведен ниже.

Что более универсально: приращение аргумента или его дифференциал

Здесь необходимо сделать некоторые пояснения. Представление величиной f "(x)Δх дифференциала возможно при рассмотрении х в качестве аргумента. Но функция может быть сложной, в которой х может быть функцией некоторого аргумента t. Тогда представление дифференциала выражением f "(x)Δх, как правило, невозможно; кроме случая линейной зависимости х = at + b.

Что же касается формулы f "(x)dx= dy, то и в случае независимого аргумента х (тогда dx = Δх), и в случае параметрической зависимости х от t, она представляет дифференциал.

Например, выражение 2 x Δх представляет для y = x 2 ее дифференциал, когда х есть аргумент. Положим теперь х= t 2 и будем считать t аргументом. Тогда y = x 2 = t 4 .

Это выражение не пропорционально Δt и потому теперь 2xΔх не является дифференциалом. Его можно найти из уравнения y = x 2 = t 4 . Он оказывается равен dy=4t 3 Δt.

Если же взять выражение 2xdx, то оно представляет дифференциал y = x 2 при любом аргументе t. Действительно, при х= t 2 получим dx = 2tΔt.

Значит 2xdx = 2t 2 2tΔt = 4t 3 Δt, т. е. выражения дифференциалов, записанные через две разные переменные, совпали.

Замена приращений дифференциалами

Если f "(x) ≠ 0, то Δу и dy эквивалентны (при Δх→0); при f "(x) = 0 (что означает и dy = 0), они не эквивалентны.

Например, если y = x 2 , то Δу = (x + Δх) 2 ─ x 2 = 2xΔх + Δх 2 , а dy=2xΔх. Если х=3, то имеем Δу = 6Δх + Δх 2 и dy = 6Δх, которые эквивалентны вследствие Δх 2 →0, при х=0 величины Δу = Δх 2 и dy=0 не эквивалентны.

Этот факт, вместе с простой структурой дифференциала (т. е. линейности по отношению к Δх), часто используется в приближенных вычислениях, в предположении, что Δу ≈ dy для малых Δх. Найти дифференциал функции, как правило, легче, чем вычислить точное значение приращения.

Например, имеем металлический куб с ребром х=10,00 см. При нагревании ребро удлинилось на Δх = 0,001 см. Насколько увеличился объем V куба? Имеем V = х 2 , так что dV = 3x 2 Δх = 3∙10 2 ∙0/01 = 3 (см 3). Увеличение объема ΔV эквивалентно дифференциалу dV, так что ΔV = 3 см 3 . Полное вычисление дало бы ΔV =10,01 3 ─ 10 3 = 3,003001. Но в этом результате все цифры, кроме первой ненадежны; значит, все равно, нужно округлить его до 3 см 3 .

Очевидно, что такой подход является полезным, только если возможно оценить величину привносимой при этом ошибки.

Дифференциал функции: примеры

Попробуем найти дифференциал функции y = x 3 , не находя производной. Дадим аргументу приращение и определим Δу.

Δу = (Δх + x) 3 ─ x 3 = 3x 2 Δх + (3xΔх 2 + Δх 3).

Здесь коэффициент A= 3x 2 не зависит от Δх, так что первый член пропорционален Δх, другой же член 3xΔх 2 + Δх 3 при Δх→0 уменьшается быстрее, чем приращение аргумента. Стало быть, член 3x 2 Δх есть дифференциал y = x 3:

dy=3x 2 Δх=3x 2 dx или же d(x 3) = 3x 2 dx.

При этом d(x 3) / dx = 3x 2 .

Найдем теперь dy функции y = 1/x через ее производную. Тогда d(1/x) / dx = ─1/х 2 . Поэтому dy = ─ Δх/х 2 .

Дифференциалы основных алгебраических функций приведены ниже.

Приближенные вычисления с применением дифференциала

Вычислить функцию f (x), а также ее производную f "(x) при x=a часто нетрудно, а вот сделать то же самое в окрестности точки x=a бывает нелегко. Тогда на помощь приходит приближенное выражение

f(a + Δх) ≈ f "(a)Δх + f(a).

Оно дает приближенное значение функции при малых приращениях Δх через ее дифференциал f "(a)Δх.

Следовательно, данная формула дает приближенное выражение для функции в конечной точке некоторого участка длиной Δх в виде суммы ее значения в начальной точке этого участка (x=a) и дифференциала в той же начальной точке. Погрешность такого способа определения значения функции иллюстрирует рисунок ниже.

