Что называется критической температурой. Температура тела в пределах нормы. Температура тела зависит от

Как превратить газ в жидкость? График кипения отвечает на этот вопрос. Превратить газ в жидкость можно, либо уменьшая температуру, либо увеличивая давление.

В XIX веке повышение давления представлялось задачей более легкой, чем понижение температуры. В начале этого столетия великому английскому физику Михаилу Фараде удалось сжать газы до значений упругости паров и таким способом превратить в жидкость много газов (хлор, углекислый газ и др.).

Однако некоторые газы - водород, азот, кислород - никак не поддавались сжижению. Сколько ни увеличивали давление, они не превращались в жидкость. Можно было подумать, что кислород и другие газы не могут быть жидкими. Их причислили к истинным, или постоянным, газам.

На самом же деле неудачи были вызваны непониманием одного важного обстоятельства.

Рассмотрим жидкость и пар, находящиеся в равновесии, и подумаем, что происходит с ними при возрастании температуры кипения и, разумеется, соответствующем возрастании давления. Иначе говоря, представим себе, что точка на графике кипения движется вдоль кривой вверх. Ясно, что жидкость при повышении температуры расширяется и плотность ее падает. Что же касается пара, то увеличение температуры кипения? разумеется, способствует его расширению, но, как мы уже говорили, давление насыщенного пара растет значительно быстрее, чем температура кипения. Поэтому плотность пара не падает, а, наоборот, быстро растет с увеличением температуры кипения.

Поскольку плотность жидкости падает, а плотность пара растет, то, двигаясь "вверх" по кривой кипения, мы неминуемо доберемся до такой точки, в которой плотности жидкости и пара сравняются (рис. 4.3).

В этой замечательной точке,- которая называется критической, кривая кипения обрывается. Так как все различия между газом и жидкостью связаны с разницей в плотности, то в критической точке свойства жидкости и газа становятся одинаковыми. Для каждого вещества существует своя критическая температура и свое критическое давление. Так, для воды критическая точка соответствует температуре 374°С и давлению 218,5 атм.

Если сжимать газ, температура которого ниже критической, то процесс его сжатия изобразится стрелкой, пересекающей кривую кипения (рис. 4.4). Это значит, что в момент достижения давления, равного упругости пара (точка пересечения стрелки с кривой кипения), газ начнет конденсироваться в жидкость. Если бы наш сосуд был прозрачным, то в этот момент мы увидели бы начало образования слоя жидкости на дне сосуда. При неизменном давлении слой жидкости будет расти, пока, наконец, весь газ не превратится в жидкость. Дальнейшее сжатие потребует уже увеличения давления.


Совершенно иначе обстоит дело при сжатии газа, температура которого выше критической. Процесс сжатия опять-таки можно изобразить в виде стрелки, идущей снизу вверх. Но теперь эта стрелка не пересекает кривую кипения. Значит, при сжатии пар не будет конденсироваться, а будет лишь непрерывно уплотняться.

При температуре выше критической невозможно существование жидкости и газа, поделенных границей раздела: При сжатии до любых плотностей под поршнем будет находиться однородное вещество, и трудно сказать, когда его можно назвать газом, а когда - жидкостью.

Наличие критической точки показывает, что между жидким и газообразным состоянием нет принципиального различия. На первый взгляд могло бы показаться, что такого принципиального различия нет только в том случае, когда речь идет о температурах выше критической. Это, однако, не так. Существование- критической точки указывает на возможность превращения жидкости - самой настоящей жидкости, которую можно налить в стакан - в газообразное состояние без всякого подобия кипения.

Такой путь превращения показан на рис. 4.4. Крестиком отмечена заведомая жидкость. Если немного понизить давление (стрелка вниз), она закипит, закипит она и в том случае, если немного повысить температуру (стрелка вправо). Но мы поступим совсем иначе, Сожмем жидкость весьма сильно, до давления выше критического. Точка, изображающая состояние жидкости, пойдет вертикально вверх. Затем подогреем жидкость - этот процесс изобразится горизонтальной линией. Теперь, после того как мы очутились правее Критической температуры, понизим давление до исходного. Если теперь уменьшить температуру, то можно получить самый настоящий пар, который мог быть получен из этой жидкости более простым и коротким путем.

