Теплоемкость тела зависит от следующих факторов. Что влияет на удельную теплоемкость? Адиабатный процесс газа

Теплоемкостью тела называют количество теплоты, которое нужно сообщить данному телу, чтобы повысить его температуру на один градус. При остывании на один градус тело отдает такое же количество тепла. Теплоемкость пропорциональна массе тела. Теплоемкость единицы массы тела называется удельной, а произведение удельной теплоемкости на атомную или молекулярную массу - соответственно атомной или молярной.

Теплоемкости различных веществ сильно различаются между собой. Так, удельная теплоемкость воды при 20° С составляет 4200 Дж/кг К, соснового дерева - 1700, воздуха - 1010. У металлов она меньше: алюминия - 880 Дж/кг К, железа - 460, меди - 385, свинца - 130. Удельная теплоемкость слабо растет с температурой (при 90° С теплоемкость воды составляет 4220 Дж/кг К) и сильно меняется при фазовых превращениях: теплоемкость льда при 0° С в 2 раза меньше, чем воды; теплоемкость водяного пара при 100° С около 1500 Дж/кг К.

Теплоемкость зависит от условий, в которых происходит изменение температуры тела. Если размеры тела не меняются, то вся теплота идет на изменение внутренней энергии. Здесь говорится о теплоемкости при постоянном объеме . При постоянном внешнем давлении благодаря тепловому расширению совершается механическая работа против внешних сил, и нагревание на ту или иную температуру требует большего тепла. Поэтому теплоемкость при постоянном давлении всегда больше, чем . Для идеальных газов (см. рис.), где R - газовая постоянная, равная 8,32 Дж/моль К.

Обычно измеряется . Классический способ измерения теплоемкости следующий: тело, теплоемкость которого хотят измерить, нагревают до определенной температуры и помещают в калориметр с начальной температурой , наполненный водой или другой жидкостью с известной теплоемкостью и - теплоемкости калориметра и жидкости).

Измеряя температуру в калориметре после установления теплового равновесия , можно вычислить теплоемкость тела по формуле:

где и - массы тела, жидкости и калориметра.

Наиболее развита теория теплоемкости газов. При обычных температурах нагревание приводит в основном к изменению энергии поступательного и вращательного движения молекул газа. Для молярной теплоемкости одноатомных газов теория дает , двухатомных и многоатомных - и . При очень низких температурах теплоемкость несколько меньше из-за квантовых эффектов (см. Квантовая механика). При высоких температурах добавляется колебательная энергия, и теплоемкость многоатомных газов растет с ростом температуры.

Атомная теплоемкость кристаллов, по классической теории, равна , что согласуется с эмпирическим законом Дюлонга и Пти (установлен в 1819 г. французскими учеными П. Дюлонгом и А. Пти). Квантовая теория теплоемкости приводит к такому же выводу при высоких температурах, но предсказывает уменьшение теплоемкости при понижении температуры. Вблизи абсолютного нуля теплоемкость всех тел стремится к нулю (третий закон термодинамики).

Способы изменения внутренней энергии тела

Существует два способа изменения внутренней энергии тела (системы) -- совершение работы над ним или передача тепла. Процесс обмена внутренними энергиями соприкасающихся тел, который не сопровождается совершением работы, называется теплообменом. Энергия, которая передана телу в результате теплообмена, называется количеством теплоты, полученным телом. Обозначается количество тепла обычно Q. Вообще говоря, изменение внутренней энергии тела в процедуре теплообмена - результат работы внешних сил, только это не работа, связанная с изменением внешних параметров системы. Это работа, которую производят молекулярные силы. Например, если привести в соприкосновении тело с горячим газом, то энергия газа передается через столкновения молекул газа с молекулами тела.

Количество тепла не является функцией состояния, так как Q зависит от пути перехода системы из одного состояния в другое. Если задано состояние системы, но не указан процесс перехода, то ничего нельзя сказать о количестве тепла, которое получено системой. В этом смысле нельзя говорить о количестве тепла, запасенном в теле.

