Таблица простых тригонометрических функций. Предлагаемый математический аппарат является полным аналогом комплексного исчисления для n-мерных гиперкомплексных чисел с любым числом степеней свободы n и предназначен для математического моделирования нелиней

ТАБЛИЦА ЗНАЧЕНИЙ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

Таблица значений тригонометрических функций составлена для углов в 0, 30, 45, 60, 90, 180, 270 и 360 градусов и соответствующих им значений углов врадианах. Из тригонометрических функций в таблице приведены синус, косинус, тангенс, котангенс, секанс и косеканс. Для удобства решения школьных примеров значения тригонометрических функций в таблице записаны в виде дроби с сохранением знаков извлечения корня квадратного из чисел, что очень часто помогает сокращать сложные математические выражения. Для тангенса и котангенса значения некоторых углов не могут быть определены. Для значений тангенса и котангенса таких углов в таблице значений тригонометрических функций стоит прочерк. Принято считать, что тангенс и котангенс таких углов равняется бесконечности. На отдельной странице находятся формулы приведения тригонометрических функций.

В таблице значений для тригонометрической функции синус приведены значения для следующих углов: sin 0, sin 30, sin 45, sin 60, sin 90, sin 180, sin 270, sin 360 в градусной мере, что соответствует sin 0 пи, sin пи/6, sin пи/4, sin пи/3, sin пи/2, sin пи, sin 3 пи/2, sin 2 пи в радианной мере углов. Школьная таблица синусов.

Для тригонометрической функции косинус в таблице приведены значения для следующих углов: cos 0, cos 30, cos 45, cos 60, cos 90, cos 180, cos 270, cos 360 в градусной мере, что соответствует cos 0 пи, cos пи на 6, cos пи на 4, cos пи на 3, cos пи на 2, cos пи, cos 3 пи на 2, cos 2 пи в радианной мере углов. Школьная таблица косинусов.

Тригонометрическая таблица для тригонометрической функции тангенс приводит значения для следующих углов: tg 0, tg 30, tg 45, tg 60, tg 180, tg 360 в градусной мере, что соответствует tg 0 пи, tg пи/6, tg пи/4, tg пи/3, tg пи, tg 2 пи в радианной мере углов. Следующие значения тригонометрических функций тангенса не определены tg 90, tg 270, tg пи/2, tg 3 пи/2 и считаются равными бесконечности.

Для тригонометрической функции котангенс в тригонометрической таблице даны значения следующих углов: ctg 30, ctg 45, ctg 60, ctg 90, ctg 270 в градусной мере, что соответствует ctg пи/6, ctg пи/4, ctg пи/3, tg пи/2, tg 3 пи/2 в радианной мере углов. Следующие значения тригонометрических функций котангенса не определены ctg 0, ctg 180, ctg 360, ctg 0 пи, ctg пи, ctg 2 пи и считаются равными бесконечности.

Значения тригонометрических функций секанс и косеканс приведены для таких же углов в градусах и радианах, что и синус, косинус, тангенс, котангенс.

В таблице значений тригонометрических функций нестандартных углов приводятся значения синуса, косинуса, тангенса и котангенса для углов в градусах 15, 18, 22,5, 36, 54, 67,5 72 градусов и в радианах пи/12, пи/10, пи/8, пи/5, 3пи/8, 2пи/5 радиан. Значения тригонометрических функций выражены через дроби и корни квадратные для упрощения сокращения дробей в школьных примерах.

Еще три монстра тригонометрии. Первый - это тангенс 1,5 полутора градусов или пи деленное на 120. Второй - косинус пи деленное на 240, пи/240. Самый длинный - косинус пи деленное на 17, пи/17.

Тригонометрический круг значений функций синус и косинус наглядно представляет знаки синуса и косинуса в зависимости от величины угла. Специально для блондинок значения косинуса подчеркнуты зелененькой черточкой,чтоб меньше путаться. Так же очень наглядно представлен перевод градусов в радианы, когда радианы выражены через пи.

Эта тригонометрическая таблица представляет значения синуса, косинуса, тангенса и котангенса для углов от 0 нуля до 90 девяносто градусов с интервалом через один градус. Для первых сорока пяти градусов названия тригонометрических функций необходимо смотреть в верхней части таблицы. В первом столбце указаны градусы, значения синусов, косинусов, тангенсов и котангенсов записаны в следующих четырех столбцах.