Таким образом, всегда возможно, изменяя давление и температуру в обход критической точки, получить пар путем непрерывного перехода его из жидкости или жидкость из пара. Такой непрерывный переход не требует кипения или конденсации.

Ранние попытки сжижения таких газов, как кислород, азот, водород, потому и были неудачны, что не было известно о существовании критической температуры. У этих газов критические температуры очень низкие: у азота -147°С, у кислорода -119°С, у водорода -240°С, или 33 К. Рекордсменом является гелий, его критическая температура равна 4,3 К. Превратить эти газы в жидкость можно лишь одним" способом - надо снизить их температуру ниже указанной"

Критическая температура (critical temperature) - температура, выше которой газ не может быть превращён в жидкость ни при каком давлении. Выше К.т. процессы конденсации и испарения становятся невозможными; давление, соответствующее критической температуре, называется критическим давлением. Критическая точка - сочетание значений температуры и давления (или, что эквивалентно, молярного объёма ), при которых исчезает различие в свойствах жидкой и газообразной фаз вещества. Критическая температура фазового перехода - значение температуры в критической точке. При температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении. В критической точке плотность жидкости и её насыщенного пара становятся равны, а поверхностное натяжение жидкости падает до нуля, поэтому исчезает граница раздела фаз жидкость-пар. Для смеси веществ критическая температура не является постоянной величиной и может быть представлена пространственной кривой (зависящей от пропорции составляющих компонентов), крайними точками которой являются критические температуры чистых веществ - компонентов рассматриваемой смеси. Критической точке (Критическая температура ) на диаграмме состояния вещества соответствуют предельные точки на кривых равновесия фаз, в окрестностях точки фазовое равновесие нарушается, происходит потеря термодинамической устойчивости по плотности вещества. По одну сторону от критической точки вещество однородно (обычно при ), а по другую - разделяется на жидкость и пар. В окрестностях точки наблюдаются критические явления: из-за роста характеристических размеров флуктуаций плотности резко усиливается рассеяние света при прохождении через вещество - при достижении размеров флуктуаций порядков сотен нанометров, т. е. длин волн света, вещество становится непрозрачным - наблюдается его критическаяопалесценция. Рост флуктуаций приводит также к усилению поглощения звука и росту его дисперсии, изменению характера броуновского движения, аномалиям вязкости, теплопроводности, замедлению установления теплового равновесия и т. п. Впервые явление критического состояния вещества (Критическая температура ) было обнаружено в 1822 году Шарлем Каньяром де Ла-Туром, а в 1860 году повторно открыто Д.И.Менделеевым. Систематические исследования начались с работ Томаса Эндрюса. Практически явление критической точки можно наблюдать при нагревании жидкости, частично заполняющей запаянную трубку. По мере нагрева мениск постепенно теряет свою кривизну, становясь всё более плоским, а при достижении критической температуры перестает быть различимым. Критические точки существуют не только для чистых веществ, но и, в некоторых случаях, для их смесей и определяют параметры потери устойчивости смеси (с разделом фаз) - раствор (одна фаза). Примером такой смеси может служить смесь фенол-вода. Простые газы в критической точке, по некоторым данным, обладают свойством сжатия до сверхвысоких плотностей без роста давления, при условии строгого поддержания температуры, равной критической точке, и высокой степени их чистоты (молекулы инородных газов становятся ядрами перехода в