Иногда говорят о теле, обладающем запасом тепловой энергии, это имеется в виду не количество тепла, а внутренняя энергия тела. Такое тело называют тепловым резервуаром. Подобные «ляпы» в терминологии остались в науке от теории теплорода, впрочем, как и сам термин количество тепла. Теория теплорода рассматривала теплоту как некую невесомую жидкость, которая содержится в телах и не может быть создана или уничтожена. Существовала версия сохранения теплорода. С такой точки зрения было логично говорить о запасе тепла в теле без отношения к процессу. Сейчас в калориметрии часто рассуждают так, если бы был справедлив закон сохранения количества теплоты. Так, например, поступают в математической теории теплопроводности.

В связи с тем, что теплота не является функцией состояния, то для бесконечно малого количества теплоты используют обозначение $\delta Q$, а не $dQ$. Этим подчёркивается, что $\delta Q$ не рассматривается как полный дифференциал, т.е. не всегда могут быть представлены как бесконечно малые приращения функций состояния (только в частных случаях, например в изохорном и изобарном процессах). Принято считать, что теплота положительна, если система ее получает, и отрицательна в противном случае.

Что такое теплоемкость

Рассмотрим теперь, что такое теплоемкость.

Определение

Количество теплоты, переданное телу с целью нагреть его на 1К, -- теплоемкость тела (системы). Обычно обозначается "C":

\[С=\frac{\delta Q}{dT}\left(1\right).\]

Теплоемкость единицы массы тела:

удельная теплоемкость. m -- масса тела.

Теплоемкость единицы молярной массы тела:

молярная теплоемкость. $\nu $- количество вещества (количество молей вещества), $\mu $ -- молярная масса вещества.

Средней теплоемкостью $\left\langle C\right\rangle $ в интервале температур от $T_1$ до $T_2\ $называют:

\[\left\langle C\right\rangle =\frac{Q}{T_2-T_1}\ \left(4\right).\]

Связь между средней теплоемкостью тела и его «просто» теплоемкостью выражается как:

\[\left\langle C\right\rangle =\frac{1}{T_2-T_1}\int\limits^{T_2}_{T_1}{CdT}\ \left(5\right).\]

Мы видим, что теплоемкость определена через понятие «теплота».

Как уже отмечалось, количество тепла подведенного к системе зависит от процесса. Соответственно, получается, что и теплоемкость зависит от процесса. Поэтому формулу определения теплоемкости (1) следует уточнить и записать в виде:

\[С_V={\left(\frac{\delta Q}{dT}\right)}_V,\ С_p={\left(\frac{\delta Q}{dT}\right)}_p(6)\]

теплоёмкости (газа) в постоянном объеме и при постоянном давлении.

Таким образом, теплоемкость в общем случае характеризует как свойства тела, так и условия, при которых происходит нагрев тела. Если определить условия нагревания, то теплоемкость становится характеристикой свойств тела. Такие теплоемкости мы видим в справочных таблицах. Теплоемкости в процессах при постоянном давлении и постоянном объеме являются функциями состояния.

Пример 1

Задание: Идеальный газ, молекула которого имеет число степеней свободы, равное i, расширили по закону: $p=aV,$где $a=const.$ Найти молярную теплоемкость в этом процессе.

\[\delta Q=dU+\delta A=\frac{i}{2}\nu RdT+pdV\left(1.2\right).\]

Так как газ идеальный, то используем уравнение Менделеева -- Клайперона и уравнение процесса для преобразования элементарной работы и получения выражения для нее через температуру:

Итак, элемент работы имеет вид:

\[\delta A=pdV=aVdV=\frac{\nu RdT}{2}\left(1.4\right).\]

Подставим (1.4) в (1.2), получим:

\[\delta Q=\nu c_{\mu }dT=\frac{i}{2}\nu RdT+\frac{\nu RdT}{2}\left(1.5\right).\]

Выразим молярную теплоемкость:

Ответ: Молярная теплоемкость в заданном процессе имеет вид: $c_{\mu }=\frac{R}{2}\left(i+1\right).$

Пример 2

Задание: Найти изменение количества теплоты идеального газа в процессе p$V^n=const$ (такой процесс называется политропическим), если число степеней свободы молекулы газа равно i, изменение температуры в процессе $\triangle T$, количество вещества $\nu $.

