График y корень. Изучение нового материала. Свойства функции y=√x

N-й степени из действительного числа, отметили, что из любого неотрицательного числа можно извлечь корень любой степени (второй, третьей, четвертой и т.д.), а из отрицательного числа можно извлечь корень любой нечетной степени. Но тогда следует подумать и о функции вида , о ее графике, о ее свойствах. Этим мы и займемся в нас стоящем параграфе. Сначала поговорим о функции в случае неотрицательных значений аргумента .

Начнем с известного вам случая, когда n =2, т.е. с функции На рис. 166 изображен график функции и график функции у = х 2 , х>0. Оба графика представляют собой одну и ту же кривую - ветвь параболы, только по-разному расположенную на координатной плоскости. Уточним: эти графики симметричны относительно прямой у = х, поскольку состоят из точек, симметричных друг другу относительно указанной прямой. Смотрите: на рассматриваемой ветви параболы у = х 2 есть точки (0; 0), (1; 1), (2; 4), (3; 9), (4; 16), а на графике функции точки (0; 0), (1; 1), (4; 2), (9; 3), (16; 4).

Точки (2; 4) и (4; 2), (3; 9) и (9; 3), (4; 16) и (16; 4) симметричны относительно прямой у = х, (а точки (0; 0) и (1; 1) лежат на этой прямой). И вообще, для любой точки (а; а 2) на графике функции у = х 2 есть симметричная ей относительно прямой у = x точка (а 2 ; а) на графике функции и обратно. Справедлива следующая теорема.

Доказательство. Будем считать для определенности, что а и b - положительные числа. Рассмотрим треугольники ОАМ и ОВР (рис. 167). Они равны, значит, ОР = ОМ и . Но тогда и поскольку прямая у = х - биссектриса угла АОВ. Итак, треугольник РОМ - равнобедренный, ОН - его биссектриса, а значит, и ось симметрии. Точки М и Р симметричны относительно прямой ОН, что и требовалось доказать.
Итак, график функции можно получить из графика функции у = х 2 , х>0 с помощью преобразования симметрии относительно прямой у = х. Аналогично график функции можно получить из графика функции у = х 3 , х> 0 с помощью преобразования симметрии относительно прямой у=х; график функции можно получить из графика функции с помощью преобразования симметрии относительно прямой у = х и т.д. Напомним, что график функции напоминает по виду ветвь параболы Чем больше п, тем круче эта ветвь устремляется вверх на промежутке и тем ближе подходит к оси х в окрестности точки х=0 (рис. 168).


Сформулируем общий вывод: график функции симметричен графику функции , относительно прямой у = х(рис. 169).

Свойства функции

1)
2) функция не является ни четной, ни нечетной;
3) возрастает на
4) не ограничена сверху, ограничена снизу;
5) не имеет наибольшего значения;
6) непрерывна;
7)

Обратите внимание на одно любопытное обстоятельство. Рассмотрим две функции, графики которых изображены на рис. 169: Только что мы перечислили семь свойств для первой функции, но абсолютно теми же свойствами обладает и вторая функция. Словесные «портреты» двух различных функций одинаковы. Но, уточним, пока одинаковы.

Математики не смогли вынести такой несправедливости, когда разные функции, имеющие разные графики, словесно описываются одинаково, и ввели понятия выпуклости вверх и выпуклости вниз. График функции обращен выпуклостью вверх, тогда как график функции у = х п обращен выпуклостью вниз.


Обычно говорят, что непрерывная функция выпукла вниз, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит ниже проведенного отрезка (рис. 170); непрерывная функция выпукла вверх, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит выше проведенного отрезка (рис. 171).