Для углов от сорока пяти градусов до девяноста градусов названия тригонометрических функций записаны в нижней части таблицы. В последнем столбце указаны градусы, значения косинусов, синусов, котангенсов и тангенсов записаны в предыдущих четырех столбцах. Следует быть внимательными, поскольку в нижней части тригонометрической таблицы названия тригонометрических функций отличаются от названий в верхней части таблицы. Синусы и косинусы меняются местами, точно так же, как тангенс и котангенс. Это связано с симметричностью значений тригонометрических функций.

Знаки тригонометрических функций представлены на рисунке выше. Синус имеет положительные значения от 0 до 180 градусов или от 0 до пи. Отрицательные значения синус имеет от 180 до 360 градусов или от пи до 2 пи. Значения косинуса положительны от 0 до 90 и от 270 до 360 градусов или от 0 до 1/2 пи и от 3/2 до 2 пи. Тангенс и котангенс имеют положительные значения от 0 до 90 градусов и от 180 до 270 градусов, что соответствует значениям от 0 до 1/2 пи и от пи до 3/2 пи. Отрицательные значения тангенс и котангенс имеют от 90 до 180 градусов и от 270 до 360 градусов или от 1/2 пи до пи и от 3/2 пи до 2 пи. При определении знаков тригонометрических функций для углов больше 360 градусов или 2 пи следует использовать свойства периодичности этих функций.

Тригонометрические функции синус, тангенс и котангенс являются нечетными функциями. Значения этих функций для отрицательных углов будут отрицательными. Косинус является четной тригонометрической функцией - значение косинуса для отрицательного угла будет положительным. При умножении и делении тригонометрических функций необходимо соблюдать правила знаков.

  1. В таблице значений для тригонометрической функции синус приведены значения для следующих углов

    Документ

    Отдельной странице находятся формулы приведения тригонометрических функций . В таблице значений для тригонометрической функции синус приведены значения для следующих углов : sin 0, sin 30, sin 45 ...

  2. Предлагаемый математический аппарат является полным аналогом комплексного исчисления для n-мерных гиперкомплексных чисел с любым числом степеней свободы n и предназначен для математического моделирования нелинейных

    Документ

    ... функции равно функции изображения. Из этой теоремы сле­дует , что для нахождения координат U, V достаточно вычислить функцию ... геометрии; полинарные функции (многомерные аналоги двухмерных тригонометрических функций ), их свойства, таблицы и применение; ...

  3. Таблица значений тригонометрических функций

    Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби - символ "/".

    См. также полезные материалы:

    Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

    Синус пи, косинус пи, тангенс пи и других углов в радианах

    Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

    Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

    Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

    Примеры :
    1. Синус пи .
    sin π = sin 180 = 0
    таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

    2. Косинус пи .
    cos π = cos 180 = -1
    таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

    3. Тангенс пи
    tg π = tg 180 = 0
    таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

    Таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)

    значение угла α
    (градусов)

    значение угла α
    в радианах

    (через число пи)

    sin
    (синус)
    cos
    (косинус)
    tg
    (тангенс)
    ctg
    (котангенс)
    sec
    (секанс)
    cosec
    (косеканс)
    0 0 0 1 0 - 1 -
    15 π/12 2 - √3 2 + √3
    30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
    45 π/4 √2/2 √2/2 1 1 √2 √2
    60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
    75 5π/12 2 + √3 2 - √3
    90 π/2 1 0 - 0 - 1
    105 7π/12 -
    - 2 - √3 √3 - 2
    120 2π/3 √3/2 -1/2 -√3 -√3/3
    135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
    150 5π/6 1/2 -√3/2 -√3/3 -√3
    180 π 0 -1 0 - -1 -
    210 7π/6 -1/2 -√3/2 √3/3 √3
    240 4π/3 -√3/2 -1/2 √3 √3/3
    270 3π/2 -1 0 - 0 - -1
    360 0 1 0 - 1 -

    Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

    Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
    0, 15, 30, 45, 60, 90 ... 360 градусов
    (цифровые значения "как по таблицам Брадиса")

    значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
    0 0
    15

    0,2588

    0,9659

    0,2679

    30

    0,5000

    0,5774

    45

    0,7071

    0,7660

    60

    0,8660

    0,5000

    1,7321

    7π/18

    Внимание!
    К этой теме имеются дополнительные
    материалы в Особом разделе 555.
    Для тех, кто сильно "не очень..."
    И для тех, кто "очень даже...")