Однако известно и точное выражение значения функции для x=a+Δх, даваемое формулой конечных приращений (или, иначе, формулой Лагранжа)

f(a+ Δх) ≈ f "(ξ) Δх + f(a),

где точка x = a+ ξ находится на отрезке от x = a до x = a + Δх, хотя точное положение ее неизвестно. Точная формула позволяет оценивать погрешность приближенной формулы. Если же в формуле Лагранжа положить ξ = Δх /2, то хотя она и перестает быть точной, но дает, как правило, гораздо лучшее приближение, чем исходное выражение через дифференциал.

Оценка погрешности формул при помощи применения дифференциала

В принципе неточны, и привносят в данные измерений, соответствующие ошибки. Их характеризуют предельной или, короче, предельной погрешностью - положительным числом, заведомо превышающим эту ошибку по абсолютной величине (или в крайнем случае равным ей). Предельной называют частное от ее деления на абсолютное значение измеренной величины.

Пусть точная формула y= f (x) использована для вычисляения функции y, но значение x есть результат измерения и поэтому привносит в y ошибку. Тогда, чтобы найти предельную абсолютную погрешность │‌‌Δу│функции y, используют формулу

│‌‌Δу│≈│‌‌dy│=│ f "(x)││Δх│,

где │Δх│является предельной погрешностью аргумента. Величину │‌‌Δу│ следует округлить в сторону увеличения, т.к. неточной является сама замена вычисления приращения на вычисление дифференциала.

Инструкция

Если вы хотите найти значение функции, используя формулу, подставьте в эту формулу вместо аргумента (х), его допустимые значения, то есть значения, входящие в ее область определения. Для этого допустимых значений данной функции.

Чтобы найти область определения функции, определите, вид она имеет. Если представлена вида у = а/в, то ее областью определения будут являться все значения в, за исключением нуля. Число а является любым . Для нахождения области определения функции подкоренного выражения при условии четного показателя, данное выражение должно быть нуля или равно ему. Находя область определения функции того же выражения, но с нечетным показателем, учитывайте, что х – может быть любым числом в том случае, если подкоренное выражение не дробное. Находя область определения логарифмической функции, руководствуйтесь правилом о том, что выражение, которое стоит под знаком логарифма, должно быть положительной величиной.

Отыскав область определения функции, переходите к ее решению. Например, чтобы функцию : у = 2,5 х – 10 при х = 100, подставьте в данную формулу вместо х число 100. Данная операция будет выглядеть следующим образом: у = 2,5 × 100 – 10; у = 240. Это число и будет искомым значением функции.

Чтобы найти значение функции, используя , отложите в координат на оси ОХ значение аргумента (отметьте точку, соответствующую аргументу). Затем из данной точки проведите перпендикуляр до пересечения его с графиком функции. Из полученной точки пересечения перпендикуляра с графиком функции опустите перпендикуляр на ось ОУ. Основание построенного перпендикуляра будет соответствовать искомому значению функции.

Видео по теме

Связанная статья

Источники:

  • как найти функцию от аргумента по таблице

Еще в школьные годы подробно изучаются функции и строятся их графики. Но, к сожалению, читать график функции и находить ее тип по представленному чертежу практически не учат. В действительности это довольно просто, если помнить основные виды функций.

Инструкция

Если представленным графиком является , которая через начало координат и с осью ОX угол α (который является углом наклона прямой к положительной полуоси), то функция, описывающая такую прямую, будет представлена как y = kx. При этом коэффициент пропорциональности k равен тангенсу угла α.

Если заданная прямая проходит через вторую и четвертую координатные четверти, то k равен 0, и функция возрастает. Пусть представленный график является прямой линией, располагающейся любым образом относительно осей координат. Тогда функцией такого графика будет линейная, которая представлена видом y = kx + b, где переменные y и х стоят в первой , а b и k могут принимать как отрицательные, так и положительные значения или .

Если прямая параллельна прямой с графиком y = kx и отсекает на оси ординат b единиц, тогда уравнение имеет вид x = const, если график параллелен оси абсцисс, то k = 0.

Кривая линия, которая состоит из двух ветвей, симметричных относительно начала координат и располагающихся в разных четвертях, гиперболой. Такой график показывает обратную зависимость переменной y от переменной x и описывается уравнением вида y = k/x, где k не должен быть равен нулю, так как является коэффициентом обратной пропорциональности. При этом, если значение k больше нуля, функция убывает; если же k меньше нуля – возрастает.