газообразную фазу, что ведет к лавинообразному росту давления). Иными словами, вещество сжимается, как газ, но сохраняет давление, равное таковому в жидкости. Реализация этого эффекта на практике позволит сверхплотное хранение газов. Критическая температура сверхпроводника - температура, при охлаждении до которой происходит переход материала в сверхпроводящее состояние. В 1911 г. было обнаружено, что у ртути при температуре 4,2 К электрическое сопротивление падает до нуля - ртуть становится сверхпроводящей, после чего подобные свойства были обнаружены и у других чистых веществ и соединений. На пути широкого практического применения сверхпроводящих материалов стоит задача создания сверхпроводящих материалов с «высокой» критической температурой - практически достижимой в коммерческих условиях. Критическая температура мицеллообразования (Температура Крафта (англ. Krafft temperature ) - температура, выше которой растворимость поверхностно-активного вещества (ПАВ) резко возрастает, и достигается критическая концентрация мицеллообразования. Температура (точка) Крафта - это нижний температурный предел мицеллообразования ионных ПАВ, например,лаурилсульфата натрия, входящего в состав бытовых моющих средств. Она зависит от природы гидрофобных групп и ионного состава детергента. Растворимость неионных ПАВ, напротив, падает с повышением температуры. Их характерной величиной является «точка помутнения», то есть верхний температурный предел мицеллообразования, выше которого в системе ПАВ - растворитель происходит расслоение фаз, изменяющее её оптические свойства. In thermodynamics, a critical point (or critical state ) (Критическая температура ) is the end point of a phase equilibrium curve. The most prominent example is the liquid-vapor critical point, the end point of the pressure-temperature curve that designates conditions under which a liquid and its vapor can coexist. At the critical point, defined by a critical temperature T c and a critical pressure p c , phase boundaries vanish. Other examples include the liquid–liquid critical points in mixtures. For simplicity and clarity, the generic notion of critical point is best introduced by discussing a specific example, the liquid-vapor critical point. This was historically the first critical point to be discovered, and it is still the best known and most studied one. The figure to the right shows the schematic PT diagram of a pure substance (as opposed to mixtures, which have additional state variables and richer phase diagrams, discussed below). The commonly known phases solid , liquid and vapor are separated by phase boundaries, i.e. pressure-temperature combinations where two phases can coexist. At the triple point, even all three phases coexist. However, the liquid-vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c . This is the critical point . In water, the critical point occurs at around 647 K (374 °C; 705 °F) and 22.064 MPa (3200 PSIA or 218 atm). In the vicinity of the critical point, the physical properties of the liquid and the vapor change dramatically, with both phases becoming ever more similar. For instance, liquid water under normal conditions is nearly incompressible, has a low thermal expansion coefficient, has a high dielectric constant, and is an excellent solvent for electrolytes. Near the critical point, all these properties change into the exact opposite: water becomes compressible, expandable, a poor dielectric, a bad solvent for electrolytes, and prefers to mix with nonpolar gases and organic molecules. At the critical point, only one phase exists. The heat of vaporization is zero. There is an inflection point in the constant-temperature line (critical isotherm ) on a PV diagram. This means that at the critical point:

(Критическая температура )

The critical isotherm with the critical point K

Above the critical point one has a state of matter that is continuously connected with (can be transformed without phase transition into) both the liquid and the gaseous state. It is called supercritical fluid. The common textbook knowledge that all distinction between liquid and vapor disappears beyond the critical point has been challenged by Fisher and Widom who identified a p,T-line that separates states with different asymptotic statistical properties (Fisher-Widom line).

History

Carbon dioxide exuding fogwhile cooling from supercritical to critical temperature

The existence of a critical point was first discovered by Charles Cagniard de la Tour in 1822 and named by Dmitri Mendeleev in 1860and Thomas Andrews in 1869. Cagniard showed that CO 2 could be liquefied at 31 °C at a pressure of 73 atm, but not at a slightly higher temperature, even under pressures as high as 3,000 atm.

Theory

Solving the above condition

Температура тела - один из важнейших факторов, которые необходимы для обмена веществ. Она является показателем состояния организма и меняется в зависимости от влияния внешних и внутренних факторов. При плохом самочувствии и появлении критической температуры необходимо в срочном порядке обратиться в специализированное учреждение. Ведь это может быть предвестником множества заболеваний.

Факторы, влияющие на температуру тела

Меняется из-за влияния различных факторов, как окружающей среды, так и внутренних особенностей организма, например:

    Время суток. Температура очень часто меняется из-за изменения времени суток. В связи с этим утром температура тела может быть слегка пониженной (на 0,4-0,7 градусов), но не ниже, чем +35,9°С. А к вечеру температура наоборот может немного повышаться (на 0,2-0,6 градусов), но не выше, чем +37,2°С.

    Возраст. У детей температура чаще всего выше, чем 36,6 градусов, а у взрослых людей, которые старше 60-65 лет, обычная температура понижается.

    Состояние здоровья. Если в организме человека инфекция, то температура (для борьбы с ней) повышается.

    Беременность. У беременных на ранних сроках температура не должна опускаться ниже 36 градусов и подниматься выше 37,5 градусов.

    Индивидуальные особенности организма.

    Влияние окружающей среды.

    Классификация температуры тела

    Если проанализировать разные показания термометра, температуру можно подразделить на несколько видов и классификаций.

    Виды температуры по одной из классификаций (по уровню гипертермии):

      Низкая и пониженная. Значение на термометре ниже 35°С.

      Нормальная. Значение на термометре в пределах 35-37°С.

      Субфебрильная. Значение на термометре в пределах 37-38°С.

      Фебрильная. Значение на термометре в пределах 38-39°С.

      Пиретическая. Значение на термометре в пределах 39-41°С.

      Гиперпиретическая. Значение на термометре выше 41°С.

    Деление температуры в зависимости от длительности:

    1. Подострая.

      Хроническая.

    Еще одна классификация видов температуры:

      Гипотермия - низкая температура тела (менее 35°С).

      Нормальная температура. Этот вид температуры тела колеблется между отметкой в 35-37°С и изменяется от многих факторов, о которых шла речь выше.

      Гипертермия - повышенная температура тела (выше 37°С).

    Температура тела в пределах нормы

    Средний показатель температуры тела, как уже было сказано выше, может изменяться под действием разных факторов. Ее можно измерять не только в подмышечных впадинах, но и во рту, в полости уха, прямой кишке. В зависимости от этого данные на термометре могут различаться, значения критических температур будут гораздо выше или ниже норм, представленных здесь.

    Во рту показания термометра будут выше на 0,3-0,6°С, чем при измерении в подмышечных впадинах, то есть здесь нормой будет считаться показатель 36,9-37,2°С. В прямой кишке показания термометра будут выше на 0,6-1,2°С, то есть норма - 37,2-37,8°С. В полости уха показания термометра будут такими же, как в прямой кишке, то есть 37,2-37,8°С.

    Эти данные нельзя считать точными для каждого человека. По данным многих исследований, такие показатели встречаются у большинства людей - это примерно 90%, но у 10% людей нормальная температура тела отличается от большинства, и показатели могут колебаться в большую или меньшую сторону.

    Чтобы узнать то, какая температура является нормой, нужно измерять и записывать показания в течение дня: утром, в обед и вечером. После всех замеров нужно найти среднее арифметическое всех показателей. Для этого нужно утренние, дневные и вечерние показатели сложить и разделить на 3. Полученное число является нормальной средней температурой тела для определенного человека.

    Критическая температура тела

    Критической может стать как сильно пониженная, так и сильно повышенная. Высокая температура у людей проявляется намного чаще низкой. При снижении температуры до 26-28°С появляется очень большой риск того, что человек впадет в кому, появятся проблемы с дыханием и сердцем, но эти цифры индивидуальны, так как есть множество подтвержденных историй о том, как после сильнейшего переохлаждения до 16-17°С людям удалось выжить. Например, история, в которой говорится о том, что человек провел около пяти часов в огромном сугробе без шанса выбраться и выжить, его температура снизилась до 19 градусов, но его смогли спасти.