    Прежде всего напомню простой, но очень полезный вывод из урока "Что такое синус и косинус? Что такое тангенс и котангенс?"

    Вот этот вывод:

    Синус, косинус, тангенс и котангенс накрепко связаны со своими углами. Знаем одно - значит, знаем и другое.

    Другими словами, у каждого угла есть свой неизменный синус и косинус. И почти у каждого - свой тангенс и котангенс. Почему почти? Об этом ниже.

    Это знание здорово помогает в учёбе! Существует масса заданий, где требуется перейти от синусов к углам и наоборот. Для этого существует таблица синусов. Аналогично, для заданий с косинусом - таблица косинусов. И, как вы уже догадались, существует таблица тангенсов и таблица котангенсов. )

    Таблицы бывают разные. Длинные, где можно посмотреть, чему равен, скажем, sin37°6’. Раскрываем таблицы Брадиса, ищем угол тридцать семь градусов шесть минут и видим значение 0,6032. Понятное дело, запоминать это число (и тысячи других табличных значений) совершенно не требуется.

    В сущности, в наше время длинные таблицы косинусов синусов тангенсов котангенсов не особо-то и нужны. Один хороший калькулятор заменяет их полностью. Но знать о существовании таких таблиц не мешает. Для общей эрудиции.)

    И зачем тогда этот урок?! - спросите вы.

    А вот зачем. Среди бесконечного количества углов существуют особые, о которых вы должны знать всё . На этих углах построена вся школьная геометрия и тригонометрия. Это, своего рода, "таблица умножения" тригонометрии. Если вы не знаете, чему равен, например, sin50°, никто вас не осудит.) Но если вы не знаете, чему равен sin30°, будьте готовы получить заслуженную двойку...

    Таких особых углов тоже прилично набирается. Школьные учебники обычно любезно предлагают к запоминанию таблицу синусов и таблицу косинусов для семнадцати углов. Ну и, разумеется, таблицу тангенсов и таблицу котангенсов для тех же семнадцати углов... Т.е. предлагается запомнить 68 значений. Которые, между прочим, очень похожи между собой, то и дело повторяются и меняют знаки. Для человека без идеальной зрительной памяти - та ещё задачка...)

    Мы пойдём другим путём. Заменим механическое запоминание на логику и смекалку. Тогда нам придётся зазубрить 3 (три!) значения для таблицы синусов и таблицы косинусов. И 3 (три!) значения для таблицы тангенсов и таблицы котангенсов. И всё. Шесть значений запомнить легче, чем 68, мне кажется...)

    Все остальные необходимые значения мы будем получать из этих шести с помощью мощной законной шпаргалки - тригонометрического круга. Если вы не изучали эту тему, сходите по ссылочке, не ленитесь. Этот круг не только для этого урока нужен. Он незаменим для всей тригонометрии сразу . Не пользоваться таким инструментом просто грех! Не хотите? Дело ваше. Заучивайте таблицу синусов. Таблицу косинусов. Таблицу тангенсов. Таблицу котангенсов. Все 68 значений для разнообразных углов.)

    Итак, начнём. Для начала разобьём все эти особые углы на три группы.

    Первая группа углов.

    Рассмотрим первую группа углов из семнадцати особых . Это 5 углов: 0°, 90°, 180°, 270°, 360°.

    Вот так выглядит таблица синусов косинусов тангенсов котангенсов для этих углов:

    Угол х
    (в градусах)

    0

    90

    180

    270

    360

    Угол х
    (в радианах)

    0

    sin x

    0

    1

    0

    -1

    0

    cos x

    1

    0

    -1

    0

    1

    tg x

    0

    не сущ.

    0

    не сущ.

    0

    ctg x

    не сущ.

    0

    не сущ.

    0

    не сущ.

    Желающие запомнить - запоминайте. Но сразу скажу, что все эти единички и нолики очень путаются в голове. Гораздо сильнее, чем хочется.) Поэтому включаем логику и тригонометрический круг.

    Рисуем круг и отмечаем на нём эти самые углы: 0°, 90°, 180°, 270°, 360°. Я эти углы отметил красными точками:

    Сразу видно, в чём особенность этих углов. Да! Это углы, которые попадают точно на оси координат! Собственно, поэтому-то и путается народ... Но мы путаться не будем. Разберёмся, как находить тригонометрические функции этих углов без особого запоминания.