Свойство выпуклости мы будем в дальнейшем включать в процедуру чтения графика. Отметим его"(продолжив нумерацию описанных ранее свойств) для рассматриваемой функции:

8) функция выпукла вверх на луче
В предыдущей главе мы познакомились еще с одним свойством функции - дифференцируемостью, видели, что функция у = х п дифференцируема в любой точке, ее производная равна пх n-1 . Геометрически это означает, что в любой точке графика функции у = х п к нему можно провести касательную. Этим же свойством обладает и график функции : в любой его точке к графику можно провести касательную. Таким образом, мы можем отметить еще одно свойство функции
9) функция дифференцируема в любой точке х > 0.
Обратите внимание: о дифференцируемости функции в точке х = 0 речь не идет - в этой точке касательная к графику функции совпадает с осью у, т.е. перпендикулярна оси абсцисс.
Пример 1. Построить график функции
Решение. 1)Перейдем к вспомогательной системе координат с началом в точке (-1; -4) - пунктирные прямые х = -1 и у = -4 на рис. 172.
2) «Привяжем» функцию к новой системе координат. Это и будет требуемый график.
Пример 2. Решить уравнение

Решение. Первый способ. 1) Введем в рассмотрение две функции
2) Построим график функции


3) Построим график линейной функции у=2-х (см. рис. 173).

4) Построенные графики пересекаются в одной точке А, причем по графику можно сделать предположение, что координаты точкиА таковы: (1; 1). Проверка показывает, что на самом деле точка (1; 1) принадлежит и графику функции , и графику функции у=2-x. Значит, наше уравнение имеет один корень: х = 1 - абсцисса точки А.

Второй способ.
Геометрическая модель, представленная на рис. 173, наглядно иллюстрирует следующее утверждение, которое иногда позволяет очень изящно решить уравнение (и которым мы уже воспользовались в § 35 при решении примера 2):

Если функция у=f(х) возрастает, а функция у=g(х) убывает и если уравнение f(х)=g(х) имеет корень, то он только один.

Вот как, опираясь на это утверждение, мы можем решить заданное уравнение:

1) заметим, что при х = 1 выполняется равенство , значит, х = 1 - корень уравнения (этот корень мы угадали);
2) функция y=2-x убывает, а функция возрастает; значит, корень у заданного уравнения только один, и этим корнем является найденное выше значение x = 1.

Ответ : x = 1.

До сих пор мы говорили о функции только для неотрицательных значений аргумента. Но ведь если п - нечетное число, выражение имеет смысл и для x <0. Значит, есть смысл поговорить о функции в случае нечетного п для любых значений х.

Собственно говоря, к перечисленным добавится только одно свойство:

если n - нечетное число (n = 3,5, 7,...), то - нечетная функция.

В самом деле, пусть для нечетного показателя n такие преобразования верны. Итак, f(-x) = -f(x), а это и означает нечетность функции.

Как же выглядит график функции в случае нечетного показателя n? При так, как показано на рис. 169, - это ветвь искомого графика. Добавив к ней ветвь, симметричную ей относительно начала координат (что, напомним, характерно для любой нечетной функции), получим график функции (рис. 174). Обратите внимание: ось у является касательной к графику в точке х = 0.
Итак, повторим еще раз:
если п - четное число, то график функции имеет вид, представленный на рис. 169;
если п - нечетное число, то график функции имеет вид, представленный на рис. 174.


Пример 3. Построить и прочитать график функции у = f(x), где
Решение. Сначала построим график функции и выделим его часть на луче (рис. 175).
Затем построим график функции и выделим его часть на открытом луче (рис. 176). Наконец, оба «кусочка» изобразим в одной системе координат - это и будет график функции у = f(x)(рис. 177).
Перечислим (опираясь на построенный график) свойства функции у = f(x):

1)
2) ни четна, ни нечетна;
3) убывает на луче , возрастает на луче
4) не ограничена снизу, ограничена сверху;
5) нет наименьшего значения, а (достигается в точке х = 1);
6) непрерывна;
7)
8) выпукла вниз при , выпукла вверх на отрезке , выпукла вниз при
9) функция дифференцируема всюду, кроме точек х = 0 и х = 1.
10) график функции имеет горизонтальную асимптоту это означает, напомним, что

Пример 4. Найти область определения функции:

Решение, а) Под знаком корня четной степени должно находиться неотрицательное число, значит, задача сводится к решению неравенства
б) Под знаком корня нечетной степени может находиться любое число, значит, здесь на х не накладывается никаких ограничений, т.е. D(f) = R.
в) Выражение имеет смысл при условии а выражение Значит, должны одновременно выполняться два неравенства: т.е. задача сводится к решению системы неравенств:

Решая неравенство
Решим неравенство Разложим левую часть неравенства на множители: Левая часть неравенства обращается в 0 в точках -4 и 4. Отметим эти точки на числовой прямой (рис. 178). Числовая прямая разбивается указанными точками на три промежутка, причем на каждом промежутке выражение р(х)=(4-х)(4 + х) сохраняет постоянный знак (знаки указаны на рис. 178). Промежуток, на котором выполняется неравенство р(х)>0, заштрихован на рис. 178. По условию задачи нас интересуют и те точки х, в которых выполняется равенство р(х) = 0. Таких точек две: х =-4, х =4 - они отмечены на рис. 178 темными кружочками. Таким образом, на рис. 178 представлена геометрическая модель решения второго неравенства системы.


Отметим найденные решения первого и второго неравенств системы на одной координатной прямой, использовав для первого - верхнюю, а для второго - нижнюю штриховку (рис. 179). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Таким промежутком является отрезок [-1, 4].

Ответ. D(f) = [-1,4].

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе

Урок и презентация на тему: "Степенные функции. Корень кубический. Свойства корня кубического"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Образовательный комплекс 1C: "Алгебраические задачи с параметрами, 9–11 классы" Программная среда "1С: Математический конструктор 6.0"

Определение степенной функции - кубического корня

Ребята, мы продолжаем изучать степенные функции. Сегодня мы поговорим о функции "Корень кубический из х".
А что же такое корень кубический?
Число y называется корнем кубическим из x (корнем третьей степени), если выполняется равенство $y^3=x$.
Обозначают, как $\sqrt{x}$, где х - подкоренное число, 3 - показатель степени.
$\sqrt{27}=3$; $3^3=27$.
$\sqrt{(-8)}=-2$; $(-2)^3=-8$.
Как мы видим, корень кубический можно извлекать и из отрицательных чисел. Получается, что наш корень существует для всех чисел.
Корень третьей степени из отрицательного числа равен отрицательному числу. При возведении в нечетную степень знак сохраняется, третья степень является нечетной.

Проверим равенство: $\sqrt{(-x)}$=-$\sqrt{x}$.
Пусть $\sqrt{(-x)}=a$ и $\sqrt{x}=b$. Возведем оба выражения в третью степень. $–x=a^3$ и $x=b^3$. Тогда $a^3=-b^3$ или $a=-b$. В обозначениях корней получаем искомое тождество.

Свойства корней кубических

а) $\sqrt{a*b}=\sqrt{a}*\sqrt{6}$.
б) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.

Давайте докажем второе свойство. $(\sqrt{\frac{a}{b}})^3=\frac{\sqrt{a}^3}{\sqrt{b}^3}=\frac{a}{b}$.
Получили, что число $\sqrt{\frac{a}{b}}$ в кубе равно $\frac{a}{b}$ и тогда равно $\sqrt{\frac{a}{b}}$, что и требовалось доказать.

Ребята, давайте построим график нашей функции.
1) Область определения множество действительных чисел.
2) Функция нечетная, так как $\sqrt{(-x)}$=-$\sqrt{x}$. Далее рассмотрим нашу функцию при $х≥0$, после отразим график относительно начала координат.
3) Функция возрастает при $х≥0$. Для нашей функции, большему значению аргумента соответствует большее значение функции, что и означает возрастание.
4) Функция не ограничена сверху. На самом деле из сколь угодно большого числа можно вычислить корень третьей степени, и мы можем двигаться до бесконечности вверх, находя все большие значения аргумента.
5) При $х≥0$ наименьшее значение равно 0. Это свойство очевидно.
Построим график функции по точкам при х≥0.




Построим наш график функции на всей области определения. Помним, что наша функция нечетная.

Свойства функции:
1) D(y)=(-∞;+∞).
2) Нечетная функция.
3) Возрастает на (-∞;+∞).
4) Неограниченна.
5) Наименьшего и наибольшего значения нет.