Если предложенным графиком является парабола, проходящая через начало координат, ее функция при выполнении условия, что b = с = 0, будет иметь вид y = ax2. Это самый простой случай квадратичной функции. График функции вида y = ax2 + bx + с будет иметь такой же вид, что и простейший случай, однако вершина (точка, где график пересекается с осью ординат) будет находиться не в начале координат. В квадратичной функции, представленной видом y = ax2 + bx + с, значения величин a, b и c – постоянные, при этом a не равно нулю.

Параболой также может являться график степенной функции, выраженной уравнением вида y = xⁿ, только если n является любым четным числом. Если же значение n - нечетное число, такой график степенной функции будет представлен кубической параболой. В случае, если переменная n является любым отрицательным числом, уравнение функции приобретает вид .

Видео по теме

Логарифмической называется функция, которая обратна показательной. Такая функция имеет вид: y = logax, в которой значение a – положительное число (не равное нулю). Внешний вид графика логарифмической функции зависит от значения a.

Вам понадобится

  • - математический справочник;
  • - линейка;
  • - простой карандаш;
  • - тетрадь;
  • - ручка.

Инструкция

Прежде чем приступить к построению графика логарифмической функции обратите внимание на то, что областью определения данной функции есть множество положительных : эта величина R+. Вместе с тем, у логарифмической функции есть область значения, которая представлена действительными .

Внимательно изучите условия . Если а>1, то на графике изображают возрастающую логарифмическую функцию. Доказать такую особенность логарифмической функции несложно. Для примера, возьмите два произвольных положительных значения x1 и x2, причем, x2>x1. Докажите, что loga x2>loga x1 (сделать это можно методом от ).

Предположите, что loga x2≤loga x1. Учитывая то, что показательная функция вида у=ах при а>1 возрастает, неравенство примет следующий вид: aloga x2≤aloga x1. По общеизвестному определению aloga x2=x2, в то как aloga x1=x1. Ввиду этого, неравенство приобретает вид: x2≤x1, а это напрямую противоречит первоначальным допущениям, в согласии с x2>x1. Таким образом, вы пришли к тому, что и требовалось доказать: при а>1 возрастает.

Изобразите график логарифмической функции. График функции y = logax будет проходить через точку (1;0). Если a>1, функция будет возрастающей. Следовательно, если 0

Обратите внимание

Если в задании логарифм будет обозначен lg x, не думайте, что авторы математического пособия допустили ошибку, пропустив букву «о»: перед вами десятичный логарифм.

Полезный совет

Для точности построения графика логарифмической функции рассчитайте, чем будет равен y при разных значениях x (0,5; 2; 4, 8). На основании этих данных поставьте точки и по ним постройте график.

Источники:

  • Определение и основные свойства логарифмической функции
  • график логарифмической функции

Термин решения функции как таковой в математике не используется. Под данной формулировкой следует понимать выполнение некоторых действий над заданной функцией с целью нахождения какой-то определенной характеристики, а также выяснение необходимых данных для построения графика функции.

Инструкция

Можно рассмотреть примерную схему, по которой целесообразно поведение функции и строить ее график.
Найдите область определения функции. Определите, является ли функция четной и нечетной. В случае нахождения нужного ответа, продолжите только на требуемой полуоси. Определите, является ли функция периодической. В случае положительного ответа продолжите исследование только на одном периоде. Найдите точки и определите ее поведение в окрестности этих точек.

Найдите точки пересечения графика функции с осями координат. Найдите , если они есть. Исследуйте с помощью первой производной функцию на экстремумы и интервалы монотонности. Также проведите исследование с помощью второй производной на выпуклость, вогнутость и точки перегиба. Выберите точки для уточнения функции и вычислите в них значения функции. Постройте график функции, учитывая полученные результаты по всем проведенным исследованиям.

На оси 0Х следует выделить характерные точки: точки разрыва, х=0 , нули функции, точки экстремума, точки перегиба. В этих х вычислите значения функции (если они существуют) и на плоскости 0xy отметьте соответствующие точки графика, а также точки, выбранные для уточнения. Линия, проведенная через все построенные точки с учетом интервалов монотонности, направлений выпуклости и , и даст эскиз графика функции.

Так, на конкретном примере функции y=((x^2)+1)/(x-1) проведите исследование с помощью первой производной. Перепишите функцию в виде y=x+1+2/(x-1). Первая производная будет y’=1-2/((x-1)^2).
Найдите критические точки первого рода: y’=0, (x-1)^2=2, в результате получатся две точки: x1=1-sqrt2, x2=1+sqrt2. Отметьте полученные значения на области определения функции (рис. 1).
Определите знак производной на каждом из интервалов. На основе от «+» к «-» и от «-» к «+», получите, что точка максимума функции x1=1-sqrt2, а точка минимума x2=1+sqrt2. Этот же вывод можно сделать и по знаку второй производной.

