Движение частицы по криволинейной траектории. Что такое радиан? Примеры действия центростремительной силы

6. Криволинейное движение. Угловое перемещение, угловые скорость и ускорение тела. Путь и перемещение при криволинейном движении тела.

Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модульскорости постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление скорости изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1.19. Траектория и вектор перемещения при криволинейном движении.

При движении по криволинейной траектории вектор перемещения направлен по хорде (рис. 1.19), аl – длина траектории . Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 1.20).

Рис. 1.20. Мгновенная скорость при криволинейном движении.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени – это тангенциальное ускорение :

или

Где v τ , v 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно.

Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение – это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 1.21).

Рис. 1.21. Движение тела при криволинейном движении.

Криволинейное движение

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции v x и v y ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времениt определяется по формулам

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:

Нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v – мгновенное значение скорости, r – радиус кривизна траектории в данной точке.

Тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

Кроме центростремительного ускорения, важнейшими характе­ристиками равномерного движения по окружности являются период и частота обращения.

Период обращения - это время, за которое тело совершается один оборот.

Обозначается период буквой Т (с) и определяется по формуле:

где t - время обращения, п - число оборотов, совершенных за это время.

Частота обращения - это величина, численно равная числу оборотов, совершенных за единицу времени.

Обозначается частота греческой буквой (ню) и находится по формуле:

Измеряется частота в 1/с.

Период и частота - величины взаимно обратные:

Если тело, двигаясь по окружности со скоростью v, делает один оборот, то пройденный этим телом путь можно найти, умножив ско­рость v на время одного оборота:

l = vT. С другой стороны, этот путь равен длине окружности 2πr . Поэтому

vT = r,

где w (с -1) - угловая скорость.

При неизменной частоте обращения центростремительное ускорение прямо пропорционально расстоянию от движущейся частицы до центра вращения.

Угловая скорость (w ) – величина, равная отношению угла поворота радиуса, на котором находится вращающаяся точка, к промежутку времени, за который произошел этот поворот:

.

Связь между линейной и угловой скоростями:

Движение тела можно считать известным лишь тогда, когда известно, как движется каждая его точка. Самое простое движение твердых тел – поступательное. Поступательным называется движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается параллельно самой себе.

Кинематика изучает движение без выявления причин, вызывающих это движение. Кинематика является разделом механики. Главной задачей кинематики является математическое определение положения и характеристик движения точек или тел во времени.

Основные кинематические величины:

- Перемещение() – вектор, соединяющий начальную и конечную точки.

r – радиус-вектор, определяет положение МТ в пространстве.

- Скорость – отношение пути ко времени.

- Путь – множество точек через которое прошло тело.

- Ускорение – скорость изменения скорости, то есть первая производная от скорости.

2.Ускорение при криволинейном движении: нормальное и тангенциальное ускорение. Плоское вращение. Угловая скорость, ускорение.

Криволинейное движение – это движение, траектория которого представляет собой кривую линию. Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости.

Изменение величины скорости за единицу времени – это тангенциальное ускорение :

Где 𝛖 τ , 𝛖 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно. Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Полное ускорение при равнопеременном криволинейном движении тела равно:

-угловая скорость показывает, на какой угол поворачивается точка при равномерном движении по окружности за единицу времени. Единица измерения в СИ - рад/с.

Плоское вращение – это вращение всех векторов скоростей точек тела в одной плоскости.

3.Связь между векторами скорости и угловой скорости материальной точки. Нормальное, тангенциальное и полное ускорение.

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Нормальное (центростремительное) ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой.

При криволинейном движении у вектора скорости изменяется направление. При этом может меняться и его модуль, т. е. длина. В этом случае вектор ускорения раскладывается на две составляющие: касательную к траектории и перпендикулярную к траектории (рис. 10). Составляющая называется тангенциальным (касательным) ускорением, составляющая –нормальным (центростремительным) ускорением.

Ускорение при криволинейном движении

Тангенциальное ускорение характеризует быстроту изменения линейной скорости, а нормальное ускорение характеризует быстроту изменения направления движения.

Полное ускорение равно векторной сумме тангенциального и нормального ускорений:

(15)

Модуль полного ускорения равен:

.

Рассмотрим равномерное движение точки по окружности. При этом и . Пусть в рассматриваемый момент времени t точка находится в положении 1 (рис. 11). Спустя время Δt точка окажется в положении 2, пройдя путь Δs , равный дуге 1-2. При этом скорость точки v получает приращение Δv , в результате чего вектор скорости, оставаясь неизменным по величине, повернется на угол Δφ , совпадающий по величине с центральным углом, опирающимся на дугу длиной Δs :

(16)

где R-радиус окружности, по которой движется точка. Найдем приращение вектора скорости Для этого перенесем вектор так, чтобы его начало совпадало с началом вектора . Тогда вектор изобразится отрезком, проведенным из конца вектора в конец вектора . Этот отрезок служит основанием равнобедренного треугольника со сторонами и и углом Δφ при вершине. Если угол Δφ невелик (что выполняется для малых Δt), для сторон этого треугольника можно приближенно написать:

.

Подставляя сюда Δφ из (16), получаем выражение для модуля вектора :

.

Разделив обе части уравнения на Δt и сделав предельный переход, получим величину центростремительного ускорения:

Здесь величины v и R постоянные, поэтому их можно вынести за знак предела. Предел отношения – это модуль скорости Его также называют линейной скоростью.