7) Е(у)= (-∞;+∞).
8) Выпукла вниз на (-∞;0), выпукла вверх на (0;+∞).

Примеры решения степенных функций

Примеры
1. Решить уравнение $\sqrt{x}=x$.
Решение. Построим два графика на одной координатной плоскости $y=\sqrt{x}$ и $y=x$.

Как видим наши графики пересекаются в трех точках.
Ответ: (-1;-1), (0;0), (1;1).

2. Построить график функции. $y=\sqrt{(x-2)}-3$.
Решение. График нашей получается из графика функции $y=\sqrt{x}$, параллельным переносом на две единицы вправо и три единицы вниз.

3. Построить график функции и прочитать его. $\begin{cases}y=\sqrt{x}, x≥-1\\y=-x-2, x≤-1 \end{cases}$.
Решение. Построим два графика функций на одной координатной плоскости с учетом наших условий. При $х≥-1$ строим график корня кубического, при $х≤-1$ график линейной функции.
1) D(y)=(-∞;+∞).
2) Функция не является ни четной, ни нечетной.
3) Убывает на (-∞;-1), возрастает на (-1;+∞).
4) Неограниченна сверху, ограничена снизу.
5) Наибольшего значения нет. Наименьшее значение равно минус один.
6) Функция непрерывна на всей числовой прямой.
7) Е(у)= (-1;+∞).

Задачи для самостоятельного решения

1. Решить уравнение $\sqrt{x}=2-x$.
2. Построить график функции $y=\sqrt{(x+1)}+1$.
3.Построить график функции и прочитать его. $\begin{cases}y=\sqrt{x}, x≥1\\y=(x-1)^2+1, x≤1 \end{cases}$.

Приведены основные свойства степенной функции, включая формулы и свойства корней. Представлены производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел степенной функции.

Определение

Определение
Степенная функция с показателем степени p - это функция f(x) = x p , значение которой в точке x равно значению показательной функции с основанием x в точке p .
Кроме этого, f(0) = 0 p = 0 при p > 0 .

Для натуральных значений показателя , степенная функция есть произведение n чисел, равных x :
.
Она определена для всех действительных .

Для положительных рациональных значений показателя , степенная функция есть произведение n корней степени m из числа x :
.
Для нечетных m , она определена для всех действительных x . Для четных m , степенная функция определена для неотрицательных .

Для отрицательных , степенная функция определяется по формуле:
.
Поэтому она не определена в точке .

Для иррациональных значений показателя p , степенная функция определяется по формуле:
,
где a - произвольное положительное число, не равное единице: .
При , она определена для .
При , степенная функция определена для .

Непрерывность . Степенная функция непрерывна на своей области определения.

Свойства и формулы степенной функции при x ≥ 0

Здесь мы рассмотрим свойства степенной функции при неотрицательных значениях аргумента x . Как указано выше, при некоторых значениях показателя p , степенная функция определена и для отрицательных значений x . В этом случае, ее свойства можно получить из свойств при , используя четность или нечетность. Эти случаи подробно рассмотрены и проиллюстрированы на странице « ».

Степенная функция, y = x p , с показателем p имеет следующие свойства:
(1.1) определена и непрерывна на множестве
при ,
при ;
(1.2) имеет множество значений
при ,
при ;
(1.3) строго возрастает при ,
строго убывает при ;
(1.4) при ;
при ;
(1.5) ;
(1.5*) ;
(1.6) ;
(1.7) ;
(1.7*) ;
(1.8) ;
(1.9) .

Доказательство свойств приводится на странице «Степенная функция (доказательство непрерывности и свойств) »

Корни - определение, формулы, свойства

Определение
Корень из числа x степени n - это число , возведение которого в степень n дает x :
.
Здесь n = 2, 3, 4, ... - натуральное число, большее единицы.

Также можно сказать, что корень из числа x степени n - это корень (то есть решение) уравнения
.
Заметим, что функция является обратной к функции .

Квадратный корень из числа x - это корень степени 2: .