Совет 5: Как решить дифференциальное уравнение первого порядка

Дифференциальное уравнение первого порядка относится к простейшим дифференциальным уравнениям. Они наиболее легко поддаются исследованию и решению, а в конечном итоге их всегда можно проинтегрировать.

Инструкция

Решение дифференциального первого порядка рассмотрим на примере xy"=y. Вы видите, что оно содержит: х - независимую ; у - зависимую переменную, функцию; y" - первую производную функции.

Не пугайтесь, если в некоторых случаях первого порядка не будет «х» или (и) «у». Главное, чтобы в дифференциальном уравнении обязательно была y" (первая производная), и отсутствовали y"", y"""( высших порядков).

Теперь разделите переменные. Например, в левой части оставьте только переменные содержащие y, а в правой - переменные содержащие x. У вас должно получиться следующее: dyy=dxx.

Свойства функций играют важную роль при их изучении. Они позволяют делать определенные выводы о функциях. Изучение данной темы крайне важно для обучающихся, особенно старших классов. Это связано с тем,что задания по данной теме довольно часто встречаются в КИМ государственной итоговой аттестации.

Видеоурок по теме «Свойства функции» разработан автором для облегчения работы учителя и его подготовки к урокам. Если использовать данный материал на уроках, то появится больше свободного времени, которое можно посвятить индивидуальному обучению или другим направлениям обучения математики в школе.

Длительность урока составляет 8:23 минут. Примерно столько же времени требуется учителю, чтобы объяснить материал на уроке, который длится 40-45 минут. При этому учитель успеет актуализировать знания обучающихся, повторить необходимый материал, просмотреть видеоурок, а затем еще и закрепить материал.

Рассмотрение материала начинается непосредственно с первого свойства, которое называется монотонность. Это понятие подробно расписывается на математическом языке, что способствует развитию математической грамотности обучающихся, а также словесно поясняется каждая запись на экране. Далее автор демонстрирует на рисунке, как выглядит монотонная функция для случаев возрастания и убывания. После этого дается определение монотонной функции. Здесь же дается правило для запоминания, которое связано с монотонностью функции. Далее предлагается рассмотреть эту теорию на примере. На рисунке изображен график, на экране последовательно выделяются промежутки возрастания и убывания. Показана и математическая запись этих промежутков.

Согласно условию другого примера, необходимо исследовать функцию на монотонность. Чтобы определить монотонность функции, автор воспользовался определением возрастающей и убывающей функции. В результате получается, что функция убывает на всей области определения.

Затем на экране демонстрируются примеры возрастающих функций на всей области определения.

Далее внимание обучающихся обращается ко второму свойству, которое называется ограниченностью. Рассмотрение этого свойства строится по аналогии с первым свойством. Рассматривается понятие ограниченности, все это иллюстрируется на рисунке, как ограниченность снизу, так и ограниченность сверху. Затем на экране появляется пример ограниченной функции.

Важными понятиями в пункте ограниченность являются наибольшее и наименьшее значение функции. В качестве иллюстрации показан рисунок и идет подробное описание этих понятий.

После примера рассматривается третье свойство, которое называется выпуклостью. Это понятие иллюстрируется с помощью рисунка. На данном свойстве автор не останавливается так же подробно, как на предыдущих. Он сразу переходит к четвертому свойству - непрерывности. Здесь вводится понятие непрерывной функции. После этого демонстрируется это свойство на рисунке с подробными пояснениями.

Далее рассматривается свойство четности и нечетности. И тут же объясняется, когда функция четная и нечетная. Объяснения сопровождаются иллюстрациями и подробными описаниями. Это показано на примерах двух функций.

И, наконец, рассматривается шестое свойство - периодичность. На нем автор не останавливается, отмечая, что примеры периодичных функций будут изучены в дальнейшем на уроках алгебры.

ТЕКСТОВАЯ РАСШИФРОВКА:

Первое свойство, которое мы рассмотрим -монотонность.

Внимание: во всех определениях рассматривается числовое множество икс большое - подмножество области определения функции.

Функция игрек равно эф от икс возрастает на множестве икс большое, которое является подмножеством области определения и если для любых икс первое из множества икс большое и икс второе из множества икс большое таких,что икс второе больше икс первого выполняется неравенство эф от икс второе больше эф от икс первое. Другими словами - большему значению аргумента соответствует большее значение функции.