    Кстати, положение угла в 0 градусов полностью совпадает с положением угла в 360 градусов. Это значит, что синусы, косинусы, тангенсы у этих углов совершенно одинаковы. Угол в 360 градусов я отметил, чтобы замкнуть круг.

    Предположим, в сложной стрессовой обстановке ЕГЭ вы как-то засомневались... Чему равен синус 0 градусов? Вроде ноль... А вдруг единица?! Механическое запоминание такая штука. В суровых условиях сомнения грызть начинают...)

    Спокойствие, только спокойствие!) Я подскажу вам практический приём, который выдаст стопроцентно правильный ответ и начисто уберёт все сомнения.

    В качестве примера разберёмся, как чётко и надёжно определить, скажем, синус 0 градусов. А заодно, и косинус 0. Именно в этих значениях, как ни странно, частенько люди путаются.

    Для этого на круге нарисуем произвольный угол х . В первой четверти, чтобы недалеко от 0 градусов было. Отметим на осях синус и косинус этого угла х, всё чин-чинарём. Вот так:

    А теперь - внимание! Уменьшим угол х , приблизим подвижную сторону к оси ОХ. Наведите курсор на картинку (или коснитесь картинки на планшете) и всё увидите.

    Теперь включаем элементарную логику!. Смотрим и размышляем: как ведёт себя sinx при уменьшении угла х? При приближении угла к нулю? Он уменьшается! А cosx - увеличивается! Остаётся сообразить, что станет с синусом, когда угол схлопнется совсем? Когда подвижная сторона угла (точка А) уляжется на ось ОХ и угол станет равным нулю? Очевидно, и синус угла уйдёт в ноль. А косинус увеличится до... до... Чему равна длина подвижной стороны угла (радиус тригонометрического круга)? Единице!

    Вот и ответ. Синус 0 градусов равен 0. Косинус 0 градусов равен 1. Совершенно железно и безо всяких сомнений!) Просто потому, что иначе быть не может.

    Совершенно аналогично можно узнать (или уточнить) синус 270 градусов, например. Или косинус 180. Нарисовать круг, произвольный угол в четверти рядышком с интересующей нас осью координат, мысленно подвигать сторону угла и уловить, чем станет синус и косинус, когда сторона угла уляжется на ось. Вот и всё.

    Как видите, для этой группы углов ничего заучивать не надо. Не нужна здесь таблица синусов... Да и таблица косинусов - тоже.) Кстати, после нескольких применений тригонометрического круга все эти значения запомнятся сами по себе. А если забудутся - нарисовал за 5 секунд круг и уточнил. Куда проще, чем звонить другу из туалета с риском для аттестата, правда?)

    Что касается тангенса и котангенса - всё то же самое. Рисуем на круге линию тангенса (котангенса) - и всё сразу видно. Где они равны нулю, а где - не существуют. Что, не знаете про линии тангенса и котангенса? Это печально, но поправимо.) Посетили Раздел 555 Тангенс и котангенс на тригонометрическом круге - и нет проблем!

    Если вы поняли, как чётко определить синус, косинус, тангенс и котангенс для этих пяти углов - я вас поздравляю! На всякий случай сообщаю, что вы теперь можете определять функции любых углов, попадающих на оси. А это и 450°, и 540°, и 1800°, и ещё бесконечное количество...) Отсчитал (правильно!) угол на круге - и нет проблем с функциями.

    Но, как раз, с отсчётом углов и случаются проблемы да ошибки... Как их избежать, написано в уроке: Как нарисовать (отсчитать) любой угол на тригонометрическом круге в градусах. Элементарно, но очень помогает в борьбе с ошибками.)

    А вот урок: Как нарисовать (отсчитать) любой угол на тригонометрическом круге в радианах - покруче будет. В смысле возможностей. Скажем, определить на какую из четырёх полуосей попадает угол

    вы сможете за пару секунд. Я не шучу! Именно за пару секунд. Ну конечно, не только 345 "пи"...) И 121, и 16, и -1345. Любой целый коэффициент годится для мгновенного ответа.

    А если угол

    Подумаешь! Верный ответ получается секунд за 10. Для любого дробного значения радианов с двойкой в знаменателе.

    Собственно, этим и хорош тригонометрический круг. Тем, что умение работать с некоторыми углами он автоматически расширяет на бесконечное множество углов.

    Итак, с пятью углами из семнадцати - разобрались.

    Вторая группа углов.

    Следующая группа углов - это углы 30°, 45° и 60°. Почему именно эти, а не, к примеру, 20, 50 и 80? Да как-то сложилось так... Исторически.) Дальше будет видно, чем хороши эти углы.