    Низкая температура тела

    Границей пониженной температуры считается температура ниже, чем 36 градусов, либо начиная от 0,5 до 1,5 градусов ниже индивидуальной температуры человека. А границей низкой температуры считается та температура, которая ниже более, чем на 1,5°С от нормальной.

    Причин понижения температуры много, например пониженный иммунитет, длительное нахождение на морозе, а исходя из этого переохлаждение тела, болезни щитовидки, стрессы, отравления, хронические заболевания, головокружения и даже банальная усталость.

    Если температура тела понизилась до 35°С, то нужно срочно вызывать скорую помощь, т.к. этот показатель в большинстве случаев является критическим и могут возникнуть необратимые последствия!

    Какая критическая температура должна насторожить?

    Температура, которая начинается с отметки в 37 градусов, считается субфертильной и зачастую свидетельствует о наличии в организме воспалений, инфекций и вирусов. Температуру от 37 до 38 градусов нельзя сбивать с помощью препаратов, т.к. в организме происходит борьба между здоровыми клетками и болезнетворными.

    Есть множество симптомов, которые свидетельствуют о повышении температуры, например: слабость, быстрая утомляемость, озноб, боли головы и мышц, потеря аппетита и потливость. На них стоит обращать повышенное внимание, чтобы не допустить повышения температуры до 38,5 градусов.

    Критической температурой тела является показатель 42°С, а в большинстве случаев отметка в 40 градусов уже приводит к летальному исходу. Высокая температура приводит к необратимым последствиям в головном мозге, нарушается обмен веществ в тканях мозга.

    В таком случае при повышении температуры, выше, чем 38,5 градусов важен постельный режим, прием жаропонижающих и обязательное обращение к врачу или звонок скорой помощи! Чтобы предотвратить летальный исход при очень высокой или низкой температуре не занимайтесь самолечением, а всегда обращайтесь к врачу, который сможет правильно определить причину такой температуры, поставить диагноз и назначить верное и действенное лечение!

Сходство свойств ненасыщенных паров и газов натолкнуло М. Фарадея на предположение: не являются ли газы ненасыщенными парами соответствующих жидкостей? Если предположение верно, то можно попытаться сделать их насыщенными и сконденсировать. Действительно, сжатием удалось сделать насыщенными многие газы, кроме шести, которые М. Фарадей назвал "постоянными": это азот, водород, воздух, гелий, кислород, оксид углерода CO.

Чтобы понять, в чем здесь дело, изучим подробнее изотермический процесс сжатия (расширения) пара. Мы видели, что изотерма реального газа отличается от изотермы идеального газа наличием горизонтального участка, соответствующего области существования двухфазной системы: насыщенного пара и жидкости.

Если проводить опыты при более высоких температурах , то можно обнаружить закономерность, общую для всех веществ (рис. 1).

Во-первых, чем выше температура, тем меньше объем, при котором начинается конденсация газа: , если .

Во-вторых, чем выше температура, тем больше объем, занимаемый жидкостью после того, как весь пар конденсируется:

Следовательно, длина прямолинейного участка изотермы с ростом температуры уменьшается.

Это легко объяснить: с ростом Т давление насыщенного пара быстро нарастает, и для того, чтобы давление ненасыщенного пара сравнялось с давлением насыщенного, необходимо уменьшение объема. Причина увеличения объема - в тепловом расширении жидкости при нагревании. Так как объем уменьшается, то плотность паров при увеличении температуры увеличивается; увеличение объема свидетельствует об уменьшении плотности жидкости. Это значит, что различие между жидкостью и ее насыщенным паром в процессе такого нагревания сглаживается и при достаточно высокой температуре должно исчезнуть совсем.