Функция игрек равно эф от икс убывает на промежутке икс большое которое является подмножеством областиопределения и если для любых икс первое из множества икс большое и икс второе из множества икс большое таких,что икс второе больше икс первого выполняется неравенство эф от икс второе меньше эф от икс первое. Другими словами - большему значению аргумента соответствует меньшее значение функции.

Функция игрек равно эф от икс называется монотонной на множестве икс большое, если она на этом промежутке или убывает или возрастает.

Запомни: если функция определена и непрерывна в концах интервала возрастания или убывания, то эти точки включаются в промежуток возрастания или убывания.

Например, функция, график которой изображен на рисунке, на промежутках

от минус бесконечности до минус пяти и от трех до плюс бесконечностивозрастает, а на промежутке от минус пяти до трех убывает. Пример. Исследовать функцию на монотонность: игрек равен шесть минус два икс.

Введем обозначение: эф от икс равен шесть минус два икс.

Если икс первое меньше икс второе, то используя свойства числовых неравенств, имеем

Значит, заданная функция убывает на всей числовой прямой.

Существуют функции, являющиеся возрастающими на всей области определения, например, игрек равен ка икс плюс вэ при ка больше нуля, игрек равен икс в кубе.

Второе свойство - ограниченность.

Если все значения функции игрек равно эф от икс на множестве икс большое больше некоторого числа эм малое, то функцию игрек равно эф от икс называют ограниченной снизу на множестве икс большое из области определения.

Если все значения функции игрек равно эф от икс на множестве икс большое меньше некоторого числа эм большое, то функцию игрек равно эф от икс называют ограниченной сверху на множестве икс большое из области определения.

Запомни: если функция ограничена и сверху и снизу на всей области определения, то ее называют ограниченной.

По графику функции легко можно определить ее ограниченность.

Наибольшее значение функции обозначают игрек с индексом наибольшее. .

Игрик является наибольшим если:

Во -первых, существует точка икс нулевое из множества икс большое такая, что эф от икс нулевое равно эм большое;

Во - вторых,для любого значения икс из множества икс большое выполняется неравенство эф от икс меньше или равно эф от икс нулевое, то число эм большое называют наибольшим значением функции игрек равно эф от икс на множестве икс большое из области определения функции.

Наименьшее значение функции обозначают игрек с индексом наименьшее

Во -первых, существует точка икс нулевое из множества икс большое такая, что эф от икс нулевое равно эм;

Во - вторых,для любого значения икс из множества икс большое выполняется неравенство эф от икс больше или равно эф от икс нулевое,то число эм называют наименьшим значением функции игрек равно эф от икс на множестве икс большое из области определения функции

Полезно запомнить:

Если у функции существует наименьшее значение., то она ограничена снизу.

Если у функции существует наибольшее значение, то она ограничена сверху.

Рассмотрим пример. Найти наименьшее значение функции

Функция, график которой изображен на рисунке, ограничена снизу, наименьшее значение функции равно нулю, а наибольшего не существует, функция сверху неограниченна.

Третье свойство: выпуклость вверх, выпуклость вниз.

Если,соединить любые две точки графика функции с абсциссами из икс большое отрезком и соответствующая часть графика будет лежать ниже проведенного отрезка, то такая функция выпукла вниз на промежутке икс большое из области определения.

Если,соединить любые две точки графика функции с абсциссами из икс большое отрезком и соответствующая часть графика будет лежать выше проведенного отрезка, то такая функция выпукла вверх на промежутке икс большое из области определения.

четвертое свойство: непрерывность.

Функция называется непрерывной на промежутке, если она определена на этом промежутке и непрерывна в каждой точке этого промежутка.

Непрерывность функции на промежутке Х означает, что график функции на всей области определения сплошной, т.е. не имеет проколов и скачков.

пятое свойство: четность, нечетность.

Если область определения функции -симметричное множество и для любого х из области определения функции выполняется равенство f(-х)= f(х), то такая функция четная.

График четной функции симметричен относительно оси ординат.

Если область определения функции -симметричное множество и для любого х из области определения функции выполняется равенство f(-х)= -f(х), то такая функция нечетная.

График нечетной функции симметричен относительно начала координат.

Так же существуют функции, которые не являются ни четными, ни нечетными

шестое свойство: периодичность

примеры периодических функций будем рассматривать в дальнейшем

Если существует такое отличное от нуля число тэ большое, что для любого икс из области определения функции верно равенство эф от икс плюс тэ большое равно эф от икс и равно эф от икс минус тэ большое, то функция игрек равно эф от икс -периодическая. Число тэ большое - период функции игрек равно эф от икс

все тригонометрические функции периодические.