Основой для решения задачи станет выражение:

\[\triangle Q=C\triangle T\ \left(2.1\right).\]

Значит, необходимо найти C (теплоемкость в заданном процессе). Используем первое начало термодинамики:

\[\delta Q=dU+pdV=\frac{i}{2}\nu RdT+pdV=CdT\to C=\frac{i}{2}\nu R+\frac{pdV}{dT}\ \left(2.2\right).\]

Найдем $\frac{dV}{dT}$ используя уравнение процесса и уравнение Менделеева - Клайперона:

Подставим давление и объем из (2.3.) в уравнение процесса, который задан, получим уравнение политропы в параметрах $V,T$:

В таком случае:

\[\frac{dV}{dT}=B"\cdot \frac{1}{1-n}T^{\frac{n}{1-n}}\left(2.5\right).\] \ \ \[\triangle Q=C\triangle T=\nu R\left(\frac{i}{2}+\frac{1}{1-n}\right)\triangle T\left(2.8\right).\]

Ответ: Изменение количества теплоты идеального газа в процессе задано формулой: $\triangle Q=\nu R\left(\frac{i}{2}+\frac{1}{1-n}\right)\triangle T$.

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

– это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q .

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах - джоулях (Дж ), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии - калория (кал ), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты - соотношение между калорией и джоулем: 1 кал = 4,2 Дж .

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

– это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С . В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Q , необходимое для нагревания тела массой m от температуры t 1 °С до температуры t 2 °С , равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t 2 — t 1)

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Это конспект по теме «Количество теплоты. Удельная теплоёмкость» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Теплоемкость - это способность поглощать некоторые объемы тепла во время нагревания или отдавать при охлаждении. Теплоемкость тела - это отношение бесконечно малого числа теплоты, что получает тело, к соответствующему приросту его температурных показателей. Величина измеряется в Дж/К. На практике применяют немного другую величину - удельную теплоемкость.

Определение

Что означает удельная теплоемкость? Это величина, относящаяся к единичному количеству вещества. Соответственно, численность вещества можно измерить в кубометрах, килограммах или даже в молях. От чего это зависит? В физике теплоемкость зависит напрямую от того, к какой количественной единице она относиться, а значит, различают молярную, массовую и объемную теплоемкость. В строительной сфере вы не будете встречаться с молярными измерениями, но с другими - сплошь и рядом.

Что влияет на удельную теплоемкость?

Что такое теплоемкость, вы знаете, но вот какие значения влияют на показатель, еще не ясно. На значение удельной теплоемкости напрямую воздействуют несколько компонентов: температура вещества, давление и иные термодинамические характеристики.

Во время роста температуры продукции его удельная теплоемкость растет, однако определенные вещества отличаются совершенно нелинейной кривой в этой зависимости. Например, с возрастанием температурных показателей с нуля до тридцати семи градусов удельная теплоемкость воды начинает понижаться, а если предел будет находиться между тридцатью семью и ста градусами, то показатель, наоборот, возрастет.

Стоит отметить, что параметр зависит еще и от того, каким образом разрешается изменяться термодинамическим характеристикам продукции (давлению, объему и так далее). Например, удельная теплоемкость при стабильном давлении и при стабильном объеме будут отличаться.

Как рассчитать параметр?