    Таблица синусов косинусов тангенсов котангенсов для этих углов выглядит так:

    Угол х
    (в градусах)

    0

    30

    45

    60

    90

    Угол х
    (в радианах)

    0

    sin x

    0

    1

    cos x

    1

    0

    tg x

    0

    1

    не сущ.

    ctg x

    не сущ.

    1

    0

    Я оставил значения для 0° и 90° из предыдущей таблицы для завершённости картины.) Чтобы было видно, что эти углы лежат в первой четверти и возрастают. От 0 до 90. Это пригодится нам дальше.

    Значения таблицы для углов 30°, 45° и 60° надо запомнить. Зазубрить, если хотите. Но и здесь есть возможность облегчить себе жизнь.) Обратите внимание на значения таблицы синусов этих углов. И сравните со значениями таблицы косинусов...

    Да! Они одни и те же! Только расположены в обратном порядке. Углы возрастают (0, 30, 45, 60, 90) - и значения синуса возрастают от 0 до 1. Можете убедиться с калькулятором. А значения косинуса - убывают от 1 до нуля. Причём, сами значения одни и те же. Для углов 20, 50, 80 так бы не получилось...

    Отсюда полезный вывод. Достаточно выучить три значения для углов 30, 45, 60 градусов. И помнить, что у синуса они возрастают, а у косинуса - убывают. Навстречу синусу.) На половине пути (45°) они встречаются, т.е синус 45 градусов равен косинусу 45 градусов. А дальше опять расходятся... Три значения можно выучить, правда?

    С тангенсами - котангенсами картина исключительно та же самая. Один в один. Только значения другие. Эти значения (ещё три!) тоже надо выучить.

    Ну вот, практически всё запоминание и закончилось. Вы поняли (надеюсь), как определять значения для пяти углов попадающих на оси и выучили значения для углов 30, 45, 60 градусов. Всего 8.

    Осталось разобраться с последней группой из 9 углов.

    Вот эти углы:
    120°; 135°; 150°; 210°; 225°; 240°; 300°; 315°; 330°. Для этих углов надо железно знать таблицу синусов, таблицу косинусов и т.д.

    Кошмар, правда?)

    А если добавить сюда углы, типа: 405°, 600°, или 3000° и много-много такого же красивого?)

    Или углы в радианах? Например, про углы:

    и многие другие, вы должны знать всё .

    Самое забавное, что знать это всё - невозможно в принципе. Если использовать механическую память.

    И очень легко, фактически элементарно - если использовать тригонометрический круг. Если вы освоите практическую работу с тригонометрическим кругом, все эти ужасные углы в градусах будут легко и элегантно сводиться к старым добрым:

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

    можно познакомиться с функциями и производными.

    Справочные данные по тангенсу (tg x) и котангенсу (ctg x). Геометрическое определение, свойства, графики, формулы. Таблица тангенсов и котангенсов, производные, интегралы, разложения в ряды. Выражения через комплексные переменные. Связь с гиперболическими функциями.

    Геометрическое определение




    |BD| - длина дуги окружности с центром в точке A .
    α - угол, выраженный в радианах.

    Тангенс (tg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB| .

    Котангенс (ctg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC| .

    Тангенс

    Где n - целое.

    В западной литературе тангенс обозначается так:
    .
    ;
    ;
    .

    График функции тангенс, y = tg x


    Котангенс

    Где n - целое.

    В западной литературе котангенс обозначается так:
    .
    Также приняты следующие обозначения:
    ;
    ;
    .

    График функции котангенс, y = ctg x


    Свойства тангенса и котангенса

    Периодичность

    Функции y = tg x и y = ctg x периодичны с периодом π .

    Четность

    Функции тангенс и котангенс - нечетные.

    Области определения и значений, возрастание, убывание

    Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n - целое).

    y = tg x y = ctg x
    Область определения и непрерывность
    Область значений -∞ < y < +∞ -∞ < y < +∞
    Возрастание -
    Убывание -
    Экстремумы - -
    Нули, y = 0
    Точки пересечения с осью ординат, x = 0 y = 0 -

    Формулы

    Выражения через синус и косинус

    ; ;
    ; ;
    ;

    Формулы тангенса и котангенс от суммы и разности



    Остальные формулы легко получить, например

    Произведение тангенсов

    Формула суммы и разности тангенсов

    В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

    Выражения через комплексные числа

    Выражения через гиперболические функции

    ;
    ;

    Производные

    ; .