Д. Менделеев установил, что для каждой жидкости должна существовать такая температура, которая экспериментально впервые была установлена для многих веществ Т. Эндрюсом и носит название критической температуры.

Это такая температура, при которой плотность жидкости и плотность ее насыщенного пара становятся одинаковыми (рис. 2).

На изотермах при Т = горизонтальный участок превращается в точку перегиба К.

Давление насыщенного пара какого-либо вещества при его критической температуре называется критическим давлением . Оно является наибольшим возможным давлением насыщенных паров вещества.

Объем, который занимает вещество при и , называется критическим объемом . Это наибольший объем, который может занимать имеющаяся масса вещества в жидком состоянии.

При критической температуре различие между газом и жидкостью исчезает, и поэтому удельная теплота парообразования становится равной нулю.

Совокупность точек, соответствующих краям горизонтального участка изотерм (см. рис. 1), выделяет в плоскости p-V области существования двухфазной системы и отделяет ее от областей однофазных состояний вещества. Пограничная кривая области двухфазных состояний со стороны больших значений объема описывает состояние насыщенного пара и одновременно представляет собой кривую конденсации (начинается конденсация пара при изотермическом сжатии). Пограничная кривая со стороны меньших объемов представляет собой кривую, на которой заканчивается конденсация при сжатии насыщенного пара и начинается испарение жидкости при изотермическом расширении. Ее называют кривой испарения .

Существование критической температуры вещества объясняет, почему при обычных температурах одни вещества могут быть как жидкими, так и газообразными, а другие остаются газами.

Выше критической температуры жидкость не образуется даже при очень высоких давлениях.

Причина заключается в том, что здесь интенсивность теплового движения молекул оказывается настолько большой, что даже при относительно плотной их упаковке, вызванной большим давлением, молекулярные силы не могут обеспечить создание даже ближнего, а тем более дальнего порядка.

Таким образом, видно, что принципиальной разницы между газом и паром нет. Обычно газом называют вещество в газообразном состоянии, когда его температура выше критической. Паром называют также вещество в газообразном состоянии, но когда его температура ниже критической. Пар можно перевести в жидкость одним только увеличением давления, а газ нельзя.

В настоящее время все газы переведены в жидкое состояние при очень низких температурах. Последним в 1908 г. переведен гелий ( = -269 °С).

Сверхпроводимость - явление, состоящее в том, что у некоторых металлов и сплавов происходит резкое падение до нуля удельного сопротивления вблизи определенной температуры. Эти металлы и сплавы называются сверхпроводниками.

2. Какую температуру называют критической?

Критическая температура - температура, при которой проводники переходят в сверхпроводящее состояние.

3. Какой эффект называют изотопическим? Почему изотопический эффект является ключом к объяснению сверхпроводимости?

Изотопический эффект заключается в том, что квадрат температуры обратно пропорционален массе ионов в кристаллической решетке. Это значит, что при критической температуре структура кристаллической решетки сверхпроводника оказывает большое влияние на движение электронов - возникающие силы притяжения между электронами превышают кулоновские силы отталкивания.

4. Чем отличается характер движения электронов в сверхпроводнике от их движения в проводнике? Как механически можно промоделировать движение куперовских пар в сверхпроводнике?

В проводнике электроны движутся независимо друг от друга, а в сверхпроводнике (при критической температуре) их движения взаимосвязаны. Если движение электронов в проводнике мы сравнивали с потоком шариков, скатывающимся по наклонной плоскости и натыкающимся на штыри, то движение электронов в сверхпроводнике можно представить как движение наклонной плоскости, но шариков попарно связанных пружинами.

5. Почему сверхпроводимость исчезает при температуре выше критической? Чем объясняется перспективность разработок высокотемпературных сверхпроводников?

При температурах больше критической электроны снова начинают двигаться хаотично, куперовские пары разрушаются. Перспективность разработок высокотемпературных сверхпроводников позволит уменьшить потери энергии при передаче на большие расстояния, увеличить быстродействие компьютеров.