Вас интересует, чему равна теплоемкость? Формула расчета следующая: С=Q/(m·ΔT). Что это за значения такие? Q - это количество теплоты, что получает продукция при нагреве (или же выделяемое продукцией во время охлаждения). m - масса продукции, а ΔT - разность окончательной и начальной температур продукции. Ниже приведена таблица теплоемкости некоторых материалов.

Что можно сказать о вычислении теплоемкости?

Вычислить теплоемкость - это задача не из самых простых, особенно если применять исключительно термодинамические методы, точнее это невозможно сделать. Потому физики используют методы статистической физики или же знания микроструктуры продукции. Как произвести вычисления для газа? Теплоемкость газа рассчитывается из вычисления средней энергии теплового движения отдельно взятых молекул в веществе. Движения молекул могут быть поступательного и вращательного типа, а внутри молекулы может быть целый атом или колебание атомов. Классическая статистика говорит, что на каждую степень свободы вращательных и поступательных движений приходится в мольной величина, что равняется R/2, а на каждую колебательную степень свободы значение равняется R. Это правило еще именуют законом равнораспределения.

При этом частичка одноатомного газа отличается всего тремя поступательными степенями свободы, а потому его теплоемкость должна приравниваться к 3R/2, что отлично согласуется с опытом. Каждая молекула двухатомного газа отличается тремя поступательными, двумя вращательными и одной колебательной степенями свободы, а значит, закон равнораспределения будет равняться 7R/2, а опыт показал, что теплоемкость моля двухатомного газа при обычной температуре составляет 5R/2. Почему оказалось такое расхождение теории? Все связано с тем, что при установлении теплоемкости потребуется учитывать разные квантовые эффекты, другими словами, пользоваться квантовой статистикой. Как видите, теплоемкость - это довольно-таки сложное понятие.

Квантовая механика говорит, что любая система частичек, что совершают колебания или же вращения, в том числе и молекула газа, может иметь определенные дискретные значения энергии. Если же энергия теплового движения в установленной системе недостаточна для возбуждения колебаний необходимой частоты, то данные колебания не вносят вклада в теплоемкость системы.

В твердых телах тепловое движение атомов являет собой слабые колебания поблизости определенных положений равновесия, это касается узлов кристаллической решетки. Атом обладает тремя колебательными степенями свободы и по закону мольная теплоемкость твердого тела приравнивается к 3nR, где n- количество имеющихся атомов в молекуле. На практике это значение является пределом, к которому стремится теплоемкость тела при высоких температурных показателях. Значение достигается при обычных температурных изменениях у многих элементов, это касается металлов, а также простых соединений. Также определяется теплоемкость свинца и других веществ.

Что можно сказать о низких температурах?

Мы уже знаем, что такое теплоемкость, но если говорить о низких температурах, то как значение будет рассчитываться тогда? Если речь идет о низких температурных показателях, то теплоемкость твердого тела тогда оказывается пропорциональной T 3 или же так называемый закон теплоемкости Дебая. Главный критерий, позволяющий отличить высокие показатели температуры от низких, является обычное сравнение их с характерным для определенного вещества параметром - это может быть характеристическая или температура Дебая q D . Представленная величина устанавливается спектром колебания атомов в продукции и существенно зависит от кристаллической структуры.

У металлов определенный вклад в теплоемкость дают электроны проводимости. Данная часть теплоемкости высчитывается с помощью статистики Ферми-Дирака, в которой учитываются электроны. Электронная теплоемкость металла пропорциональная обычной теплоемкости, представляет собой сравнительно небольшую величину, а вклад в теплоемкость металла она вносит только при температурных показателях, близких к абсолютному нулю. Тогда решеточная теплоемкость становится очень маленькой, и ею можно пренебречь.

Массовая теплоемкость

Массовая удельная теплоемкость - это количество теплоты, что требуется поднести к единице массы вещества, дабы нагреть продукт на единицу температуры. Обозначается данная величина буквой С и измеряется она в джоулях, поделенных на килограмм на кельвин - Дж/(кг·К). Это все, что касается теплоемкости массовой.