Кубический корень из числа x - это корень степени 3: .

Четная степень

Для четных степеней n = 2 m , корень определен при x ≥ 0 . Часто используется формула, справедливая как для положительных, так и для отрицательных x :
.
Для квадратного корня:
.

Здесь важен порядок, в котором выполняются операции - то есть сначала производится возведение в квадрат, в результате чего получается неотрицательное число, а затем из него извлекается корень (из неотрицательного числа можно извлекать квадратный корень). Если бы мы изменили порядок: , то при отрицательных x корень был бы не определен, а вместе с ним не определено и все выражение.

Нечетная степень

Для нечетных степеней , корень определен для всех x :
;
.

Свойства и формулы корней

Корень из x является степенной функцией:
.
При x ≥ 0 имеют место следующие формулы:
;
;
, ;
.

Эти формулы также могут быть применимы и при отрицательных значениях переменных . Нужно только следить за тем, чтобы подкоренное выражение четных степеней не было отрицательным.

Частные значения

Корень 0 равен 0: .
Корень 1 равен 1: .
Квадратный корень 0 равен 0: .
Квадратный корень 1 равен 1: .

Пример. Корень из корней

Рассмотрим пример квадратного корня из корней:
.
Преобразуем внутренний квадратный корень, применяя приведенные выше формулы:
.
Теперь преобразуем исходный корень:
.
Итак,
.

y = x p при различных значениях показателя p .

Здесь приводятся графики функции при неотрицательных значениях аргумента x . Графики степенной функции, определенной при отрицательных значениях x , приводятся на странице «Степенная функция, ее свойства и графики »

Обратная функция

Обратной для степенной функции с показателем p является степенная функция с показателем 1/p .

Если , то .

Производная степенной функции

Производная n-го порядка:
;

Вывод формул > > >

Интеграл от степенной функции

P ≠ - 1 ;
.

Разложение в степенной ряд

При - 1 < x < 1 имеет место следующее разложение:

Выражения через комплексные числа

Рассмотрим функцию комплексного переменного z :
f(z) = z t .
Выразим комплексную переменную z через модуль r и аргумент φ (r = |z| ):
z = r e i φ .
Комплексное число t представим в виде действительной и мнимой частей:
t = p + i q .
Имеем:

Далее учтем, что аргумент φ определен не однозначно:
,

Рассмотрим случай, когда q = 0 , то есть показатель степени - действительное число, t = p . Тогда
.

Если p - целое, то и kp - целое. Тогда, в силу периодичности тригонометрических функций:
.
То есть показательная функция при целом показателе степени, для заданного z , имеет только одно значение и поэтому является однозначной.

Если p - иррациональное, то произведения kp ни при каком k не дают целого числа. Поскольку k пробегает бесконечный ряд значений k = 0, ±1, ±2, ±3, ... , то функция z p имеет бесконечно много значений. Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции.

Если p - рациональное, то его можно представить в виде:
, где m, n - целые, не содержащие общих делителей. Тогда
.
Первые n величин, при k = k 0 = 0, 1, 2, ... n-1 , дают n различных значений kp :
.
Однако последующие величины дают значения, отличающиеся от предыдущих на целое число. Например, при k = k 0 + n имеем:
.
Тригонометрические функции, аргументы которых различаются на величины, кратные 2 π , имеют равные значения. Поэтому при дальнейшем увеличении k мы получаем те же значения z p , что и для k = k 0 = 0, 1, 2, ... n-1 .

Таким образом, показательная функция с рациональным показателем степени является многозначной и имеет n значений (ветвей). Всякий раз, когда аргумент z получает приращение 2 π (один оборот), мы переходим на новую ветвь функции. Через n таких оборотов мы возвращаемся на первую ветвь, с которой начинался отсчет.

В частности, корень степени n имеет n значений. В качестве примера рассмотрим корень n - й степени действительного положительного числа z = x . В этом случае φ 0 = 0 , z = r = |z| = x , .
.
Так, для квадратного корня, n = 2 ,
.
Для четных k, (- 1 ) k = 1 . Для нечетных k, (- 1 ) k = - 1 .
То есть квадратный корень имеет два значения: + и - .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.