    .
    Производная n-го порядка по переменной x от функции :
    .
    Вывод формул для тангенса > > > ; для котангенса > > >

    Интегралы

    Разложения в ряды

    Чтобы получить разложение тангенса по степеням x , нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

    При .

    при .
    где B n - числа Бернулли. Они определяются либо из рекуррентного соотношения:
    ;
    ;
    где .
    Либо по формуле Лапласа:


    Обратные функции

    Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

    Арктангенс, arctg


    , где n - целое.

    Арккотангенс, arcctg


    , где n - целое.

    Использованная литература:
    И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
    Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

    Изучение тригонометрии мы начнем с прямоугольного треугольника. Определим, что такое синус и косинус, а также тангенс и котангенс острого угла. Это основы тригонометрии.

    Напомним, что прямой угол - это угол, равный 90 градусов. Другими словами, половина развернутого угла.

    Острый угол - меньший 90 градусов.

    Тупой угол - больший 90 градусов. Применительно к такому углу «тупой» - не оскорбление, а математический термин:-)

    Нарисуем прямоугольный треугольник. Прямой угол обычно обозначается . Обратим внимание, что сторона, лежащая напротив угла, обозначается той же буквой, только маленькой. Так, сторона, лежащая напротив угла A, обозначается .

    Угол обозначается соответствующей греческой буквой .

    Гипотенуза прямоугольного треугольника - это сторона, лежащая напротив прямого угла.

    Катеты - стороны, лежащие напротив острых углов.

    Катет , лежащий напротив угла , называется противолежащим (по отношению к углу ). Другой катет , который лежит на одной из сторон угла , называется прилежащим .

    Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

    Косинус острого угла в прямоугольном треугольнике - отношение прилежащего катета к гипотенузе:

    Тангенс острого угла в прямоугольном треугольнике - отношение противолежащего катета к прилежащему:

    Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу:

    Котангенс острого угла в прямоугольном треугольнике - отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

    Обратите внимание на основные соотношения для синуса, косинуса, тангенса и котангенса, которые приведены ниже. Они пригодятся нам при решении задач.

    Давайте докажем некоторые из них.

    Хорошо, мы дали определения и записали формулы. А для чего все-таки нужны синус, косинус, тангенс и котангенс?

    Мы знаем, что сумма углов любого треугольника равна .

    Знаем соотношение между сторонами прямоугольного треугольника. Это теорема Пифагора: .

    Получается, что зная два угла в треугольнике, можно найти третий. Зная две стороны в прямоугольном треугольнике, можно найти третью. Значит, для углов - свое соотношение, для сторон - свое. А что делать, если в прямоугольном треугольнике известен один угол (кроме прямого) и одна сторона, а найти надо другие стороны?

    С этим и столкнулись люди в прошлом, составляя карты местности и звездного неба. Ведь не всегда можно непосредственно измерить все стороны треугольника.

    Синус, косинус и тангенс - их еще называют тригонометрическими функциями угла - дают соотношения между сторонами и углами треугольника. Зная угол, можно найти все его тригонометрические функции по специальным таблицам. А зная синусы, косинусы и тангенсы углов треугольника и одну из его сторон, можно найти остальные.

    Мы тоже нарисуем таблицу значений синуса, косинуса, тангенса и котангенса для «хороших» углов от до .

    Обратите внимание на два красных прочерка в таблице. При соответствующих значениях углов тангенс и котангенс не существуют.

    Разберем несколько задач по тригонометрии из Банка заданий ФИПИ.

    1. В треугольнике угол равен , . Найдите .

    Задача решается за четыре секунды.

    Поскольку , .

    2 . В треугольнике угол равен , , . Найдите .

    Найдем по теореме Пифагора.

    Задача решена.

    Часто в задачах встречаются треугольники с углами и или с углами и . Основные соотношения для них запоминайте наизусть!

    Для треугольника с углами и катет, лежащий напротив угла в , равен половине гипотенузы .

    Треугольник с углами и - равнобедренный. В нем гипотенуза в раз больше катета.

    Мы рассмотрели задачи на решение прямоугольных треугольников - то есть на нахождение неизвестных сторон или углов. Но это не всё! В вариантах ЕГЭ по математике множество задач, где фигурирует синус, косинус, тангенс или котангенс внешнего угла треугольника . Об этом - в следующей статье.