Что такое объемная теплоемкость?

Объемная теплоемкость - это определенное количество теплоты, что требуется подвести к единице объема продукции, дабы нагреть ее на единицу температуры. Измеряется данный показатель в джоулях, поделенных на кубический метр на кельвин или Дж/(м³·К). Во многих строительных справочниках рассматривают именно массовую удельную теплоемкость в работе.

Применение на практике теплоемкости в строительной сфере

Многие теплоемкие материалы применяют активно при строительстве теплоустойчивых стен. Это крайне важно для домов, отличающихся периодическим отоплением. Например, печным. Теплоемкие изделия и стены, возведенные из них, отлично аккумулируют тепло, запасают его в отопительные периоды времени и поэтапно отдают тепло после выключения системы, позволяя таким образом поддерживать приемлемую температуру на протяжении суток.

Итак, чем больше будет запасено тепла в конструкции, тем комфортней и стабильней будет температура в комнатах.

Стоит отметить, что обычный кирпич и бетон, применяемые в домостроении, обладают значительно меньшей теплоемкостью, чем пенополистирол. Если брать эковату, то она в три раза более теплоемкая, нежели бетон. Следует отметить, что в формуле расчета теплоемкости совершенно не зря присутствует масса. Благодаря большой огромная массе бетона или кирпича в сравнении с эковатой позволяет в каменных стенах конструкций аккумулировать огромные объемы тепла и сглаживать все суточные температурные колебания. Только малая масса утеплителя во всех каркасных домах, несмотря на хорошую теплоемкость, является самой слабой зоной у всех каркасных технологий. Чтобы решить данную проблему, во всех домах монтируют внушительные теплоаккумуляторы. Что это такое? Это конструктивные детали, отличающиеся большой массой при достаточно хорошем показателе теплоемкости.

Примеры теплоаккумуляторов в жизни

Что это может быть? К примеру, какие-то внутренние кирпичные стены, большая печь или камин, стяжки из бетона.

Мебель в любом доме или квартире является отличным теплоаккумулятором, ведь фанера, ДСП и дерево фактически в три раза больше могут запасаться теплом лишь на килограмм веса, нежели пресловутый кирпич.

Есть ли недостатки в теплоаккумуляторах? Конечно, главный минус данного подхода состоит в том, что теплоаккумулятор требуется проектировать еще на стадии создания макета каркасного дома. Все из-за того, что он отличается большим весом, и это потребуется учесть при создании фундамента, а после еще представить, как данный объект будет интегрирован в интерьер. Стоит сказать, что учитывать придется не только массу, потребуется оценивать в работе обе характеристики: массу и теплоемкость. К примеру, если применять золото с невероятным весом в двадцать тонн на кубометр в качестве теплоаккумулятора, то продукция будет функционировать как нужно лишь на двадцать три процента лучше, нежели бетонный куб, вес которого составляет две с половиной тонны.

Какое вещество больше всего подходит для теплоаккумулятора?

Наилучшим продуктом для теплоаккумулятора является совсем не бетон и кирпич! Неплохо с этой задачей справляется медь, бронза и железо, но они очень тяжелые. Как ни странно, но лучший теплоаккумулятор - вода! Жидкость имеет внушительную теплоемкость, самую большую среди доступных нам веществ. Больше теплоемкость только у газов гелия (5190 Дж/(кг·К) и водорода (14300 Дж/(кг·К), но их проблематично применять на практике. При желании и необходимости смотрите таблицу теплоемкости нужных вам веществ.

Теплоемкостью называют количество теплоты, которое необходимо сооб­щить телу (газу), чтобы повысить тем­пературу какой-либо количественной единицы на 1° С.

Для определения значений перечис­ленных выше тепло­емкостей доста­точно знать величину одной какой-либо - из них. Удобнее, всего иметь величину мольной теплоем­кости, то­гда массовая теплоемкость:

а объемная теплоемкость:

Объемная и массовая теплоемкости связаны между собой зависимостью:

где - плотность газа при нормаль­ных условиях.