Радиус кривизны

Радиус окружности R называется радиусом кривизны траектории. Величина, обратная R, называется кривизной траектории:

.

где R - радиус рассматриваемой окружности. Если α есть центральный угол, соответствующий дуге окружности s, то, как известно, между R, α и s имеет место соотношение:

s = Rα . (18)

Понятие радиуса кривизны применимо не только к окружности, но и любой кривой линии. Радиус кривизны (или обратная ему величина – кривизна) характеризует степень изогнутости линии. Чем меньше радиус кривизны (соответственно, чем больше кривизна), тем сильнее изогнута линия. Рассмотрим это понятие подробнее.


Кругом кривизны плоской линии в некоторой точке A называется предельное положение окружности, проходящей через точку А и две другие точки В 1 и В 2 при их бесконечном приближении к точке А (на рис. 12 кривая проведена сплошной линией, а круг кривизны - пунктирной). Радиус круга кривизны дает радиус кривизны рассматриваемой кривой в точке A, а центр этого круга - центр кривизны кривой для той же точки А.

Проведем в точках B 1 и В 2 касательные B 1 D и В 2 Е к окружности, проходящей через точки В 1 , А и B 2 . Нормали к этим касательным B 1 С и В 2 С представят собой радиусы R окружности и пересекутся в ее центре С. Введем угол Δα между нормалями В1С и В 2 С; очевидно, он равен углу между касательными В 1 D и В 2 E. Обозначим участок кривой между точками B 1 и В 2 как Δs. Тогда по формуле (18):

.

Круг кривизны плоской кривой линии

Определение кривизны плоской кривой в разных точках

На рис. 13 изображены круги кривизны плоской линии в разных точках. В точке A 1 , где кривая является более пологой, радиус кривизны больше, чем в точке A 2 , соответственно, кривизна линии в точке A 1 будет меньше, чем в точке A 2 . В точке A 3 кривая является еще более пологой, чем в точках A 1 и A 2 , поэтому радиус кривизны в этой точке будет больше, а кривизна меньше. Кроме того, круг кривизны в точке A 3 лежит по другую сторону кривой. Поэтому величине кривизны в этой точке приписывают знак, противоположный знаку кривизны в точках A 1 и A 2: если кривизну в точках A 1 и A 2 будем считать положительной, то кривизна в точке A 3 будет отрицательной.

Равноускоренное криволинейное движение

Криволинейные движения - движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение - это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам

Неравномерное движение. Скорость при неравномерном движении

Ни одно тело не движется все время с постоянной скоростью. Начиная движение, автомобиль движется быстрее и быстрее. Некоторое время он может двигаться равномерно, но потом он тормозит и останавливается. При этом автомобиль проходит разные расстояния за один и то же время.

Движение, при котором тело за равные промежутки времени проходит неодинаковые отрезки пути, называется неравномерным. При таком движении величина скорости не остается неизменной. В таком случае можно говорить лишь о средней скорости.

Средняя скорость показывает, чему равно перемещение, которое тело проходит за единицу времени. Она равна отношению перемещения тела до времени движения. Средняя скорость, как и скорость тела при равномерном движении, измеряется в метрах, разделенных на секунду. Для того, чтобы характеризовать движение точнее, в физике применяют мгновенную скорость.

Скорость тела в данный момент времени или в данной точке траектории называется мгновенной скоростью. Мгновенная скорость является векторной величиной и направлена так же, как вектор перемещения. Измерить мгновенную скорость можно с помощью спидометра. В Системе Интернациональной мгновенная скорость измеряется в метрах, разделенных на секунду.

точка движение скорость неравномерный

Движение тела по окружности

В природе и технике очень часто встречается криволинейное движение. Оно сложнее прямолинейного, так как существует множество криволинейных траекторий; это движение всегда ускоренное, даже когда модуль скорости не меняется.

Но движение по любой криволинейной траектории можно приблизительно представить как движение по дугам круга.

При движении тела по окружности направление вектора скорости меняется от точки к точке. Поэтому когда говорят о скорости такого движения, подразумевают мгновенную скорость. Вектор скорости направлен по касательной к окружности, а вектор перемещения - по хордам.

Равномерное движение по окружности - это движение, во время которого модуль скорости движения не изменяется, изменяется только ее направление. Ускорение такого движения всегда направлено к центру окружности и называется центростремительным. Для того чтобы найти ускорение тела, которое движется по кругу, необходимо квадрат скорости разделить на радиус окружности.

Помимо ускорения, движение тела по кругу характеризуют следующие величины:

Период вращения тела - это время, за которое тело совершает один полный оборот. Период вращения обозначается буквой Т и измеряется в секундах.

Частота вращения тела - это число оборотов в единицу времени. Частота вращения обозначается буквой? и измеряется в герцах. Для того чтобы найти частоту, надо единицу разделить на период.

Линейная скорость - отношение перемещения тела до времени. Для того чтобы найти линейную скорость тела по окружности, необходимо длину окружности разделить на период (длина окружности равна 2? умножить на радиус).

Угловая скорость - физическая величина, равная отношению угла поворота радиуса окружности, по которой движется тело, до времени движения. Угловая скорость обозначается буквой? и измеряется в радианах, разделенных на секунду. Найти угловую скорость можно, разделив 2? на период. Угловая скорость и линейная между собой. Для того чтобы найти линейную скорость, необходимо угловую скорость умножить на радиус окружности.


Рисунок 6. Движение по окружности, формулы.