График и свойства функции у = │ах │ (модуль)

Рассмотрим функцию у = │ах │, где а - определенное число.

Областью определения функции у = │ах │, является множество всех действительных чисел. На рисунке изображены соответственно графики функций у = │х │, у = │ │, у = │х /2│.

Можно заметить, что график функции у = | ах | получается из графика функции у = ах , если отрицательную часть графика функции у = ах (она находится ниже оси Ох ), отразить симметрично этой оси.

По графику легко усмотреть свойства функции у = │ ах │.

При х = 0, получаем у = 0, то есть графику функции принадлежит начало координат; при х = 0, получаем у > 0, то есть все другие точки графика лежат выше оси Ох .

Для противоположных значений х , значения у будут одинаковыми; ось Оу это ось симметрии графика.

К примеру, можно построить график функции у = │х 3 │. Чтобы сравнить функции у = │х 3 │и у = х 3 , составим таблицу их значений при одинаковых значениях аргументов.

Из таблицы видим, что для того, чтобы построить график функции у = │х 3 │, можно начать с построения графика функции у = х 3 . После этого стоит симметрично оси Ох отобразить ту его часть, которая находится ниже этой оси. В результате получим график, изображенный на рисунке.

График и свойства функции у = x 1/2 (корень)

Рассмотрим функцию у = x 1/2 .

Областью определения этой функции является множество неотрицательных действительных чисел, так как выражение x 1/2 имеет значение только при х > 0.

Построим график. Для составления таблицы ее значений используем микрокалькулятор, округляя значения функции до десятых.

После нанесения на координатную плоскость точек, и плавного их соединения, получаем график функции у = x 1/2 .

Построенный график позволяет сформулировать некоторые свойства функции у = x 1/2 .

При х = 0, получаем у = 0; при х > 0, получаем у > 0; график проходит через начало координат; остальные точки графика расположены в первой координатной четверти.

Теорема . График функции у = x 1/2 симметричен графику функции у = х 2 , где х > 0, относительно прямой у = х .

Доказательство . Графиком функции у = х 2 , где х > 0, является ветвь параболы, расположенная в первой координатной четверти. Пусть точка Р (а ; b ) - произвольная точка этого графика. Тогда истинно равенство b = а 2 . Поскольку по условию число а неотрицательное, то истинно также и равенство а = b 1/2 . А это означает, что координаты точки Q (b ; а ) превращают формулу у = x 1/2 в истинное равенство, или иначе, точка Q (b ; а у = x 1/2 .

Так же доказывается, что если точка М (с ; d ) принадлежит графику функции у = x 1/2 , то точка N (d ; с ) принадлежит графику у = х 2 , где х > 0.

Получается, что каждой точке Р (а ; b ) графика функции у = х 2 , где х > 0, соответствует единственная точка Q (b ; а ) графика функции у = x 1/2 и наоборот.

Остается доказать, что точки Р (а ; b ) и Q (b ; а ) симметричны относительно прямой у = х . Опустив перпендикуляры на координатные оси из точек Р и Q , получаем на этих осях точки Е (а ; 0), D (0; b ), F (b ; 0), С (0; а ). Точка R пересечения перпендикуляров РЕ и QC имеет координаты (а ; а ) и поэтому принадлежит прямой у = х . Треугольник PRQ является равнобедренным, так как его стороны RP и RQ равны │ b а │ каждая. Прямая у = х делит пополам как угол DOF , так и угол PRQ и пересекает отрезок PQ в определенной точке S . Поэтому отрезок RS является биссектрисой треугольника PRQ . Поскольку биссектриса равнобедренного треугольника является его высотой и медианой, то PQ RS и PS = QS . А это означает, что точки Р (а ; b ) и Q (b ; а ) симметричные относительно прямой у = х .

Поскольку график функции у = x 1/2 симметричен графику функции у = х 2 , где х > 0, относительно прямой у = х , то графиком функции у = x 1/2 является ветвь параболы.