Теплоемкость газа зависит от его тем­пературы. По этому признаку разли­чают среднюю и истинную теплоём­кость.

Если q- количествотеплоты, сообща­емой единице количества газа (или от­нимаемого от него) при изменении температуры газа от t 1 до t 2 то

Представляет собой среднюю тепло­ёмкость в пределах . Предел этого отношения, когда разность температур стремиться к нулю, называют истинной теплоёмко­стью.

ИЗОХОРНЫЙ ПРОЦЕСС ГАЗА

Изохорный процесс – процесс сооб­щения или отнятия теплоты при по­стоянном объеме газа (v = const).

При постоянном объёме давление газа изменяется прямо пропорционально абсолютным температурам:

Внешняя работа газа при v = const равна нулю l=0.

количество теплоты или изменение внутренней энергии газа:

Изохорный процесс на pv – диа­грамме отображается прямой верти­кальной линией - изохора. При по­ложительном количестве тепла ли­ния идёт снизу вверх.

Изменение энтропии находится:

ИЗОБАРНЫЙ ПРОЦЕСС ГАЗА.

Изобарный процесс – процесс сообще­ния или отнятия теплоты при по­стоян­ном давлении = const)

Кривая процесса называется изоба­рой.

Поскольку в изобарном процессе dp=0 то в системе не совершается техническая работа, а количество тепла необходимое для перехода тела из состояния 1 в состояние 2 определяется как:

Таким образом в изобарном термо­динамическом процессе подводимое (отводимое) к телу количество тепла пропорционально изменению энтальпии в данном процессе. Дан­ный вывод справедлив как для обра­тимого так и для необратимого про­цессов, при условии, что система находится в термодинамическом равновесии в начале и конце про­цесса.



В случае обратимого процесса:

Изобарный процесс на pv – диа­грамме отображается прямой гори­зонтальной линией. При подводе тепла в процесс линия простирается слева направо.

Механическая работа в таком про­цессе:

Удельная располагаемая (полезная) внешняя работа:

Изменение удельной внутренней энергии:

Из уравнения состояния идеального газа можно получить следующее соот­ношение для изобарного процесса:

Таким образом, при изобарном про­цессе объём идеального газа пропор­ционален абсолютной температуре. При расширении газа температура по­вышается, при сжатии уменьшается.

Изменение энтропии в изобарном про­цессе может быть расчитано следую­щим образом:

ИЗОТЕРМИЧЕСКИЙ ПРОЦЕСС ГАЗА.

Изотермический процесс – процесс сообщения или. отнятия теплоты при по­стоянной температуре (t - const)

Для изотермического процесса иде­ального газа зависимость между начальными и конечными парамет­рами определяется формулами:

При постоянной температуре объём газа изменяется обратно пропорцио­нально его давлению.

На pv- диаграмме изотермы идеаль­ного газа представляются равносто­ронней гиперболой. Площадь под кри­вой процесса численно выражает ме­ханическую работу в данном процессе.

Работа 1 кг идеального газа находят из уравнений:

Так как в изотермическом процессе t = const, то для идеального газа

Изменение энтропии в изотермиче­ском процессе

выразится следующей форму­лой:

АДИАБАТНЫЙ ПРОЦЕСС ГАЗА.

Процесс протекающий без подвода и отвода теплоты, т.е. при отсутствии теплообмена с окружающей средой, называют адиабатным, а кривая этого процесса –адиабатой. Условия процесса: dq=0 , q=0.

Т.к. dq=0 , то согласно первому закону термодинамики:

Таким образом совершаемая рабочим телом механическая работа в адиабат­ном термодинамическом процессе равна уменьшению внутренней энер­гии тела, техническая работа при этом пропорциональна изменению (умень­шению) энтальпии. В обратимом диа­батном процессе энтропия термодина­мического тела не меняется: S=Const .